G. Bracco - Appunti di Fisica Generale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "G. Bracco - Appunti di Fisica Generale"

Transcript

1 Sistemi di punti materiali Finora abbiamo considerato solo un punto materiale ma in genere un corpo ha dimensione tale da non poter essere assimilato ad un punto materiale. E sempre opportuno definire un punto particolare del corpo (o del sistema di punti), il centro di massa. Per calcolare la sua posizione suddividiamo il corpo (se non è già suddiviso in punti) in parti più piccole di massa m i e in posizione r i m i r i Centro di massa CM R CM = Σ M dove M è la massa totale del sistema derivando si ottiene velocità del CM V CM = Σ m i v i /M accelerazione del CM a CM = Σ m i a i /M CM 1 Osserviamo che il CM può anche essere un punto esterno al corpo. Ad esempio nel caso di una corona circolare y Nel caso di un corpo continuo la sommatoria CM corrisponde nel limite di parti infinitesime ad un integrale esteso a tutto il corpo 1 1 R CM =----- r dm = ---- r ρ dv dove M= ρ dv M M è la massa totale del corpo x in ogni caso questo corrisponde a un integrale (sommatoria) per ciascuna componente x CM = x dm /M = x ρ dv /M etc. Se il corpo ha elementi di simmetria, il centro di massa giace su tali elementi

2 Seconda legge di Newton per un sistema di punti Per ciascun punto F i =m i a i sommiamo su tutti i punti Σ F i = Σ m i a i =M Σ (m i a i )/M= M a CM analizziamo le forze e separiamole in forze interne fra i punti del sistema e forze esterne Σ (F i ) int =0 per il principio di azione e reazione Σ (F i ) ext =M a CM quindi la legge rimane valida ed il sistema si comporta come un corpo in cui la massa totale M è concentrata nel CM e risente solo della risultante delle forze esterne 3 Per un sistema è opportuno riscrivere la seconda legge come Σ F ext =dp/dt (I eq. cardinale della dinamica dei sistemi) dove la quantità di moto totale è P=Σ p i = Σ m i v i =Mv CM In assenza di forze esterne dp/dt=0 e quindi P= costante e si ha conservazione della quantità di moto. Essendo una relazione vettoriale si hanno tre relazioni P x =cost. P y =cost. P z =cost. Si ha conservazione anche per una sola componente in una direzione se la risultante delle forze esterne non ha componente in quella direzione Es.: calcolare il CM per un cerchio, un semicerchio e per un quadrato. 4

3 Anche nel caso dei sistemi di punti, per trattare i moti, in particolare le rotazioni, è opportuno introdurre ed utilizzare i momenti delle forze Il momento totale rispetto ad un polo O sarà la somma di tutti i momenti applicati ai vari punti Σ t i = Σ r i F i E opportuno separare le forze in forze interne ed esterne al sistema. Per quelle interne Σ (t i ) int = Σ r i (F i ) int =0 perché prese a coppie (azione e reazione) si ha che r i (F i ) int + r j (F j ) int = r i (F i ) int -r j (F i ) int = (r i -r j ) (F i ) int =0 perchè la forza è lungo la direzione passante per i due punti interagenti F i r i r j F j 5 Analogamente il momento complessivo della quantità di moto L=Σ l i = Σ r i p i = Σ r i m i v i L equazione vista per un punto materiale diviene T ext = dl/dt (II eq. cardinale della dinamica dei sistemi) L equazione e i valori delle quantità dipendono dalla scelta del polo rispetto a cui calcolare i momenti (vedi la dimostrazione per il punto materiale) (T ext ) 0 = dl 0 /dt+ v 0 P osservazione: se si sceglie il CM P =Σ m i v i =0 e quindi v CM P=0 T ext = dl CM /dt anche se il moto r r-r 0 0 del CM è accelerato! r 6

