Esercizio geometria delle aree

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizio geometria delle aree"

Transcript

1 Salvatore Trotta Università degli Studi di Napoli - Federico II 15 aprile 2014

2 Consideriamo la seguente figura asimmetrica:

3 Suddivisa la figura in tre rettangoli e fissato un sistema di riferimento arbitrario (O, x, y), calcoliamo le coordinate del baricentro di ciascun rettangolo: x G,I = 2, 5 cm; x G,II = 0, 5 cm; x G,III = 5 cm; y G,I = 1 cm; y G,II = 10 cm; y G,III = 19 cm;

4 Calcolo aree dei singoli rettangoli: A I = 5 2 = 10 cm 2 ; A II = 16 1 = 16 cm 2 ; A III = 10 2 = 20 cm 2 Calcolo area totale della figura: A tot = A I + A II + A III = ( )cm = 46cm 2

5 Calcolo momenti statici dei singoli rettangoli, rispetto al sistema di riferimento (O, x, y): S0,x I = A I x G,I = = 25 cm 3 S0,x II = A II x G,II = 16 0, 5 = 8 cm 3 S0,x III = A III x G,III = 20 5 = 100 cm 3 S0,y I = A I y G,I = 10 1 = 10 cm 3 S0,y II = A II y G,II = = 160 cm 3 S0,y III = A III y G,III = = 380 cm 3

6 Calcolo componenti del momento statico totale: S 0,x = S0,x I + SII 0,x + SIII 0,x = ( ) cm 3 = 133 cm 3 S 0,y = S0,y I + SII 0,y + SIII 0,y = ( ) cm 3 = 550 cm 3 Calcolo coordinate baricento della figura: x G = S 0,x 133 cm3 = A tot 46 cm 2 = 2, 8913 cm y G = S 0,y 550 cm3 = A tot 46 cm 2 = 11, 9565 cm Rispetto ad una coppia di assi passante per G II il baricentro G dell intera sezione è spostato verso destra in quanto entrambe le aree I e III calamitano il baricentro in tale verso. Per lo stesso motivo il baricentro G dell intera sezione è spostato verso l alto in quanto l azione di calamita dell area III è maggiore di quella esercitata dall area I.

7 Calcolo distanza tra G e G I, G II, G III : dx I = x G,I x G = 2, 5 2, 8913 = 0, 3913 cm dx II = x G,II x G = 0, 5 2, 8913 = 2, 3913 cm dx III = x G,III x G = 5 2, 8913 = 2, 1087 cm dy I = y G,I y G = 1 11, 9565 = 10, 9565 cm dy II = y G,II y G = 10 11, 9565 = 1, 9565 cm dy III = y G,III y G = 19 11, 9565 = 7, 0435 cm

8 Calcoliamo il momento d inerzia del rettangolo I rispetto ai propri assi di simmetria: Ix I = Iy I = = 3, 3333 cm4 = 20, 8333 cm4 Calcolo del momemto centrifugo: I I x,y = 0 Applicando le formule di Huygens, calcoliamo il trasporto nel baricentro della figura, dei momenti d inerzia del rettangolo I : (I G ) I x = I I x + A I (d I y ) 2 = 3, ( 10, 9565) 2 = 1203, 7822 cm 4 (I G ) I y = I I y + A I (d I x ) 2 = 20, ( 0, 3913) 2 = 22, 3644 cm 4 (I G ) I x,y = (I G) I y,x = I I x,y +A I d I x di y = 10 ( 0, 3913) ( 10, 9565) = 42, 8727 cm 4

9 Calcoliamo il momento d inerzia del rettangolo II rispetto ai propri assi di simmetria: Ix II 12 = 341, 3333 cm 4 Iy II = = 1, 3333 cm 4 Calcolo del momemto centrifugo: I II x,y = 0 Trasporto nel baricentro della figura, del momento d inerzia e del momento centrifugo del rettangolo II : (I G ) II x = I x II + A (d ) II II 2 y = 341, ( 1, 9565) 2 = 402, 5795 cm 4 (I G ) II y = I y II + A (d ) II II 2 x = 1, ( 2, 3913) 2 = 92, 8264 cm 4 (I G ) II x,y = (I G) II y,x = I x,y II + A II dx II dii y = 16 ( 2, 3913) ( 1, 9565) = 74, 8572 cm 4

