Lezione 2 - I vincoli
|
|
|
- Giancarlo Savino
- 9 anni fa
- Visualizzazioni
Transcript
1 Lezione 2 - I vincoli ü [.a : ultima revisione 29 settembre 2012] Proseguendo nello studio della cinematica del corpo rigido, si vuole fornire in questa lezione una classificazione dei possibili vincoli agenti su un corpo rigido, limitatamente al caso piano, che peraltro comprende la maggioranza degli schemi strutturali. Inoltre, i vincoli considerati saranno olonomi, lisci e bilaterali. I vincoli piani Nel piano, il corpo rigido ha tre gradi di liberta', due traslazioni secondo due assi di riferimento, ed una rotazione intorno ad un asse ortogonale al piano, e passante per il polo di riferimento. Se si vuol classificare cinematicamente i vincoli, e' quindi ovvio che potranno definirsi vincoli semplici, doppi o tripli, a seconda che essi sopprimano uno, due o tre gradi di liberta' al corpo rigido. à I vincoli semplici e la loro rappresentazione meccanica Si consideri il corpo rigido S, e lo si voglia vincolare nel punto generico attraverso un vincolo semplice, ossia un vincolo che sopprima un solo grado di liberta'. Le tre possibilita' immediate sono ovviamente espresse dalle tre equazioni: u 1 = 0 u 2 = 0 φ = 0 Nel primo caso il punto non puo' avere spostamenti in orizzontale, e quindi esso e' costretto a scorrere lungo l'asse verticale, mentre nel secondo caso sono gli spostamenti verticali ad essere proibiti, e quindi il punto dovra' scorrere in orizzontale. Piu' in generale, un'equazione di vincolo impone al punto vincolato l'appartenenza ad una retta inclinata genericamente di un angolo a rispetto all'orizzontale, sicche' le sue componenti di spostamento dovranno obbedire alla relazione geometrica: u 2 = u 1 tan Il modello meccanico dei vincoli ora esposti e' rappresentato da un pendolo, il cui asse e' orientato ortogonalmente alla retta su cui il punto e' obbligato a scorrere, oppure da un carrello con piano di scorrimento parallelo alla retta di vincolo. L'ultimo tipo di vincolo permette le traslazioni in qualsiasi direzione, ma proibisce al corpo S di ruotare. Del suo modello meccanico si parlera' alla fine della lezione. (1) (2) à I vincoli doppi e la loro rappresentazione meccanica Un vincolo doppio deve, per definizione, eliminare due gradi di liberta', e quindi si hanno due possibilita': un vincolo che proibisce ambedue le traslazioni, lasciando libera la rotazione, oppure un vincolo che proibisce una traslazione e la rotazione, lasciando libero il punto di traslare lungo una direzione. Nel primo caso si parla di cerniera, nel secondo di bipendolo.
2 18 Lezione 2 - I vincoli.nb Figura 1 - I vincoli semplici ed i loro modelli meccanici: in prima colonna il vincolo u 1 = 0, in seconda colonna u 2 = 0, in terza u 2 = u 1 Tan[a] ü La cerniera Si consideri il corpo S, e si voglia vincolare un suo punto in modo da impedire qualsiasi traslazione. E' evidente che bastera' imporre che siano nulle le traslazioni secondo due assi ortogonali, che converra' scegliere paralleli agli assi coordinati. Le corrispondenti equazioni di vincolo sono quindi: u 1 = 0 u 2 = 0 Il modello meccanico della cerniera e' riportata in Figura 2. E' immediato realizzare che lo stesso vincolo puo' rappresentarsi attraverso la presenza contemporanea di due pendoli ad asse verticale ed orizzontale. D'altro canto, quest'ultima rappresentazione offre la possibilita' di realizzare una cerniera ideale, come illustrato nella stessa Figura 2: il corpo non puo' traslare, ma puo' solo ruotare intorno al punto ideale C situato all'intersezione tra gli assi dei due pendoli. ü Il bipendolo Il secondo tipo di vincolo doppio proibisce la traslazione lungo una retta, e la rotazione. Meccanicamente, puo' indicarsi con un bipendolo, come indicato in Figura 2, e puo' realizzarsi attraverso una coppia di pendoli ad asse parallelo tra loro, ed ortogonale alla retta lungo cui puo' traslare il punto vincolato. (3)