4 Più in generale possiamo considerare i vettori dal polo O ai vari punti del corpo come r i =R CM + r i e quindi L=Σ l i = Σ r i p i = Σ(R CM + r i ) m i (v i +V CM )= R CM Σm i v i +R CM (Σm i )V CM + Σ r i m i v i + m i + Σ(m i r i ) V CM ma rispetto al CM Σ(m i r i )=0 Σm i v i =0 da cui L = R CM P + L CM (Teorema di König per L) Scritto in questo modo, il momento della q.d.m. risulta somma del momento angolare rispetto al CM (momento angolare intrinseco) che è una proprietà del sistema più quello dovuto al moto di un punto materiale (CM), in cui tutta la massa del corpo è apparentemente concentrata, che dipende dalla scelta del polo O. O r i R CM r i CM 7 In assenza di momenti esterni dl/dt=0 e quindi L= costante e si ha conservazione del momento della quantità di moto. Essendo una relazione vettoriale L x =cost. L y =cost. L z =cost. Si ha conservazione anche per una sola componente in una direzione se la risultante dei momenti esterni non ha componente in quella direzione. Per un sistema generico si hanno perciò 6 equazioni di moto F ext =dp/dt ed in genere se il numero di punti è superiore a due T ext = dl CM /dt il sistema è indeterminato. Nel caso di un corpo rigido (in cui le distanze fra i punti che compongono il corpo sono costanti) bastano tre quantità per specificarne la posizione e tre per definire la sua orientazione (6 gradi di libertà): le due equazioni cardinali sono sufficienti a descriverne il moto. In sistema isolato e chiuso (non c è scambio di particelle con l esterno) Σ F ext =0 e questo implica P=cost conservazione quantità di moto Σ T ext =0 e questo implica L=cost conservazione momento angolare ΔE=0 E=costante conservazione dell energia in generale 8

5 Momenti di inerzia Per un corpo rigido si definisce il concetto di momento di inerzia Partiamo dal momento angolare di un corpo rigido che ruota con velocità angolare ω (uguale per tutti i punti mentre la v i dipende dal punto) attorno ad un asse fisso su cui scegliamo il polo O L=Σ l i = Σ r i p i = Σr i m i v i = Σr i (m i ω r i ) L ultima relazione si può verificare considerando ω v i ω che ogni punto esegue un moto circ. con raggio R la proiezione di r i nel piano perpendicolare i a ω) e quindi si comprende che nel momento r i angolare si fattorizza ω e ciò che rimane contiene l informazione della distribuzione O geometrica delle masse, quest ultima e il momento di inerzia I. Provare ad eseguire il calcolo vettoriale per due masse uguali come in figura che ruotano attorno all asse verticale 9 Vediamo brevemente le proprietà del prodotto vettoriale triplo di vettori d=a (b c) = (c a) b -(b a) c infatti (b c) è perpendicolare al piano di b e c, quindi d, che è perpendicolare a (b c) ed a, sarà combinazione di b e c. Applicato al nostro caso Σr i (m i ω r i )= Σ m i r i (ω r i ) con a= r i, b= ω, c= r i, Σ m i ((r i r i ) ω -(ω r i ) r i ) di componenti ((r i ) ω x -(ω r i )x i, (r i ) ω y -(ω r i )y i, (r i ) ω z -(ω r i )z i ) Osservazione: il momento angolare L e la velocità angolare ω sono vettori, I moltiplicato per ω deve in generale dare un vettore non parallelo ad ω I è un tensore di ordine. Infatti sviluppiamo i vari termini 10

6 X: Σ m i ((x i + y i + z i )ω x -(ω x x i + ω y y i + ω z z i )x i ) = Σ m i (y i +z i ) ω x - Σ m i x i y i ω y - Σ m i x i z i ω z Y: Σ m i ((x i + y i + z i ) ω y -(ω x x i + ω y y i + ω z z i )y i ) = - Σ m i x i y i ω x + Σ m i (x i +z i ) ω y - Σ m i y i z i ω z Z: Σ m i ((x i + y i + z i )ω z -(ω x x i + ω y y i + ω z z i )z i )= - Σ m i x i z i ω x - Σ m i y i z i ω y + Σ m i (x i + y i )ω z da cui Σm i (y i +z i ) - Σ m i x i y i -Σ m i x i z i I = - Σ m i x i y i Σ m i (x i +z i ) - Σ m i y i z i - Σ m i x i z i - Σ m i y i z i Σ m i (x i + y i ) tensore simmetrico (I ij =I ji ) 11 Per le rotazioni attorno ad un asse (per esempio verticale lungo z) lungo ^ cui è diretto ω possiamo scrivere ω= ω z k e ciò che interessa è il calcolo della componente del momento angolare lungo l asse L z = Σ m i (x i + y i ) ω z = I zz ω z (le altre componenti fuori asse determinano lo sbilanciamento del sistema: es. equilibratura ruote automobili) Essendo il corpo continuo la sommatoria viene sostituita da un integrale I zz = (X + Y )dm= (X + Y )ρ dv= R ρ dv = Generalizzando quindi il momento di inerzia lungo un asse qualunque vale I= R ρ dv con R distanza dall asse di rotazione di dm Per esercizio calcolare il momento di inerzia di a) un disco omogeneo di raggio R b) di una sfera di raggio R 1

