Dinamica del corpo rigido
|
|
|
- Maurizio Moro
- 9 anni fa
- Visualizzazioni
Transcript
1 Dinamica del corpo rigido Antonio Pierro Definizione di corpo rigido Moto di un corpo rigido Densità Momento angolare Momento d'inerzia Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com
2 Definizione di corpo rigido Un corpo rigido è un sistema di punti materiali in cui le distanze tra tutte le possibili coppie di punti non possono variare. Quanti parametri occorrono per descrivere il moto di un corpo rigido?
3 Gradi di libertà di un sistema Il numero di parametri necessari per descrive il moto di un sistema si chiama numero di gradi di libertà del sistema. Un punto materiale ha tre gradi di libertà (le tre coordinate x, y, z). N punti materiali indipendenti hanno 3*N gradi di libertà.
4 Gradi di libertà di un corpo rigido Nel caso di un corpo rigido la condizione che le distanze tra tutte le possibili coppie di punti siano costanti, riduce i gradi di libertà del sistema da 3N (dove N è il numero di particelle) a 6. i, j i j : ( + ( + ( = 0 x i x j ) 2 y i y j ) 2 z i z j ) 2 d 2 ij Infatti, definita la "forma" del corpo rigido, a ogni istante la sua posizione è individuabile da sei valori: tre coordinate di un punto, tre coseni direttori di rotazione intorno agli assi x, y, z solidali al corpo. I coseni direttori sono proprio i coseni che la direzione della retta forma con gli assi cartesiani.
5 Moto di un corpo rigido Moto di traslazione: tutti i punti si muovono con la stessa velocità che coicide con v cm L'equazione del moto sarà: R = M a cm Moto di rotazione: tutti i punti descrivono un moto circolare con velocità angolare L'equazione del moto sarà: M = dl dt La combinazione dei due moti è definita come moto di rototraslazione. v
6 Corpo continuo Supponiamo che il corpo abbia una struttura continua (non consideriamo il livello atomico). Consideriamo un elemento di volume infinitesimo dv del corpo e sia dm la massa contenuta in tale volume. = dm Si definisce densità del corpo la quantità dv (dove il volume dv è abbastanza piccolo affinché le proprietà del corpo siano uniformi). La massa del corpo sarà: m = dv = (x, y, z)dxdydz V V
7 Centro di massa di un corpo continuo Se ora vogliamo calcolare la posizione del centro di massa di un corpo continuo, dobbiamo semplicemente dividerlo in parti infinitesime e effettuarne la media pesata. Quindi: r cm V r dm = = M V r dv M
8 Momento d'inerzia per un sistema di n punti materiali Sia l'asse z, l'asse di rotazione di un corpo rigido formato da n punti materiali. n n n L = L = ( i r i m i v i ) = ( m i ri 2 ) = I z n=1 n=1 n=1 Il coefficiente all'asse z. I z si chiama momento d'inerzia del corpo rispetto n I z = m i ri 2 = m i ( xi 2 + y 2 i ) n=1 n=1 n
9 Momento d'inerzia per un corpo continuo Il momento d'inerzia per un corpo continuo si deduce da quello di un sistema rigido formato da n punti materiali: n I z = = dm = dv = ( + )dv n=1 m i R 2 i I z V R 2 V R 2 V x 2 y 2
10 Esempi di corpi con densità di massa lineare 1. Calcolo del momento d'inerzia di un anello di densità lineare : = m 2 R I = dm = dl = R2 R 2 R 2 dl = R 2 2 R = mr 2 2. Calcolo del momento d'inerzia di una sbarra omogenea di densità lineare = m L I = x 2 dm = L/2 x 2 x dx = [ 3 1 = m 3 ]L/2 L/2 12 L/2 L 2
11 Esempi di corpi con densità di massa superficiale m = r = R sin dl = Rd (sin d = 4 R 2 ) I = r 2 dm = r 2 ds = R 2 sin R sin Rd = M S 3 Momento d'inerzia di una sfera avente densità superficiale : 0 R 2
12 Esempi di corpi con densità di massa volumetrica 1. Momento d'inerzia di un cilindro di densità : R 2. Momento d'inerzia di una sfera piena di densità : se si scompone un solido in parti di qualunque forma, il momento d'inerzia totale rispetto a un asse dato è la somma dei momenti d'inerzia delle singole parti rispetto allo stesso asse. = m h I = r 2 dm = r 2 1 hrdr = m 0 2 I = 2 di = dm = dv = 4 dr 0 3 r 2 m r 2 4 R 3 3 I = 2 di = R r 4 dr = M 3 2 r 2 2 R 5 2 M 0 R 2 R 2
13 Teorema di Huygens-Steiner Nei precedenti esempi, per il calcolo dei momenti d'inerzia, abbiamo scelto particolari assi (passanti per il centro di massa) che ci hanno permesso di semplificare il calcolo. Il teorema di Huygens-Steiner stabilisce che il momento d'inerzia di un corpo di massa m rispetto a un asse che si trova a una distanza d dal centro di massa del corpo è dato da I = I cm + md 2 I cm è il momento d'inerzia del corpo rispetto a un asse parallelo al primo e passante per il centro di massa.