10 Calcoliamo il momento d inerzia del rettangolo III rispetto ai propri assi di simmetria: I III x = = 6, 6667 cm 4 I III y = = 166, 6667 cm 4 Calcolo del momemto centrifugo: I III x,y = 0 Trasporto nel baricentro della figura, del momento d inerzia e del momento centrifugo del rettangolo III : (I G ) III x = Ix III (d ) + A III III 2 y = 6, (7, 0435) 2 = 998, 8845 cm 4 (I G ) III y = Iy III (d ) + A III III 2 x = 166, (2, 1087) 2 = 255, 5990 cm 4 (I G ) III x,y = (I G) III y,x = I x,y III + A III dx III dy III = 20 2, , 0435 = 297, 0526 cm 4

11 Calcolo momenti d inerzia della figura, rispetto agli assi baricentrici x G e y G : (I G ) x = (I G ) I x + (I G) II x + (I G) III y = 1203, , , 8845 = 2605, 2463 cm 4 (I G ) y = (I G ) I y + (I G) II y + (I G) III y = 22, , , 5990 = 370, 7898 cm 4 Calcolo momento d inerzia centrifugo, rispetto agli assi baricentrici x G e y G : (I G ) x,y = (I G ) y,x = (I G ) I x,y + (I G) II x,y + (I G) III x,y = (I G ) I x,y + (I G) II x,y + (I G) III x,y = = 42, , , 0526 = = 414, 7825 cm 4

12 Vediamo perchè (I G ) x (I G ) y : il momento d inerzia rispetto una direzione, tiene conto di come è distribuita l area del corpo rispetto alla direzione considerata e dà una misura dell inerzia del corpo rispetto alle variazioni della sua forma. Ricordando che il momento d inerzia è il prodotto di un area per il quadrato della distanza, dall analisi della figura, si può vedere che l area della sezione non è distribuita simmetricamente rispetto agli assi baricentrici, ma le aree con sviluppo prevalente lungo x, rispetto a G si trovano ad una distanza maggiore, della distanza tra G e l area che si sviluppa lungo y. Le aree influiscono linearmente sul momento d inerzia, ma comunque nel caso in esame, le aree con sviluppo prevalente lungo x, sono maggiori dell area che si sviluppa lungo y: A I = 10 cm 2, A III = 20 cm 2, mentre A II = 16 cm 2.

13 Sia Ω un dominio regolare del piano; detto r il raggio vettore che individua la posizione di un generico punto di Ω in un sistema di riferimento cartesiano con origine in O, si definisce Tensore d Inerzia di Ω rispetto all origine O, la quantità: Ω Ω J O = Ω r rdω = x 2 dω x ydω Ω Ω x ydω y 2 dω. La quantità (J O ) y = Ω y 2 dω, rappresenta il momento d inerzia lungo l asse y: con tale dicitura, si pone l attenzione sul fatto che l area è distribuita lungo l asse y e cioè, quanta area c è lungo la direzione y. Più comunemente, la quantità Ω y 2 dω è indicata con (I O ) x ed è chiamata momento d inerzia rispetto all asse x: in tal modo si pone l attenzione sulla distanza che intercorre tra l area in questione e la direzione x.

14 In conclusione sussistono le seguenti uguaglianze: (J O ) y = (I O ) x (J O ) x = (I O ) y La quantità (J O ) x,y = (J O ) y,x = (I O ) x,y = (J O ) y,x = = x ydω Ω è detta momento centrifugo rispetto agli assi x e y.