7 13 Calcolato il momento di inerzia I CM rispetto al CM è possibile calcolarlo per qualunque asse parallelo al primo I mediante il Teorema degli assi paralleli di Steiner I=I CM +Md con d la distanza fra gli assi paralleli e M la massa totale del corpo La seconda equazione cardinale per la rotazione attorno ad un asse fisso (lungo z) di un corpo rigido si riduce a (T ext ) z = dl z /dt= I dω/dt = I α con il polo sull asse di rotazione (l equazione non dipende dalla posizione del polo purché esso sia sull asse) Statica di un corpo rigido: si deve verificare che Σ F ext =0 Σ T ext =0 equazioni fondamentali della statica dei sistemi rigidi se P=0 e L=0 ad un istante, essi rimangono nulli 14

8 Energia cinetica L energia cinetica totale di un sistema di punti è data da K= ΣK i = Σ½ m i v i Nel caso di un corpo rigido si può dimostrare che K= ½ M v CM + ½ I CM ω dove il primo addendo rappresenta l energia cinetica di un punto materiale di massa M avente la velocità del CM, il secondo addendo rappresenta invece l energia cinetica associata alla rotazione attorno al centro di massa. Nel caso di rotazione attorno ad un asse fisso K= ½ I ω [il momento di inerzia è calcolato rispetto a questo asse poiché ω è diretto lungo questo asse e se passante per il CM allora v CM =0 altrimenti v CM = ωd, con d=distanza di CM dall asse e quindi K= ½ M v CM + ½ I CM ω = ½ M (ωd) + ½ I CM ω = K= ½ (M d + I CM ) ω ] 15 Per una rotazione attorno ad un asse fisso (p.es. z) si può formulare il lavoro in modo più semplice. Consideriamo un singolo punto i che ruota e valutiamo il lavoro fatto da F su di esso L i = F i dl i = F i vdt = F i ω r i dt = ω r i F i dt = (ω ha solo componente lungo l asse, cioè z) ωt z dt = t z ω dt = t z dθ e la potenza P= dl/dt= t z dθ/dt= t z ω t z =(r i F i ) z la componente del momento delle forze lungo l asse (z). Queste relazioni risultano utili nel caso dei corpi rigidi vincolati a ruotare attorno ad un asse fisso 16

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Dinamica del corpo rigido Antonio Pierro Definizione di corpo rigido Moto di un corpo rigido Densità Momento angolare Momento d'inerzia Per consigli, suggerimenti, eventuali errori o altro potete scrivere

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Momento di una forza

Momento di una forza Momento di una forza Se è la forza che cambia il moto, cos è che cambia la rotazione? Momento, τ, di una forza, F : è un vettore definito come τ = r F. Il momento di una forza dipende dall origine e dal

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018 Prova teorica - A Nome... N. Matricola... Ancona, 5 aprile 2018 1. Gradi di libertà di

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Proprietà del corpo rigido (CR): Incompressibilità, indeformabilità.

Proprietà del corpo rigido (CR): Incompressibilità, indeformabilità. Dinamica del corpo rigido: Appunti. Proprietà del corpo rigido (CR): Incompressibilità, indeformabilità. Incompressibilità: implica che il volume del corpo rigido è costante. Indeformabilità: implica che

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

FISICA. MECCANICA: Principio conservazione momento angolare. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. MECCANICA: Principio conservazione momento angolare. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA MECCANICA: Principio conservazione momento angolare Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica MOMENTO ANGOLARE Fino a questo punto abbiamo esaminato soltanto moti di traslazione.