3 Lezione 2 - I vincoli.nb 19 C B Figura 2 - I vincoli doppi ed i loro modelli meccanici à I vincoli tripli e la loro rappresentazione meccanica Un vincolo triplo impedisce al punto le tre possibilita' di movimento, e quindi puo' tradursi analiticamente nelle tre equazioni: u 1 = 0 u 2 = 0 φ = 0 Tale tipo di vincolo e' meccanicamente rappresentato come un incastro, e puo' intendersi equivalente alla contemporanea presenza di tre pendoli ad assi non concorrenti in un punto (proprio od improprio). (4) à Sul doppio bipendolo Il modello meccanico del vincolo semplice che proibisce la rotazione, permettendo le traslazioni, puo' essere ora illustrato in Figura 3, giustificando cosi' anche il nome di doppio bipendolo ad esso assegnato. Figura 3 - Il vincolo triplo, ed il doppio bipendolo Le reazioni vincolari d ogni vincolo deve corrispondere una forza che sia in grado di far rispettare il vincolo stesso. Ne segue che il vincolo semplice che proibisce le traslazioni orizzontali e' equivalente ad una forza di intensita' tale da annullare gli spostamenti orizzontali, e poiche' essa puo' essere vista come l'azione del dispositivo di vincolo sulla trave, la si chiamera' reazione vincolare. Del tutto analogamente, un carrello a piano di scorrimento orizzontale puo' essere sostituito da una reazione verticale, di valore incognito, capace di annullare gli spostamenti verticali, ed il doppio bipendolo puo' essere considerato equivalente ad una coppia reattiva, che annulla le rotazioni.
4 20 Lezione 2 - I vincoli.nb I vincoli doppi, dal canto loro, impongono due condizioni cinematiche, e sono equivalenti a due forze/coppie reattive. Cosi', la cerniera equivale a due reattive dirette secondo gli assi, ed il bipendolo ad una reazione - diretta secondo l'asse del bipendolo - e ad una coppia reattiva. Infine, l'incastro deve essere sostituito da due reazioni ed una coppia. Tutto cio' e' sintetizzato nelle tre figure seguenti. R h R v R Figura 4 - Carrelli a piano di scorrimento verticale, orizzontale o inclinato, e loro equivalente statico R h R h M r R v M r R v Figura 5 -Cerniera e bipendolo, e loro equivalente statico
5 Lezione 2 - I vincoli.nb 21 R h M r M r R v Figura 6 -Incastro e doppio bipendolo, e loro equivalente statico Figure
Lezione 2 - I vincoli
Lezione 2 - I vincoli [Ultimarevisione: revisione:20 20novembre 2008] Proseguendo nello studio della cinematica del corpo rigido, si vuole fornire in questa lezione una classificazione dei possibili vincoli
Lezione 4 - I vincoli interni
Lezione 4 - I vincoli interni [Ultimarevisione: revisione:2agosto agosto2008] Proseguendo nello studio dei corpi rigidi, adotteremo d'ora in poi la seguente classificazione geometrica, necessariamente
Lezione 5 - Analisi cinematica
ezione 5 - nalisi cinematica ü [.a. - : ultima revisione 7 ottobre ] Si consideri ora una struttura bidimensionale, ossia un insieme di travi collegate tra loro ed al suolo da opportuni vincoli. In questa
Lezione 6 - Analisi statica
ezione 6 - nalisi statica ü [.a. 211-212 : ultima revisione 7 ottobre 212] Si consideri la stessa struttura bidimensionale della lezione precedente, ossia un insieme di travi collegate tra loro ed al suolo
1. Analisi cinematica delle strutture
1. nalisi cinematica delle strutture Metodo analitico ü [.a. 211-212 : ultima revisione 22 ottobre 211] In questa pplicazione si esamina una serie di strutture al fine di identificare le proprieta' cinematiche
VINCOLI. Corpo rigido libero 3 gradi di libertà (GdL) nel piano. Fisso il punto A, il corpo può solo ruotare attorno ad A
VIOLI I vincoli impediscono gli spostamenti del corpo o del sistema di corpi. Vincoli esterni: collegano le parti del sistema al mondo esterno (terra, telaio) Vincoli interni: collegano due o più corpi
5 - Sul grado di labilita' ed iperstaticita'
5 - Sul grado di labilita' ed iperstaticita' ü [.a. 2011-2012 : ultima revisione 14 ottobre 2012] Una struttura e' labile se presenta una possibilita' di meccanismo rigido, e' isostatica se e' possibile
Gradi di libertà e vincoli. Moti del corpo libero
Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua
I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax
I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 [email protected] www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia
Reazioni vincolari. Sistemi di corpi rigidi. Resistenza dei materiali. Forme strutturali per il design A.A prof.