14 Dimostrazione del teorema di Huygens-Steiner Per dimostrare il teorema consideriamo due assi z e z, tra loro paralleli, distanti "a" e con asse passante per il centro di massa. Per un generico punto P i, il momento d'inerzia rispetto all'asse z sarà: z m i ( xi 2 + y 2 i ), x = x, y = y + a, z = z Se sommiamo i momenti d'inerzia di tutti i punti: I = m i ( xi 2 + y 2 i ) = ( x i 2 + ( y i + a ) 2 ) i i I = ( x i 2 + y 2 ) + + 2a = + m i i i m i a 2 i m i y i I z a 2 Sapendo che 2a = m = 0 i m i y i y cm
15 Momenti d'inerzia rispetto ad assi passanti per il bordo Anello di raggio r I cm = mr 2 I bordo = 2mr 2 1 Disco di raggio r I cm = mr = m 2 3 I bordo 2 2 Sfera di raggio r I cm = mr = m I bordo 2 1 Asta lunga d I cm = md = m I bordo 3 r 2 r 2 d 2
Sistemi Rigidi. --> la posizione del CM rimane invariata rispetto a quella dei punti materiali
Sistemi Rigidi Sistema rigido --> corpo indeformabile (distanze costanti tra le coppie dei punti materiali costituenti) qualsiasi siano le forze esterne agenti su di esso --> in realtà tutti corpi sottoposti
MOMENTI DI INERZIA PER CORPI CONTINUI
MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI
Cinematica del punto materiale
Cinematica del punto materiale Punto materiale Velocità e accelerazione Moto rettilineo uniforme Moto naturalmente accelerato Moto parabolico Moto armonico Antonio Pierro Per consigli, suggerimenti, eventuali
Dinamica Rotazionale
Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione
Meccanica del punto materiale
Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro
Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1
Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare
Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.
Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:
Teoria dei mezzi continui
Teoria dei mezzi continui Il modello di un sistema continuo è un modello fenomenologico adatto a descrivere sistemi fisici macroscopici nei casi in cui le dimensione dei fenomeni osservati siano sufficientemente
Meccanica. 5. Cinematica del Corpo Rigido. Domenico Galli. Dipartimento di Fisica e Astronomia
Meccanica 5. Cinematica del Corpo Rigido http://campus.cib.unibo.it/252232/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. 2. 2 Si chiama numero dei gradi di libertà (GdL)
Fisica Generale 1 per Chimica Formulario di Meccanica
Fisica Generale 1 per Chimica Formulario di Meccanica Vettori : operazioni elementari: Nota: un vettore verra' qui rappresentato in grassetto es: A = ( A x, A y, A z ) Prodotto scalare A. B = A B cos θ,
Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com
Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,
Compito di Fisica Generale (Meccanica) 10/01/2012
Compito di Fisica Generale (Meccanica) 10/01/2012 1) In un piano orizzontale sono assegnati due assi cartesiani x e y. Uno strato di liquido occupa lo spazio fra y = 0 ed y = d e si muove a velocità costante
Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido
Seminario didattico Ingegneria Elettronica Lezione 3: Dinamica del Corpo Rigido Esercizio n 1 Un cilindro di raggio R e massa M = 2 Kg è posto su un piano orizzontale. Attorno al cilindro è avvolto un
Meccanica 17 Aprile 2019 Problema 1 (1 punto) Soluzione , F r Problema 2 (2 punti) Soluzione
Meccanica 17 Aprile 019 Problema 1 (1 punto) Una massa puntiforme di valore m= 1.5 kg, posta nell origine, viene sottoposta all azione di una forza F= 3i + j N, dove i e j sono i versori degli assi del
VII ESERCITAZIONE. Soluzione
VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo
Sistemi Dinamici e Meccanica Classica A/A Alcuni Esercizi
Sistemi Dinamici e Meccanica Classica A/A 2008 2009. Alcuni Esercizi G.Falqui, P. Lorenzoni, Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca. Versione del 23 Dicembre 2008 con esercizi
Lezione 8 Dinamica del corpo rigido
Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della
Meccanica 15Aprile 2016
Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa
Dinamica del corpo rigido: Appunti.
Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,
La fisica di Feynmann Meccanica
La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio
Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 2014
Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 014 Esercizio 1: Una molla ideale è utilizzata per frenare un blocco di massa 50 kg che striscia su un piano
Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006
Facoltà d Ingegneria Meccanica Razionale A.A. 2005/2006 - Appello del 04/07/2006 In un piano verticale Oxy, un sistema materiale è costituito da un disco omogeneo, di centro Q, raggio R e massa 2m, e da
VII ESERCITAZIONE - 29 Novembre 2013
VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.
Sistemi di corpi La prossima lezione faremo esercizi con volontari alla lavagna
Sistemi di corpi La prossima lezione faremo esercizi con volontari alla lavagna Esercizio 1 [Urti elastici] Una biglia P 1 di massa m 1 = 100 g e velocità v 0,1 di modulo 2 m/s urta elasticamente contro
Tutorato di Fisica 1 - AA 2014/15
Tutorato di Fisica - AA 04/5 Emanuele Fabbiani 8 febbraio 05 Quantità di moto e urti. Esercizio Un carrello di massa M = 0 kg è fermo sulle rotaie. Un uomo di massa m = 60 kg corre alla velocità v i =
Lezione 09: Sistemi di corpi
Esercizio 1 [Urti elastici] Lezione 09: Sistemi di corpi Una biglia P 1 di massa m 1 = 100 g e velocità v 0,1 di modulo 2 m/s urta elasticamente contro una biglia P 2 inizialmente ferma di massa m 1 =
Tutorato di Fisica 1 - AA 2014/15
Tutorato di Fisica 1 - AA 014/15 Emanuele Fabbiani 19 febbraio 015 1 Oscillazioni 1.1 Esercizio 1 (TE 31-Gen-01, Ing. IND) Durante un terremoto le oscillazioni orizzontali del pavimento di una stanza provocano
Esercizi sul corpo rigido.
Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
FISICA. MECCANICA: Principio conservazione momento angolare. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica
FISICA MECCANICA: Principio conservazione momento angolare Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica MOMENTO ANGOLARE Fino a questo punto abbiamo esaminato soltanto moti di traslazione.
Rette nel piano. Esercizi. Mauro Saita. Versione provvisoria. Novembre { x = 2 + 3t y = 1 2t
Rette nel piano. Esercizi. e-mail: [email protected] Versione provvisoria. Novembre 205. Esercizi Esercizio.. Nel piano R 2 si considerino i vettori A = ( 2, ) e B = ( 5 2, 3 ). A è parallelo a
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 22/23 Matrici d inerzia Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale -
Meccanica 17 giugno 2013
Meccanica 17 giugno 2013 Problema 1 (1 punto) Un punto si muove nel piano y-x con legge oraria: Con x,y misurati in metri, t in secondi. a) Determinare i valori di y quando x=1 m; b) Determinare il modulo
Esercizi da fare a casa
apitolo 1 Esercizi da fare a casa 1.1 Premesse I seguenti esercizi sono risolubili nella seconda settimana di corso. Per quelli del primo gruppo le soluzioni si possono estrarre dal mio libro di Esercizi
Reazioni vincolari. Sistemi di corpi rigidi. Resistenza dei materiali. Forme strutturali per il design A.A prof.