Dettagli

Meccanica. 11. Terzo Principio della Dinamica. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 11. Terzo Principio della Dinamica.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 11. Terzo Principio della Dinamica http://campus.cib.unibo.it/2430/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. Terzo Principio della Dinamica 2. Centro di

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

MOTO DI PURO ROTOLAMENTO

MOTO DI PURO ROTOLAMENTO MOTO DI PURO ROTOLAMENTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOTO DI PURO ROTOLAMENTO

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Dinamica di sistemi di punti materiali: derivazione delle leggi cardinali della dinamica dei sistemi di particelle nel sistema L.

Dinamica di sistemi di punti materiali: derivazione delle leggi cardinali della dinamica dei sistemi di particelle nel sistema L. Dinamica di sistemi di punti materiali: derivazione delle leggi cardinali della dinamica dei sistemi di particelle nel sistema L. Obiettivo: l estensione delle leggi e dei principi della Dinamica del punto

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018 Prova teorica - A Nome... N. Matricola... Ancona, 10 febbraio 2018 1. Un asta AB di lunghezza

Dettagli

Appunti di Dinamica dei Sistemi di punti materiali. Nota Bene: per il punto materiale valgono le relazioni:

Appunti di Dinamica dei Sistemi di punti materiali. Nota Bene: per il punto materiale valgono le relazioni: Appunti di Dinamica dei Sistemi di punti materiali. Sistema discreto: Def. S = { m i i = 1 } Sistema continuo: S = M dm = V ρ(r)dv, essendo ρ(r) = dm/dv. ota Bene: per il punto materiale valgono le relazioni:

Dettagli

1. la velocità angolare del sistema nell istante successivo all urto; 2. l impulso della reazione vincolare;

1. la velocità angolare del sistema nell istante successivo all urto; 2. l impulso della reazione vincolare; 1 Esercizio (tratto dall esempio 6.22 p.189 del Mazzoldi) Un disco di massa M e raggio R ruota con velocità angolare ω in un piano orizzontale attorno ad un asse verticale passante per il centro. Da un

Dettagli

Lecce- XI scuola estiva di fisica Mirella Rafanelli. I sistemi estesi. La dinamica oltre il punto..

Lecce- XI scuola estiva di fisica Mirella Rafanelli. I sistemi estesi. La dinamica oltre il punto.. Lecce- XI scuola estiva di fisica - 2018 Mirella Rafanelli I sistemi estesi La dinamica oltre il punto.. Lecce- XI scuola estiva di fisica - 2018 Mirella Rafanelli Nota bene: quanto segue serve come strumento

Dettagli

La quantità di moto. Il masso ha più quantità di moto della persona in fuga.

La quantità di moto. Il masso ha più quantità di moto della persona in fuga. La quantità di moto Il masso ha più quantità di moto della persona in fuga. La quantità di moto La quantità di moto: esprime l inerzia nel movimento, cioè la difficoltà di fermare un oggetto in movimento

Dettagli

Fisica Generale 1 per Chimica Formulario di Meccanica

Fisica Generale 1 per Chimica Formulario di Meccanica Fisica Generale 1 per Chimica Formulario di Meccanica Vettori : operazioni elementari: Nota: un vettore verra' qui rappresentato in grassetto es: A = ( A x, A y, A z ) Prodotto scalare A. B = A B cos θ,

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo

Dettagli

Esercitazione N.3 Dinamica del corpo rigido

Esercitazione N.3 Dinamica del corpo rigido Esercitazione N.3 Dinamica del corpo rigido Questi esercizi sono sulle lezioni dalla 12 alla 18 Relativo alla lezione: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso

Dettagli

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015 Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 3 giugno 015 Problema 1 Si consideri un sistema costituito da un cilindro omogeneo di raggio R 1 = 10 cm e altezza h = 0 cm, inserito all

Dettagli

DINAMICA. Forze di massa + Forze di superficie = Forze di inerzia. Forze di massa = ρ fdxdydz. Forze di inerzia = ρ. Adxdydz

DINAMICA. Forze di massa + Forze di superficie = Forze di inerzia. Forze di massa = ρ fdxdydz. Forze di inerzia = ρ. Adxdydz DINMIC Equilibrio idrodinamico Legge di Newton: i F i = m Forze agenti: Forze di massa + Forze di superficie = Forze di inerzia Forze di massa = ρ fdxdydz f = ccelerazione del campo, ovvero forza per unità