15 Il tensore d inerzia del domino Ω rispetto al baricentro G sarà: J G = Ω = r G r G dω Ω x 2 G dω x G y G dω Ω Ω [ ] (JG ) = x (J G ) x,y (J G ) x,y (J G ) y [ ] (IG ) = y (I G ) x,y (I G ) x,y (I G ) x Ω x G y G dω y 2 G dω dove r G è il vettore posizione di un punto di Ω, nel sistema di riferimento cartesiano con origine nel baricentro G del dominio.

16 Nel nostro caso, il tensore d inerzia rispetto al baricentro G è: [ ] 370, , 7826 J G = cm 414, , ; Per calcolare le tensioni principali, ricordiamo che J G u = λ u (J G λi) u = 0 det J G [ λi = 0 ] 1 0 dove I = è la matrice identità. 0 1 Calcoliamo gli autovalori λ 1 e λ 2 λ 1,2 = trj G (trj G ) 2 4 detj G 2 ; trj G = 2976, 0362; detj G = , 319;

17 sostituendo i valori, si ha: λ 1,2 = 2976,0362 (2976,0362) ,319 = 2 = { 296, , 7578 λ 1 = J 1 = I 2 = 296, 2684 J 1 =momento d inerzia con distanze prese secondo la direzione 1 I 2 = momento d inerzia rispetto all asse 2 λ 2 = J 2 = I 1 = 2679, 7578 J 2 =momento d inerzia con distanze prese secondo la direzione 2 I 1 = momento d inerzia rispetto all asse 1

18 Calcoliamo gli autovettori u 1 e u 2 : (J G λ 1 I) u 1 = 0 [ ] [ ] [ ] 74, , 7826 u1,x 0 = 414, , 9679 u 1,y 0 Consideriamo la sola 1 a equazione in quanto le due equazioni sono linearmente dipendenti (poiché det ÎG λ 1 I = 0): 74, 5114 u 1,x + 414, 7826 u 1,y = 0; u 1,y = 74, ,7826 u 1,x = 0, u 1,x da cui: u 1,x u 1,y , allora [ u 1 = 1 0, ]

19 [ x ricordiamo che se r = y dove R π 2 = [ ] ] [ y, r = R π r = 2 x è il tensore che effettua una rotazione rigida di π 2 percui: [ ] 1 u 1 = e 0, [ ] 0, u 2 = u1 = R π u 1 = 2 1 ] in senso antiorario;

20 Calcoliamo il raggio principale d inerzia da riportare sull asse 1: ρ 1 = λ1 A = 296, = 2, cm Calcoliamo il raggio principale d inerzia da riportare sull asse 2: ρ 2 = λ2 A = 2679, = 7, cm

21 Il tensore d inerzia nel riferimento principale d inerzia e baricentrale vale: [ I (1,2) 296, G = , 7578 ] cm 4 [ I (x G,y G ) 370, , 7826 G = 414, , 2463 ] cm 4

9 - Geometria delle aree

9 - Geometria delle aree 9 - Geometria delle aree ü [A.a. 0-04 : ultima revisione 4 gennaio 04] In questa esercitazione si applicano le definizioni di baricentro, momento statico, momento d'inerzia, etc. ad alcuni esempi di interesse

Dettagli

Modellistica dei Manipolatori Industriali 01BTT Esame del 18/02/2002 Soluzione

Modellistica dei Manipolatori Industriali 01BTT Esame del 18/02/2002 Soluzione Modellistica dei Manipolatori Industriali BTT Esame del 8/2/22 Soluzione Sistemi di riferimento e cinematica di posizione In Figura a) il manipolatore è stato ridisegnato per mettere in evidenza variabili

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm

Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm Esercizio N.1 (pag. 81) La coppia M agisce in un piano verticale passante per l asse baricentrico di una trave la cui sezione trasversale è mostrata in figura. Determinare la tensione nel punto A. Soluzione

Dettagli

Analisi della deformazione

Analisi della deformazione 3 Analisi della deformazione Tema 3.1 Si consideri un corpo continuo di forma parallelepipedica e di dimensioni a = 15 cm, b = 10 cm, c = 1 cm. Rispetto ad un riferimento centrato nel baricentro del corpo