Resistenza dei materiali e Forme strutturali per il design A.A. 2014-2015 prof. Andrea Dall Asta Reazioni vincolari e Sistemi di corpi rigidi Scuola di Architettura e Design, Università di Camerino e-mail:[email protected]
L'EQUILIBRIO E LE REAZIONI VINCOLARI
L'EQUILIBRIO E LE REAZIONI INCOLARI EQUILIBRIO DI UN SISTEMA DI FORZE Il nostro problema è quello di far star fermi i corpi, cioè far si che una struttura sia in equilibrio ora e negli anni a venire, dobbiamo
Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari
Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.
Cinematica ed equilibrio del corpo rigido
omportamento meccanico dei materiali inematica piana omportamento meccanico dei materiali inematica ed equilibrio del corpo rigido inematica piana Equilibrio esterno aratteristiche di sollecitazione 2
21 - La scrittura diretta delle equazioni di congruenza - Parte II
21 - a scrittura diretta delle equazioni di congruenza - Parte II ü [.a. 2011-2012 : ultima revisione 15 aprile 2012] Esercizio n.9 Si calcolino le reazioni e si disegni il diagramma delle c.s.i. per il
Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido
Capitolo 2 Statica del corpo rigido La statica è la parte della meccanica che si occupa dello studio dell equilibrio di corpi in quiete, ossia fermi, o mobili di moto rettilineo uniforme. In effetti applichiamo
EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO
EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO Equilibrio di un Punto Materiale Definizione 1 Un punto materiale è in una posizione di equilibrio quando posto in quella posizione
Lezione 40 - I corollari di Mohr
ezione 40 - I corollari di Mohr ü [.a. 011-01 : ultima revisione 9 agosto 011] In questa ezione si illustra un metodo per calcolare lo spostamento o la rotazione di un punto di una trave rettilinea, sfruttando
LABILITA DI STRUTTURE
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU LAILITA DI STRUTTURE v 0.9 1 1 2 2n-1= 1 A C D 2n = 2 2(n-1) = 2 2n-1= 1 Numero totale di aste N = 2 GdL (gradi di libertà aste libere) = N 3 = 6 GdV (gradi
Lezione 39 - Le equazioni di congruenza
Lezione 9 - Le equazioni di congruenza ü [.a. 0-0 : ultima revisione 7 agosto 0] Per definizione, in una trave iperstatica non e' possibile calcolare le reazioni vincolari con sole equazioni di equilibrio.
UNIVERSITA DEGLI STUDI DI FERRARA
UNIVERSITA DEGLI STUDI DI FERRARA Corso di laurea: Design del Prodotto Industriale Materiali per il Prodotto Industriale Professori: Alessandri Claudio, Mollica Francesco Rizzi Ilaria, matricola 111833
Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 2 STATICA DEI CORPI RIGIDI
Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 2 STATICA DEI CORPI RIGIDI Prof. Matteo Intermite 1 La Statica dei Corpi Rigidi si interessa dell equilibrio dei corpi
LABILITA DI STRUTTURE
SRIZI SVOLTI O ON TRI I SOLUZION SU LILIT I STRUTTUR v 0.9 n-= n = (n-) = n-= Numero totale di aste N = GdL (gradi di libertà aste libere) = N = 6 GdV (gradi di vincolo imposti) = +++ = 6 STRUTTUR ISOSTTI
Lezione 33- Le travi ad una campata II
ezione 33- e travi ad una campata II ü [.a. 2011-2012 : ultima revisione 14 giugno 2012] In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo e soggetti ai piu'
23 - La scrittura diretta delle equazioni di congruenza - Il metodo misto
3 - a scrittura diretta delle equazioni di congruenza - Il metodo misto ü [.a. 01-013 : ultima revisione 15 aprile 013] ' talvolta conveniente operare una scelta di incognite iperstatiche che rende la
PON G1 Meccanica applicata ITIS FERMI FRANCAVILLA FONTANA Prof. Michele Lapresa INTRODUZIONE
INTRODUZIONE PREMESSA Si dice che un corpo è vincolato quando non si può muovere in determinate direzioni. In un corpo vincolato soggetto a forze esterne si sviluppano dei vincoli delle forze equilibranti
Esercizi sintetici sull analisi cinematica di sistemi articolati
Fondamenti di Meccanica Strutturale Aerospaziali AA 2012/2013 Esercizi sintetici sull analisi cinematica di sistemi articolati Analisi cinematiche sintetiche e complete. Abbreviazioni usate: AC = analisi
2 - Analisi cinematica delle strutture
2 - Analisi cinematica delle strutture Metodo grafico ü [A.a. 2011-2012 : ultima revisione 20 settembre 2011] Si illustra ora un classico metodo grafico per l'analisi cinematica delle strutture, utilizzando
Lezione 40 - I corollari di Mohr
ezione 40 - I corollari di ohr [Ultimarevisione revisione14 14maggio maggio009] In uesta ezione si illustra un metodo per calcolare lo spostamento o la rotazione di un punto di una trave rettilinea, sfruttando
STATICA Equilibrio dei solidi
FISICA STATICA Equilibrio dei solidi Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica EQUILIBRIO DI UN PUNTO MATERIALE Un corpo è in equilibrio quando è fermo e continua a restare fermo.