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

PROVA PARZIALE DEL 19 DICEMBRE 2016 modulo I

PROVA PARZIALE DEL 19 DICEMBRE 2016 modulo I PROVA PARZIALE DEL 19 DICEMBRE 016 modulo I January 8, 017 Si prega di svolgere nella maniera più chiara possibile il compito, di scrivere e risolvere le equazioni in gioco riportando tutti i passaggi

Dettagli

Esercitazione 6. Soluzione. Calcoliamo il momento di inerzia come l integrale di momenti di inerzia di dischi di raggio r e altezza infinitesima dz:

Esercitazione 6. Soluzione. Calcoliamo il momento di inerzia come l integrale di momenti di inerzia di dischi di raggio r e altezza infinitesima dz: Esercitazione 6 Esercizio 1 - omento d inerzia del cono Calcolare il momento di inerzia di un cono omogeneo, di altezza H, angolo al vertice α e massa, rispetto al suo asse di simmetria. Calcoliamo il

Dettagli

Cinematica delle masse

Cinematica delle masse Cinematica delle masse CM. Cinematica delle masse In questo capitolo introduciamo i concetti di quantità di moto, momento della quantità di moto e di energia cinetica, e sviluppiamo i teoremi ad essi relativi,

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018 Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018 Nome... N. Matricola... Ancona, 13 gennaio 2018 1. Un sistema rigido piano è costituito

Dettagli

Dinamica dei sistemi di punti

Dinamica dei sistemi di punti Dinamica dei sistemi di punti Trattazione semplificata per i Licei The ascheroni CAD Team Federico Fabrizi Pietro Pennestrì www.geogebraitalia.org 16 dicembre 2012 1 Centro di massa Dato un sistema di

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 9 Prof.ssa Stefania Petracca 1 Considerazioni relative al significato del momento angolare I Il momento angolare L di un sistema materiale ammette un interpretazione

Dettagli

Esercizi terzo principio

Esercizi terzo principio Esercizi terzo principio Esercitazioni di Fisica LA per ingegneri - A.A. 4-5 Esercizio 1 Una ruota di massa m = 1 kg e raggio R = 1 m viene tirata contro un gradino di altezza h = 3 cm con una velocità

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Soluzione Compito di isica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Esercizio 1 1) Scriviamo le equazioni del moto della sfera sul piano inclinato. Le forze agenti sono il peso

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006 Facoltà d Ingegneria Meccanica Razionale A.A. 2005/2006 - Appello del 04/07/2006 In un piano verticale Oxy, un sistema materiale è costituito da un disco omogeneo, di centro Q, raggio R e massa 2m, e da

Dettagli

FM210 - Fisica Matematica 1 Tutorato 11 ( )

FM210 - Fisica Matematica 1 Tutorato 11 ( ) Corso di laurea in atematica - Anno Accademico 3/4 F - Fisica atematica Tutorato (--) Esercizio. Si calcolino i momenti principali di inerzia dei seguenti corpi rigidi rispetto al loro centro di massa:.

Dettagli

Sistema di punti materiali sistema esteso.

Sistema di punti materiali sistema esteso. Sistema di punti materiali sistema esteso. P n z P i P 2 O y P 1 x 1 Sistema di punti materiali sistema esteso. z P n z r n P i r i P 2 O r O r 2 y y r 1 P 1 x x 2 Sistema di punti materiali sistema esteso.

Dettagli

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα.

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα. Esercizio 1 a) Fissiamo un asse di riferimento x parallelo al piano inclinato, diretto verso l alto e con origine nella posizione iniziale del corpo alla base del piano. Sia m la massa del corpo, P la

Dettagli

Elementi di dinamica rotazionale

Elementi di dinamica rotazionale In questa dispensa studieremo: Elementi di dinamica rotazionale Il momento torcente. Il momento di inerzia. Il secondo principio della dinamica rotazionale. L energia cinetica totale. Il momento angolare.