Resistenza dei materiali e Forme strutturali per il design A.A. 2014-2015 prof. Andrea Dall Asta Reazioni vincolari e Sistemi di corpi rigidi Scuola di Architettura e Design, Università di Camerino e-mail:[email protected]
Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019
Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,
Il moto di puro rotolamento
l moto di puro rotolamento l moto di puro rotolamento è un moto in cui il punto di conta
approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare
approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m
Le leggi della meccanica
Le leggi della meccanica ed il punto materiale Flavio DINAMICA DEL CORPO RIGIDO 1 Il I principio Il moto naturale di un punto materiale è rettilineo e uniforme quindi non circolare (le sfere celesti di
Esercizi sulla Dinamica dei Sistemi
Esercizi sulla Dinamica dei Sistemi Alcuni suggerimenti per gli esercizi: Calcolo del centro di massa di un sistema omogeneo complesso. Si considerino le simmetrie del sistema di cui bisogna calcolare
Dinamica Rotazionale
Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
Martedì 02 maggio 2017 Corso di Fisica Generale ing. Civile - prof. P. Lenisa
Martedì 02 maggio 2017 Corso di Fisica Generale ing. Civile - prof. P. Lenisa Si calcoli il momento di inerzia di un asta sottile e omogenea rispetto all asse passante per il suo centro di massa e perpendicolare
PROGRAMMA DI FISICA. LIBRO DI TESTO: James s. Walker, FISICA Modelli teorici e problem solving primo biennio, ed. Pearson. Le grandezze fisiche.
PROGRAMMA DI FISICA Anno scolastico 2018/2019 classe 1G LIBRO DI TESTO: James s. Walker, FISICA Modelli teorici e problem solving primo biennio, ed. Pearson. Le grandezze fisiche. Definizione di grandezza
Esercizi leggi di conservazione 2
Esercizio 1 Esercizi leggi di conservazione 2 Esercitazioni di Fisica LA per ingegneri - A.A. 2002-2003 Esercizi Un uomo di massa m = 70 kg si trova al centro di un carrello rettangolare omogeneo di massa
III esperimento: determinazione del momento d inerzia
III esperimento: determinazione del momento d inerzia Consideriamo un corpo esteso (vedi figura seguente) che possa ruotare attorno ad un asse fisso passante per il punto di sospensione PS; si immagini
Esercitazione N.3 Dinamica del corpo rigido
Esercitazione N.3 Dinamica del corpo rigido Questi esercizi sono sulle lezioni dalla 12 alla 18 Relativo alla lezione: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso
PROVA SCRITTA DI MECCANICA RAZIONALE (12 gennaio 2018) (Prof. A. Muracchini)
PRV SRITT DI MENI RZINLE (12 gennaio 2018) Il sistema in figura, mobile in un piano verticale, è costituito di un disco rigido D, omogeneo (massa M, raggio R) vincolato in modo che il punto del suo bordo
Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019
Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo
Dinamica del Corpo Rigido
Dinamica del Corpo Rigido ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Esercizio 7.1 Si determini il numero di atomi contenuti in un blocchetto di rame
MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A
MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera
Esame 12/02/2004 Soluzione
Teoria dei Sistemi Dinamici 1GTG/2GTG Esame 12/2/24 Prego segnalare errori o inesattezze a [email protected] 1 Sistemi di riferimento, rototraslazioni (6 punti) Esercizio 1.1 Costruire la matrice
b) DIAGRAMMA DELLE FORZE
DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro
Dinamica del Manipolatore (seconda parte)
Dinamica del Manipolatore (seconda parte) Ph.D Ing. Michele Folgheraiter Corso di ROBOTICA2 Prof.ssa Giuseppina Gini Anno. Acc. 2006/2007 Equilibrio Statico Manipolatore Il manipolatore può essere rappresentato
SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura:
Esercizio 1 Un blocco di massa M inizialmente fermo è lasciato libero di muoversi al tempo t = 0 su un piano inclinato scabro (µ S e µ D ). a) Determinare il valore limite di θ (θ 0 ) per cui il blocco
Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018.
Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018 Prova teorica - A Nome... N. Matricola... Ancona, 5 aprile 2018 1. Gradi di libertà di
Lezione 5 MOTO CIRCOLARE UNIFORME
Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.