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2 1 Calcolo del momento d inerzia Esercizio I.1 Pendolo semplice Si faccia riferimento alla Figura 1, dove è rappresentato un pendolo semplice; si utilizzeranno diversi sistemi di riferimento: il primo,

Dettagli

ELABORATO 2 GEOMETRIA DELLE MASSE

ELABORATO 2 GEOMETRIA DELLE MASSE ELABORATO GEOMETRIA DELLE MASSE DATI Al = 1.00 Kg/m Fe = 3.8 Kg/m s = 1 mm d = 3 mm b = mm r = mm h = 5 mm La struttura è stata divisa in 11 parti ed è formata da due figure elementari: rettangolo e quarto

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM10 - Fisica Matematica I Seconda Prova di Esonero [13-01-01] Soluzioni Problema 1 1. Il moto si svolge in un campo di forze centrale in assenza di attrito. Pertanto si avranno due integrali primi del

Dettagli

Appendice: raccolta di tracce di esercizi proposti e di esercizi svolti sulla geometria delle aree

Appendice: raccolta di tracce di esercizi proposti e di esercizi svolti sulla geometria delle aree UNIVERSITÀ DEGLI STUDI DI SALERNO FACOLTÀ DI INGEGNERIA Corso di Scienza delle Costruzioni 1 Laurea in ingegneria civile per l ambiente ed il territorio Prof. Fernando Fraternali Appendice: raccolta di

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 24 giugno 2011 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 24 giugno 2011 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 24 giugno 20 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Modellistica dei Manipolatori Industriali 01BTT Esame del 23/11/2001 Soluzione

Modellistica dei Manipolatori Industriali 01BTT Esame del 23/11/2001 Soluzione Modellistica dei Manipolatori Industriali 1BTT Esame del 23/11/21 Soluzione 1 Sistemi di riferimento e cinematica di posizione In Figura 1 il manipolatore è stato ridisegnato per mettere in evidenza variabili

Dettagli

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia 3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale

Dettagli

Domanda Risposta

Domanda Risposta Esame di Geometria 18 Maggio 010 Cognome e Nome: Matricola: Corso di Laurea Regolamento della prova. La prova consiste in 7 Domande a risposta multipla chiusa (di cui una soltanto è corretta) e di Esercizi.

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

Corso di Laurea in Fisica - A.A. 2015/2016

Corso di Laurea in Fisica - A.A. 2015/2016 Corso di Laurea in Fisica - A.A. 15/16 Meccanica Analitica Tutoraggio X - 1 maggio 16 Esercizio 1 Momenti e assi principali di inerzia Dopo aver scelto un sistema di riferimento conveniente, si trovi la

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 19 giugno 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 19 giugno 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 9 giugno 203 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Esercitazioni di Geometria II

Esercitazioni di Geometria II Esercitazioni di Geometria II Letizia Pernigotti - pernigotti@science.unitn.it 5 aprile 0 Esercizio. [dagli esercizi online della prof.ssa Carrara] Sia E R il piano euclideo numerico dotato del riferimento

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 22/23 Matrici d inerzia Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale -

Dettagli

Calcolo del momento d inerzia di un braccio robotico

Calcolo del momento d inerzia di un braccio robotico Calcolo del momento d inerzia di un braccio robotico Basilio Bona Dipartimento di Automatica e Informatica Politecnico di Torino basilio.bona@polito.it Internal Report: DAUIN/BB/2006/09.01 Versione: 4

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico 5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a

Dettagli

Soluzione della prova scritta di Meccanica Analitica del 30 giugno 2017 a cura di Sara Mastaglio

Soluzione della prova scritta di Meccanica Analitica del 30 giugno 2017 a cura di Sara Mastaglio Soluzione della prova scritta di Meccanica Analitica del 3 giugno 7 a cura di Sara Mastaglio ) Denotiamo con G il baricentro dell asta e con C il centro del disco.. Per determinare la matrice d inerzia