Dettagli

1. la velocità angolare del sistema nell istante successivo all urto; 2. l impulso della reazione vincolare;

1. la velocità angolare del sistema nell istante successivo all urto; 2. l impulso della reazione vincolare; 1 Esercizio (tratto dall esempio 6.22 p.189 del Mazzoldi) Un disco di massa M e raggio R ruota con velocità angolare ω in un piano orizzontale attorno ad un asse verticale che passa per il centro del disco

Dettagli

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea A di massa m e lunghezza l è libera di ruotare attorno al proprio estremo mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro di

Dettagli

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata:

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata: Università del Salento Facoltà di Ingegneria Corsi di Laurea in Ingegneria Industriale e Civile Prova scritta di Meccanica Razionale 20 giugno 2016 Soluzioni Parte 1: Domande a risposta multipla. 1. Siano

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

Grandezze cinematiche relative nel sistema L: r 12, v 12 a 12 e nel sistema del centro dimassa (C): r 12 ', v 12 ', e a 12 '

Grandezze cinematiche relative nel sistema L: r 12, v 12 a 12 e nel sistema del centro dimassa (C): r 12 ', v 12 ', e a 12 ' Sistemi di due particelle Problema dei due corpi: studio del moto relativo di due corpi supposti puntiformi sotto l azione della forza di interazione mutua. Esempio: moto (relativo) di due corpi celesti

Dettagli

DINAMICA DEL CORPO RIGIDO Corpo rigido (indeformabile): le distanze tra due suoi punti qualsiasi rimangono invariate. Sistema a sei gradi di libertà

DINAMICA DEL CORPO RIGIDO Corpo rigido (indeformabile): le distanze tra due suoi punti qualsiasi rimangono invariate. Sistema a sei gradi di libertà DNAMCA DEL CRP RGD Corpo rigido (indeformabile): le distanze tra due suoi punti qualsiasi rimangono invariate Sistema a sei gradi di libertà W = 0 DE K = W E Moto traslatorio Tutti i punti si muovono con

Dettagli

FISICA GENERALE T-A 8 Luglio 2013 prof. Spighi (CdL ingegneria Energetica)

FISICA GENERALE T-A 8 Luglio 2013 prof. Spighi (CdL ingegneria Energetica) FISICA GENEALE T-A 8 Luglio 013 prof. Spighi (CdL ingegneria Energetica) 1) La posizione di un punto materiale è r(t) = 3 t3 î + 3t + 3t ˆk con r in metri e t in secondi. Calcolare: a) la velocità vettoriale

Dettagli

Dinamica del Manipolatore (seconda parte)

Dinamica del Manipolatore (seconda parte) Dinamica del Manipolatore (seconda parte) Ph.D Ing. Michele Folgheraiter Corso di ROBOTICA2 Prof.ssa Giuseppina Gini Anno. Acc. 2006/2007 Equilibrio Statico Manipolatore Il manipolatore può essere rappresentato

Dettagli

F (t)dt = I. Urti tra corpi estesi. Statica

F (t)dt = I. Urti tra corpi estesi. Statica Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell

Dettagli

Soluzione della prova scritta di Fisica 1 del 12/01/2010

Soluzione della prova scritta di Fisica 1 del 12/01/2010 Soluzione della prova scritta di Fisica 1 del 12/01/2010 1 Quesito La soluzione alla prima domanda del quesito si ricava imponendo che l energia potenziale complessiva associata al sistema meccanico abbia

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

m h M θ Esercizio (tratto dal problema 7.42 del Mazzoldi 2)

m h M θ Esercizio (tratto dal problema 7.42 del Mazzoldi 2) 1 Esercizio (tratto dal problema 7.42 del Mazzoldi 2) Un disco di massa M = 8Kg e raggio R è posto sopra un piano, inclinato di un angolo θ = 30 o rispetto all orizzontale; all asse del disco è collegato

Dettagli

Moto piano: componenti polari dell accelerazione Scriviamo l accelerazione nelle sue componenti polari (cosa utile per i moti circolari) ds dt = v R

Moto piano: componenti polari dell accelerazione Scriviamo l accelerazione nelle sue componenti polari (cosa utile per i moti circolari) ds dt = v R 1 2.2-ACCELERAZIONE NEL MOTO PIANO 1 2.2-accelerazione nel moto piano Moto piano: componenti polari dell accelerazione Scriviamo l accelerazione nelle sue componenti polari (cosa utile per i moti circolari)

Dettagli

P = r. o + r. O + ω r (1)

P = r. o + r. O + ω r (1) 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap5 1 5.1-Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola Fisica 15 Dicembre 2011 Test a risposta singola ˆ Una forza si dice conservativa quando: Il lavoro compiuto dalla forza su un qualsiasi cammino chiuso è nullo Il lavoro compiuto dalla forza su un qualsiasi

Dettagli

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio.