1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 4
Indice 1 Cinematica del punto 1 1.1 Componenti intrinseche di velocità e accelerazione........... 3 1.2 Moto piano in coordinate polari...................... 4 2 Cinematica del corpo rigido 7 2.1 Moti
STATICA DEL CORPO RIGIDO (Distillazione verticale)
1 STTIC DEL CORPO RIGIDO (Distillazione verticale) OIETTIVO: SPERE CLCOLRE LE REZIONI VINCOLRI NELLE STRUTTURE ISOSTTICHE. Momento di una forza rispetto ad un punto (def.) Unità di misura Convenzione sui
ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1
4 Forze in equilibrio e vincoli 4. Vincoli e reazioni vincolari 1 ESERCIZI SVOLTI Travi 1 Si richiede il calcolo grafico e analitico delle reazioni vincolari della trave riportata in figura appoggiata
Lezione 33- Le travi ad una campata II
ezione 33- e travi ad una campata II [Ultima revisione: 5 febbraio 009] In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo e soggetti ai piu' comuni tipi di carico
La Struttura. Schema di scarico di un viadotto con travate semplicemente appoggiate. Schema di scarico di un ponte strallato
La Struttura Obiettivo del Corso è quello di fornire un approccio metodologico per la trattazione analitica dei modelli meccanici della parte resistente della Costruzione. La trattazione è fondata su un
TEORIA E PROGETTO DI COSTRUZIONI E STRUTTURE: ARCHITETTURA AMBIENTALE SEZIONE A APPELLO 6/9/2011. Tema A: allievo
TEORIA E PROGETTO DI COSTRUZIONI E STRUTTURE: ARCHITETTURA AMBIENTALE SEZIONE A APPELLO 6/9/011 Tema A: allievo ESERCIZIO 1 (punti 30) - Data la struttura di figura, si chiede di: a. effettuare l analisi
Dispense del Corso di Fisica. a.s Prof. Quintino d Annibale
Dispense del Corso di Fisica a.s. 011-01 Prof. Quintino d Annibale Meccanica Lezione Statica dei corpi rigidi DEFINIZIONI Si definisce CORPO RIGIDO un corpo, giacente nello spazio o nel piano, che sotto
Reazioni vincolari e equilibrio del corpo rigido. M. Guagliano
Reazioni vincolari e equilibrio del corpo rigido Reazioni vincolari del corpo rigido 2 I corpi rigidi sono generalmente vincolati al riferimento fisso tramite i vincoli, che esercitano delle forze sul
CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI
CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI A.S. 2015-2016 LA STATICA DEI SISTEMI RIGIDI - DISP. 2 Definizione analitica di sistema equilibrato Abbiamo visto, nelle esercitazioni precedenti, come la
Lezione 35 - Le travi a piu' campate
ezione 5 - e travi a piu' campate [Ultima revisione: 8 febbraio 009] 'analisi delle travi a piu' campate, in linea di principio, non presenta difficolta' insormontabili. Si consideri infatti una trave
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il
Statica del corpo rigido. Condizioni di equilibrio. Calcolo delle Reazioni Vincolari
Statica del corpo rigido Condizioni di equilibrio Calcolo delle Reazioni incolari Obiettivo della lezione: apprendere le equazioni cardinali della statica e applicarle al calcolo delle reazioni vincolari.