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura Primo Appello del corso di Geometria 2 Docente F. Flamini, Roma, 22/02/2007 SVOLGIMENTO COMPITO I APPELLO

Dettagli

Prova scritta del 18/12/2008, tema A

Prova scritta del 18/12/2008, tema A 1 È Data la funzione: fx) e x x 3x + 3) Prova scritta del 18/1/8, tema A Determinarne: a) dominio, limiti significativi, asintoti; b) derivata prima, crescenza, punti di massimo e di minimo; c) derivata

Dettagli

Esercitazioni del Aprile di Geometria A

Esercitazioni del Aprile di Geometria A Esercitazioni del 4-6-7-8 Aprile di Geometria A Università degli Studi di Trento Corso di laurea in Matematica A.A. 7/8 Matteo Bonini matteo.bonini@unitn.it Esercizio Si considerino in E 3 (R) i piani

Dettagli

Geometria 2. Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/ luglio 2012

Geometria 2. Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/ luglio 2012 Geometria Università degli Studi di Trento Corso di Laurea in Matematica A.A. 011/01 0 luglio 01 Si svolgano i seguenti esercizi. Esercizio 1. Sia E il -spazio euclideo dotato del riferimento cartesiano

Dettagli

ESEMPI ED ESERCIZI sulla Meccanica dei Sistemi Continui

ESEMPI ED ESERCIZI sulla Meccanica dei Sistemi Continui Marco Modugno ESEMPI ED ESERCIZI sulla Meccanica dei Sistemi Continui Per gli studenti dei Corsi di Laurea in Ingegneria per l Ambiente ed il Territorio ed Ingegneria Edile Versione del 22..9. - 4.2. 2

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

SOLUZIONI (PROVA DELL 11 FEBBRAIO 2019) Due rette sghembe sono simultaneamente parallele a infiniti piani. [ V ]

SOLUZIONI (PROVA DELL 11 FEBBRAIO 2019) Due rette sghembe sono simultaneamente parallele a infiniti piani. [ V ] SOLUZIONI (PROVA DELL FEBBRAIO 209) Il rango per righe può superare di il rango per colonne [ F ] In R 6 possono esistere 7 generatori di un sottospazio [ V ] {( + 2k, 2 k, 0), (,, 0), (0, 0, )} è una

Dettagli

Polinomio di Taylor del secondo ordine per funzioni di due variabili

Polinomio di Taylor del secondo ordine per funzioni di due variabili Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente

Dettagli

Figura 1: Esercizio 1

Figura 1: Esercizio 1 y α φ P O x Figura : Esercizio entro di massa Esercizio. alcolare il centro di massa di un arco di circonferenza di raggio R, sotteso da un angolo di ampiezza α e densità lineare costante µ. Soluzione.

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Compito del 21 giugno 2004

Compito del 21 giugno 2004 Compito del 1 giugno 00 Una lamina omogenea di massa m è costituita da un quadrato ABCD di lato a da cui è stato asportato il quadrato HKLM avente i vertici nei punti medi dei lati di ABCD. La lamina è

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI

CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI A.S. 2012-201 LA GEOMETRIA DELLE MASSE Massa = grandezza fisica che descrive la proprietà dei corpi materiali (o dei sistemi di corpi materiali) che ne determina

Dettagli

21 settembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

21 settembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Soluzione facsimile d esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME......................................... NOME......................................... N. MATRICOLA................

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

x1 + 1 x T p. x 2

x1 + 1 x T p. x 2 Geometria e Algebra Trasformazioni del piano Soluzioni Siano p e q i Trovare le formule per la traslazione T p ii Calcolare T p T p iii Calcolare T p T p iv Calcolare T q T p T p T q Sol i Si ha ii iii

Dettagli

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D ANALISI VTTORIAL Soluzione esercizi 26 novembre 2 5.. sercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y dx dy D + x 2 + y2

Dettagli

23. Le coniche nel piano euclideo.

23. Le coniche nel piano euclideo. 3. Le coniche nel piano euclideo. 3. Definizione. Una matrice C ad elementi reali quadrata C si dice ortogonale se C T = C. 3. Osservazione. Una matrice C ad elementi reali quadrata C è ortogonale se e