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio. UNIÀ 4 L EQUILIBRIO DEI SOLIDI.. La forza elastica di una molla.. La costante elastica e la legge di Hooke. 3. La forza peso. 4. Le forze di attrito. 5. La forza di attrito statico. 6. La forza di attrito

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

ds dt = v R per cui si ottiene RûN = a T + a N RûN accelerazione centripeta e a c =

ds dt = v R per cui si ottiene RûN = a T + a N RûN accelerazione centripeta e a c = 2 2.3-MOTO-CIRCOLARE UNIFORME 1 2.2-accelerazione nel moto piano Moto piano: componenti intrinseche dell accelerazione Scriviamo l accelerazione nelle sue componenti partendo dalle coordinate intrinseche

Dettagli

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = 1 x + x x > 0 determinare le frequenze delle piccole

Dettagli

Dinamica. Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente

Dinamica. Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente Dinamica Obbiettivo: prevedere il moto dei corpi una volta note le condizioni iniziali e le interazioni con l'ambiente Tratteremo la Dinamica Classica, valida solo per corpi per i quali v

Dettagli

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura:

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura: Esercizio 1 Un blocco di massa M inizialmente fermo è lasciato libero di muoversi al tempo t = 0 su un piano inclinato scabro (µ S e µ D ). a) Determinare il valore limite di θ (θ 0 ) per cui il blocco

Dettagli

Le leggi della meccanica

Le leggi della meccanica Le leggi della meccanica ed il punto materiale Flavio DINAMICA DEL CORPO RIGIDO 1 Il I principio Il moto naturale di un punto materiale è rettilineo e uniforme quindi non circolare (le sfere celesti di

Dettagli

ESERCIZIO 1 SOLUZIONI

ESERCIZIO 1 SOLUZIONI - ESERCIZIO - Un corpo di massa m = 00 g si trova su un tavolo liscio. Il corpo m è mantenuto inizialmente fermo, appoggiato ad una molla di costante elastica k = 00 N/m, inizialmente compressa. Ad un

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Dinamica del corpo rigido a.a. 2018-2019 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci cap.7 Dinamica del corpo rigido a.a. 2018-2019 Testo di riferimento: Elementi di Fisica, Mazzoldi,

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 6 Giugno 08 (usare fogli diversi per esercizi diversi) Primo Esercizio i) Assumiamo che Q sia un punto di un corpo rigido piano

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Fisica I, a.a , Compito primo appello 4 Giugno 2013

Fisica I, a.a , Compito primo appello 4 Giugno 2013 Fisica I, a.a. 2012 2013, Compito primo appello 4 Giugno 2013 Anna M. Nobili 1 Effetto del Sole sulla Terra schiacciata Schematizziamo la terra oblata con il semplice modellino di Figura 1 in cui la massa

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I FISICA GENERALE I - Sede di Spezia Prova A del 11/01/2016 ME 1 Un ragno di massa m R = 5.0 g usa il proprio filo come una liana (lunghezza L =10 cm). Partendo da fermo con il filo inclinato di un angolo

Dettagli

Sistemi rigidi. 1. Grado di liberta di un sistema rigido libero

Sistemi rigidi. 1. Grado di liberta di un sistema rigido libero III Sistemi rigidi 1. Grado di liberta di un sistema rigido libero Dare la posizione di un sistema rigido rispetto ad una terna T e equivalente a dare la posizione di una terna T rispetto a T. Infatti

Dettagli

Registro di Meccanica /17 - F. Demontis 2

Registro di Meccanica /17 - F. Demontis 2 Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2016/2017 docente: Francesco Demontis ultimo aggiornamento: 9 giugno 2017 1. Venerdì 3/03/2017, 11 13. ore: 2(2) Presentazione

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 2018 (usare fogli diversi per esercizi diversi) Primo Esercizio In un piano verticale si fissi un sistema di riferimento

Dettagli

FISICA GENERALE Ingegneria edile/architettura

FISICA GENERALE Ingegneria edile/architettura FISICA GENERALE Ingegneria edile/architettura Tutor: Enrico Arnone Dipartimento di Chimica Fisica e Inorganica arnone@fci.unibo.it http://www2.fci.unibo.it/~arnone/teaching/teaching.html Bologna 3 Giugno