MOMENTO DI UNA FORZA RISPETTO A UN PUNTO. Obiettivi
MOMENTO DI UNA FORZA RISPETTO A UN PUNTO Obiettivi 1. Richiamare il concetto di momento e mostrare come calcolarlo operativamente in 2 e 3 dimensioni. 2. Mostrare metodi semplificati per calcolare il momento
Scienza delle Costruzioni: Tracce d esami. Claudio Franciosi
Scienza delle Costruzioni: Tracce d esami Claudio Franciosi 19 aprile 2018 2 Claudio Franciosi unedì 12 gennaio 2009 - ore 9.30-11.30 Assegnata la trave di Figura 1, vincolata con due incastri alle estremitá,
Lezione 41 - Il teorema di reciprocita'
ezione 41 - Il teorema di reciprocita' ü [A.a. 212-213 : ultima revisione 25 Aprile 213] In questa ezione si introduce il concetto di distorsione, e si dimostra un principio generale di reciprocita', da
MODELLI MATEMATICI PER LA MECCANICA CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE
MODELLI MATEMATICI PER LA MECCANICA CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE Argomenti svolti nell A.A.2016-17 (03/10/2016) Introduzione al corso.spazi affini. Spazi vettoriali. Conseguenze delle ipotesi
Introduzione. Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture
Introduzione La meccanica è quella parte delle scienze applicate che studia le forze ed il moto. In questo campo è fondamentale la nozione di equilibrio, ovvero la condizione che si instaura quando le
Lezione 44 - Le linee di influenza per distorsioni viaggianti.
Lezione 44 - Le linee di influenza per distorsioni viaggianti. ü [A.a. 2013-2014 : ultima revisione 8 Aprile 2014] In questa Lezione si termina lo studio delle linee di influenza, affrontando il terzo
PROVA SCRITTA DI MECCANICA RAZIONALE (12 gennaio 2018) (Prof. A. Muracchini)
PRV SRITT DI MENI RZINLE (12 gennaio 2018) Il sistema in figura, mobile in un piano verticale, è costituito di un disco rigido D, omogeneo (massa M, raggio R) vincolato in modo che il punto del suo bordo
1 Sussidi didattici. Prof. Carmelo Roma. Rigidezza di un telaio shear type,
1 Sussidi didattici Rigidezza di un telaio shear type, Studiamo l esempio in figura (1), caso di un telaio shear type, ossia un telaio con tutti nodi ad incastro e con la trave considerata infinitamente
Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006
Facoltà d Ingegneria Meccanica Razionale A.A. 2005/2006 - Appello del 04/07/2006 In un piano verticale Oxy, un sistema materiale è costituito da un disco omogeneo, di centro Q, raggio R e massa 2m, e da
n. CFU: 12 n. ore: 120 A.A.: Sede:Potenza Semestre: Annuale
INSEGNAMENTO: SCIENZA DELLE COSTRUZIONI DOCENTE: CLAUDIO FRANCIOSI e-mail: [email protected] Lingua di insegnamento:italiano sito web:www.scienzadellecostruzioni.co.uk n. CFU: 12 n. ore: 120
Esercitazione 2 - Statica di un sistema di corpi rigidi
Università degli Studi di ergamo orso di Laurea in Ingegneria Tessile orso di Elementi di Meccanica Esercitazione 2 - Statica di un sistema di corpi rigidi Esercizio n.1 alcolare il valore della distanza
Esercizio no.1 soluzione a pag.10. Esegui il computo dei vincoli e definisci la struttura. R. [isostatica] Esercizio no.2 soluzione a pag.
Edutecnica.it Equazioni cardinali della Statica 1 Esercizio no.1 soluzione a pag.1 Esegui il computo dei vincoli e definisci la struttura D E [isostatica] Esercizio no. soluzione a pag.1 Esegui il computo
Scienza delle Costruzioni per Allievi di Ing. per l Ambiente e il Territorio Compito 1
Compito 1 1) Determinare il baricentro della sezione in figura, preferibilmente per via grafica, e definire la posizione dell asse neutro. Tracciare il diagramma della tensione associata alla forza N di
NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori :
NOTA 1 VETTOI LIBEI e VETTOI APPLICATI Negli esempi visti sono stati considerati due tipi di vettori : 1) Vettori liberi, quando non è specificato il punto di applicazione. Di conseguenza ad uno stesso
PROVA SCRITTA DI MECCANICA RAZIONALE (21 gennaio 2011)
PRV SRITT DI MENI RZINLE (21 gennaio 2011) Il sistema in figura, posto in un piano verticale, è costituito di un asta rigida omogenea (massa m, lunghezza 2l) i cui estremi sono vincolati a scorrere, senza
Capitolo 2 LA STATICA DELLE TRAVI
Capitolo 2 LA STATICA DELLE TRAVI 2-1. LA TRAVE Definizione: La TRAVE è un solido generato da un area piana di forma e dimensioni variabili con continuità, che si muove nello spazio mantenendosi normale
1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5
Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......