Dettagli

1 Cambiamenti di coordinate nel piano.

1 Cambiamenti di coordinate nel piano. Cambiamenti di coordinate nel piano.. Coordinate cartesiane Coordinate cartesiane su una retta. Sia r una retta: dare un sistema di coordinate su r significa fissare un punto O di r e un vettore u = U

Dettagli

Analisi Matematica 2. Integrali doppi. Integrali doppi 1 / 24

Analisi Matematica 2. Integrali doppi. Integrali doppi 1 / 24 Analisi Matematica 2 Integrali doppi Integrali doppi 1 / 24 Integrali doppi su domini rettangolari. Sia f (x, y) una funzione limitata nel rettangolo Q = [a, b] [c, d] e sia D 1 = {x 0 = a, x 1,, x m =

Dettagli

1. Richiami. v = x 2 + y 2.

1. Richiami. v = x 2 + y 2. Gli elementi del prodotto cartesiano 1 Richiami R 2 = x, y R} sono detti vettori Ogni vettore v è una coppia ordinata ed i numeri reali x e y sono detti le componenti di v In particolare si denota con

Dettagli

Meccanica. 11. Terzo Principio della Dinamica. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 11. Terzo Principio della Dinamica.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 11. Terzo Principio della Dinamica http://campus.cib.unibo.it/2430/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. Terzo Principio della Dinamica 2. Centro di

Dettagli

Capitolo 7. Il corpo rigido. 7.1 Il corpo rigido

Capitolo 7. Il corpo rigido. 7.1 Il corpo rigido Capitolo 7 Il corpo rigido 7.1 Il corpo rigido Uncorpo rigido discreto, denotato con C, è unsistema di N punti materiali P 1,...,P N che mantengono invariate le loro distanze mutue durante il moto. Fissato

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 3

Esercizi di Calcolo delle Probabilità Foglio 3 Esercizi di Calcolo delle Probabilità Foglio David Barbato Esercizio. (6-ese- s) Sia (X, Y ) un vettore aleatorio con densità: { αy (x, y) D f (X,Y ) (x, y) (x, y) / D Dove D {(x, y) R : x

Dettagli

SOLUZIONI. CDEF e Ixx D rispetto all asse x delle tre lamine, separatamente.

SOLUZIONI. CDEF e Ixx D rispetto all asse x delle tre lamine, separatamente. Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile e Ambientale/per l Ambiente e il Territorio Esame di Fisica Matematica 11 luglio 2012 SLUZINI Esercizio 1. Un corpo rigido

Dettagli

Compito di Analisi Matematica II del 28 giugno 2006 ore 11

Compito di Analisi Matematica II del 28 giugno 2006 ore 11 Compito di Analisi Matematica II del 28 giugno 26 ore Esercizio. ( punti) Calcolare il flusso del campo vettoriale F (,, z) = (z, z 2, z 2 ) } uscente dalla frontiera di D = (,, z) R 3 : 2 + z 2, z,. Svolgimento

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Geometria Geometria settembre 2006

Geometria Geometria settembre 2006 Geometria Geometria settembre ) Nel piano affine euclideo reale, in cui è fissato un sistema di coordinate cartesiane ortogonali, si considerino la retta t e i punti O(, ), (, ), (, ) i) Si scriva l equaione

Dettagli

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste.

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste. Campi vettoriali. Sia F (x, y = ye x i + (e x cos y j un campo vettoriale. Determinare un potenziale per F, se esiste.. Sia F (x, y = xy i + x j un campo vettoriale. Determinare un potenziale per F, se

Dettagli

Esame di Geometria e Algebra Lineare

Esame di Geometria e Algebra Lineare Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e sul retro. I fogli di brutta non devono essere consegnati. 1. Fissato un sistema di riferimento

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1 Fisica 18 Febbraio 2013 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema 1 Un corpo di massa M = 12 kg, inizialmente in quiete, viene spinto da una forza di

Dettagli

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0.