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Compito di Fisica Ingegneria elettrica e gestionale Soluzioni fila A Massimo Vassalli 9 Aprile 008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

Meccanica 17 giugno 2013

Meccanica 17 giugno 2013 Meccanica 17 giugno 2013 Problema 1 (1 punto) Un punto si muove nel piano y-x con legge oraria: Con x,y misurati in metri, t in secondi. a) Determinare i valori di y quando x=1 m; b) Determinare il modulo

Dettagli

Soluzione della prova scritta di Fisica 1 del 2/03/2010

Soluzione della prova scritta di Fisica 1 del 2/03/2010 Soluzione della prova scritta di Fisica 1 del 2/03/2010 1 Quesito y T2 N 0000000000 1111111111 m T1 x T 2 m B B T1 m Figura 1: Quesito 2 L accelerazione della massa m (che coincide in modulo con l accelerazione

Dettagli

Meccanica dei sistemi di punti materiali

Meccanica dei sistemi di punti materiali Meccanica dei sistemi di punti materiali Centro di massa Conservazione della quantità di moto Teorema del momento angolare Conservazione del momento angolare Teoremi di König Urti Antonio Pierro @antonio_pierro_

Dettagli

Meccanica A.A. 2011/12 - Secondo compito d'esonero 11 giugno 2012

Meccanica A.A. 2011/12 - Secondo compito d'esonero 11 giugno 2012 Un asta omogenea di massa M e lunghezza si trova in quiete su di un piano orizzontale liscio e privo di attrito; siano P =(,/ P =(,-/ le coordinate cartesiane degli estremi dell asta in un dato sistema

Dettagli

= τ MOTO ROTOTRASLATORIO DI UN CORPO RIGIDO. Equazioni cardinali. Prima equazione cardinale:

= τ MOTO ROTOTRASLATORIO DI UN CORPO RIGIDO. Equazioni cardinali. Prima equazione cardinale: MOTO ROTOTRASLATORO D UN CORPO RGDO Equaioni cardinali Prima equaione cardinale: dv c M Fet Esprime il teorema del moto del centro di massa: il moto del centro di massa del corpo rigido è quello di un

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Fisica 21 Gennaio 2013

Fisica 21 Gennaio 2013 Fisica 2 Gennaio 2 ˆ Esame meccanica: problemi, 2 e. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema Su un piano inclinato rispetto all orizzontale di gradi è posto un oggetto puntiforme di massa

Dettagli

Soluzione della prova scritta di Fisica 1 del 1/07/2013. d cm. l l/2 l/2. Figura 1: Quesito 1

Soluzione della prova scritta di Fisica 1 del 1/07/2013. d cm. l l/2 l/2. Figura 1: Quesito 1 Soluzione della prova scritta di Fisica 1 del 1/07/2013 1 Quesito 1) x O θ d cm l l/2 l/2 Figura 1: Quesito 1 La risposta alla prima domanda (valore della velocità del centro di massa del sistema costituito

Dettagli

q = mv quantita di moto di un punto materiale di massa m unita di misura nel S. I. : Kg m s -1 e una grandezza vettoriale la quantita di moto

q = mv quantita di moto di un punto materiale di massa m unita di misura nel S. I. : Kg m s -1 e una grandezza vettoriale la quantita di moto Quantita di moto q mv quantita di moto di un punto materiale di massa m unita di misura nel S. I. : Kg m s -1 la quantita di moto e una grandezza vettoriale quindi in coordinate cartesiane q mv q q q x

Dettagli

Anna M. Nobili: Lezioni Fisica 1 per Chimici a.a

Anna M. Nobili: Lezioni Fisica 1 per Chimici a.a Anna M. Nobili: Lezioni Fisica 1 per Chimici a.a. 2013-2014 26 Settembre 2013 Grandezze fisiche, dimensioni e unità di misura. Potenze di 10 e loro uso. 3 Ottobre 2013 Grandezze fisiche, dimensioni e

Dettagli

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO Quantità di Moto Definizione 1 Per un punto P dotato di massa m e velocità v, sidefinisce quantità di moto il seguente vettore Q := m v. (1) Definizione

Dettagli