ESERCIZI di STATICA SECONDA EDIZIONE
Salvatore Sbacchis ESERCIZI di STATICA SECONDA EDIZIONE Salvatore Sbacchis ESERCIZI DI STATICA ISBN 88-8207-206-1 EAN 9 788882 072063 Quaderni, 8 Seconda edizione, marzo 2006 Sbacchis, Salvatore
Lezione 34 - I vincoli imperfetti
ezione 34 - I vincoli imperfetti ü [A.a. 211-212 : ultima revisione 31 agosto 211] In quanto si e' detto finora, si e' sempre ipotizzato che il vincolo sia in grado di svolgere perfettamente la sua funzione,
10 - Flessione deviata e sforzo normale eccentrico
0 - Flessione deviata e sforzo normale eccentrico ü [A.a. 0-0 : ultima revisione 9 settembre 0] Si esaminano alcuni casi di sollecitazione composta del tipo normale, ossia di flessione deviata e flessione
1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata:
Università del Salento Facoltà di Ingegneria Corsi di Laurea in Ingegneria Industriale e Civile Prova scritta di Meccanica Razionale 20 giugno 2016 Soluzioni Parte 1: Domande a risposta multipla. 1. Siano
Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco
Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco ([email protected]) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.
ELEMENTI DI CALCOLO VETTORIALE
ELEMENTI DI CALCOLO VETTORIALE Vettori liberi e vettori applicati o Vettore libero: - individuato da una direzione orientata ed una lunghezza - non ha un'ubicazione fissa nello spazio: - puo' essere traslato
UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12
REGISTRO DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 Cognome e Nome BISI FULVIO Qualifica RICERCATORE CONFERMATO MAT/07 Insegnamento di FISICA MATEMATICA (500474) Impartito presso: Corso
Lezione 19 - Stati piani di tensione e spostamento
Lezione 19 - Stati piani di tensione e spostamento ü [A.a. 01-013 : ultima revisione 5 Novembre 01] Si e' visto, nella lezione precedente, che la soluzione del problema ai limiti dell'elasticita' non sempre
Lezione Analisi Statica di Travi Rigide
Lezione Analisi Statica di Travi Rigide Analisi statica dei sistemi di travi rigide Dato un sistema di travi rigide soggetto a forze esterne. Il sistema è detto equilibrato se esiste un sistema di reazioni
Università degli Studi della Basilicata Facoltà di Ingegneria
Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo Manfredi RICHIAMI
Elementi di Statica Grafica
Università degli Studi di Messina Facoltà di Ingegneria.. 006/007 Statica e Sismica delle Costruzioni Murarie Docente: Ing. lessandro Palmeri Lezione n. 4: Un corpo rigido è in equilibrio se e solo sono
Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019
Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo
9 - Geometria delle aree
9 - Geometria delle aree ü [A.a. 0-04 : ultima revisione 4 gennaio 04] In questa esercitazione si applicano le definizioni di baricentro, momento statico, momento d'inerzia, etc. ad alcuni esempi di interesse
Lezione 34 - I vincoli imperfetti
ezione 34 - I vincoli imperfetti [Ultima revisione: 26 febbraio 29] In quanto si e detto finora, si e sempre ipotizzato che il vincolo sia in grado di svolgere perfettamente la sua funzione, annullando
Modulo 01: Omogeneizzazione della classe Sistemi di misura Richiami di trigonometria
Progettazione Disciplinare 01: Omogeneizzazione della classe Sistemi di misura Richiami di trigonometria Segmento 01 : Principio di omogeneità Presentazione: il modulo è propedeutico agli argomenti che
TEOREMA DI ROUCHÈ-CAPELLI
TEOREMA DI ROUCHÈ-CAPELLI a cura di Anna Barisan, Andrea De Faveri, Andrea Della Libera, Mattia Pavan, Giacomo Zelbi Realizzato nell'ambito del progetto Archimede con la supervisione dei Prof Fabio Breda