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0. 1 Calcolo vettoriale 1 Scrivere il vettore w =, 6 sotto forma di combinazione lineare dei vettori u = 1, e v = 3, 1 R w = v 4u Determinare la lunghezza o il modulo del vettore, 6, 3 R 7 3 Determinare la

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Analisi e Geometria 2 Docente: 13 febbraio 2014

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Analisi e Geometria 2 Docente: 13 febbraio 2014 Es. 1 Es. 2 Es. 3 Es. 4 Totale Analisi e Geometria 2 Docente: 13 febbraio 214 Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Tutore: Eleonora Palmieri 14 febbraio 2007 Esercizio 1: Si consideri in R 2 la conica Γ : 2x 2 1 + 4x 2 2 + x 1 + 2x 2 = 0. 1. Ridurre Γ

Dettagli

Analisi Matematica II 14 Giugno 2019

Analisi Matematica II 14 Giugno 2019 Analisi Matematica II 14 Giugno 2019 Cognome: Nome: Matricola: 1. (10 punti) Si determinino i sottoinsiemi del piano in cui valgano, rispettivamente, continuità, derivabilità e differenziabilità della

Dettagli

1 Esercizi di ripasso 4

1 Esercizi di ripasso 4 Esercizi di ripasso 4. Determinare k in modo che il piano kx + 2y 6z + = 0 sia parallelo al piano x + y z + = 0. Soluzione. La condizione di parallelismo richiede che ( ) k 2 6 rg = Ne segue che k = e

Dettagli

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = 1 x + x x > 0 determinare le frequenze delle piccole

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = arctan xy + x + y

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = arctan xy + x + y Analisi Matematica II Corso di Ingegneria Biomedica Compito A del -7-2 - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + }

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + } Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8-09-07 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

0 0 c. d 1. det (D) = d 1 d n ;

0 0 c. d 1. det (D) = d 1 d n ; Registro Lezione di Algebra lineare del 23 novembre 216 1 Matrici diagonali 2 Autovettori e autovalori 3 Ricerca degli autovalori, polinomio caratteristico 4 Ricerca degli autovettori, autospazi 5 Matrici

Dettagli

Fisica 2C. 2 a Prova Parziale 9 Gennaio 2008

Fisica 2C. 2 a Prova Parziale 9 Gennaio 2008 Fisica C a Prova Parziale 9 Gennaio 008 ˆ Leggere attentamente il testo e assicurarsi di rispondere a tutto quanto viene chiesto; se vi sono dei dati numerici ció implica che la(o le)risposta dev essere

Dettagli

Giacomo Sacco Appunti di Costruzioni Edili

Giacomo Sacco Appunti di Costruzioni Edili Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

5 Un applicazione: le matrici di rotazione

5 Un applicazione: le matrici di rotazione 5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta

Dettagli

CdL in Ingegneria Informatica - Ingegneria Elettronica (P-Z) Ingegneria delle Telecomunicazioni

CdL in Ingegneria Informatica - Ingegneria Elettronica (P-Z) Ingegneria delle Telecomunicazioni CdL in Ingegneria Informatica - Ingegneria Elettronica (P-Z) Ingegneria delle Telecomunicazioni Prova scritta di Algebra lineare e Geometria- 9 Gennaio 3 Durata della prova: tre ore. È vietato uscire dall

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE DEFINIZIONE Una superficie in R 3 è un applicazione α : U R 3, di classe almeno C. In realtà, tratteremo solamente superfici di classe C. Inoltre, U R deve essere un aperto, e α deve essere iniettiva.

Dettagli

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 2 settembre 2008 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 2 settembre 2008 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti 2 settembre 28 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8 Geometria e Topologia I 22 Giugno 2005 (U-0, 9:00 :00) [PROVA PARZIALE]/8 Correzione 0 () In A 3 (R) siano dati i tre punti A =, B = 0, C =. 0 (a) A B e C sono allineati? Dipendenti? (b) Dimostrare che

Dettagli

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio.

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio. UNIÀ 4 L EQUILIBRIO DEI SOLIDI.. La forza elastica di una molla.. La costante elastica e la legge di Hooke. 3. La forza peso. 4. Le forze di attrito. 5. La forza di attrito statico. 6. La forza di attrito

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Prova scritta di Geometria 18/01/2016, Soluzioni Ing. Meccanica a.a

Prova scritta di Geometria 18/01/2016, Soluzioni Ing. Meccanica a.a Prova scritta di Geometria 8//26, Soluzioni Ing. Meccanica a.a. 25-6 Esercizio È data la conica γ : 3x2 2xy + 3y 2 + 8x + 3 =. a) Verificare che la conica è un ellisse e determinarne la forma canonica.

Dettagli

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Esercizio 1 Si consideri la conica affine d equazione 9x 2 + 6y 2 4xy 6x + 8y = 1 (1)

Dettagli

18 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

18 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

G. Bracco - Appunti di Fisica Generale

G. Bracco - Appunti di Fisica Generale Sistemi di punti materiali Finora abbiamo considerato solo un punto materiale ma in genere un corpo ha dimensione tale da non poter essere assimilato ad un punto materiale. E sempre opportuno definire

Dettagli

Quick calculus Capitolo 1 Il problema della tangente

Quick calculus Capitolo 1 Il problema della tangente Quick calculus Capitolo 1 Il problema della tangente Introduzione Ricavare una retta tangente ad una curva di secondo grado come un circonferenza o una parabola, è un problema che si risolve facilmente.

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Risoluzione del compito n. 5 (Luglio 2018/2)

Risoluzione del compito n. 5 (Luglio 2018/2) Risoluzione del compito n. 5 (Luglio 2018/2) PROBLEMA 1 Considerate il luogo di zeri S = {(x, y, z) R 3 : z 4+ x 2 + y 2 =0, 2x y + z =0}. a) Giustificando la risposta, dite se S è una curva liscia. b)

Dettagli

Esprimendo il vettore (u, v) in coordinate polari (u = r cos θ, v = r sin θ), si ha. = u2 v 0 0 u 0 v

Esprimendo il vettore (u, v) in coordinate polari (u = r cos θ, v = r sin θ), si ha. = u2 v 0 0 u 0 v Università di Milano - Bicocca Corso di laurea di primo livello in Scienze statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informazioni Matematica II rova scritta

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

7. SISTEMI RIGIDI. r a r b = c ab = costante per ogni a, b = 1,..., N.

7. SISTEMI RIGIDI. r a r b = c ab = costante per ogni a, b = 1,..., N. 7. SISTEMI RIGIDI Un corpo C è rigido se la distanza fra due punti qualsiasi di C si mantiene inalterata durante il moto. In molte circostanze di interesse applicativo è conveniente considerare sistemi

Dettagli

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E.

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E. ANALISI VETTORIALE Soluzione esonero.1. Esercizio. Assegnato il campo E (x, y, z) = x(y + z ), y(x + z ), z(x + y ) } 1111 calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1),

Dettagli

Trasformazioni geometriche del piano. 3 marzo 2013

Trasformazioni geometriche del piano. 3 marzo 2013 Trasformazioni geometriche del piano 3 marzo 2013 1 Indice 1 Trasformazioni geometriche del piano 3 1.1 Affinità............................... 4 1.2 Isometrie.............................. 8 1.2.1 Simmetrie..........................

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #7. Sia f : R R la funzione definita da a) Determinare i massimi e minimi di f. b) Mostrare che f è limitata. fx, y) xy

Dettagli

Compito di geometria 2 del 21/06/2005

Compito di geometria 2 del 21/06/2005 Compito di geometria 2 del 21/06/2005 1 Nel piano euclideo reale E 2 si consideri il fascio di coniche (k + 1x 2 + (k 1y 2 2kx + 2y k 1 = 0 a Classificare e, delle coniche degeneri del fascio, trovare

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli