Esame 28 Giugno 2017
|
|
|
- Camillo Berti
- 8 anni fa
- Visualizzazioni
Transcript
1 Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico
2 Esame - Fisica Generale I 28 Giugno 2017 R. Bonciani, P. Dore Esercizio 1 Una molla ideale massa nulla, costante elastica = 19.6 N/m e lunghezza a riposo L = 40 cm) è poggiata su una guida orizzontale. Un estremo è fissato nel punto O, mentre all altro estremo è agganciato un punto materiale di massa m = 100 g. La guida è scabra e il coeffiente d attrito dinamico fra m e guida è µ d = 0.5. Inizialmente la molla è allungata di un tratto D = 30 cm. Quando viene lasciata libera, la massa m inizia ad oscillare. D g m Determinare 0 L 1. La distanza minima da O raggiunta da m. x 2. La velocità con cui m passa la seconda volta per L considerare che l attrito statico è tale che m, fermatosi nel punto di minima distanza da O, possa ripartire sotto l azione della molla). Esercizio 2 Una massa puntiforme m = 200 g parte da ferma dall altezza R = 50 cm e si muove lungo un blocco di massa = 1 g con profilo a forma di quarto di circonferenza di raggio R. Il blocco è disposto in un piano verticale ed è libero di muoversi senza attrito su di un piano orizzontale asse delle x). La superficie di contatto fra blocco e punto materiale è scabra. m g R Sapendo che m arriva alla base del blocco con velocità pari a v 0 = 0.5 m/s in modulo, calcolare: 1. La velocità finale del blocco di massa. 2. Il lavoro fatto dalla forza d attrito. 1 x
3 Esercizio 3 Un asta di lunghezza L = 50 cm e massa = 0.5 g è libera di ruotare attorno al suo estremo O in un piano verticale in presenza di gravità). Un proiettile di massa m = 0.2 g e velocità iniziale v 0 = 5 m/s orizzontale, si conficca nell asta a distanza D = 30 cm da O urto perfettamente anelastico). O m D v 0 α g Determinare l angolo massimo α di oscillazione del sistema dopo l urto. Esercizio 4 Un blocco di rame di massa m R = 300 g e temperatura T R = 97 C con calore specifico c R = 385 J/g K) viene posto in un calorimetro ideale riempito con una massa m A = 100 g di acqua alla temperatura = 7 C calore specifico c A = 4186 J/g K). Determinare la variazione di entropia del sistema al raggiungimento dell equilibrio termico. Esercizio 5 Un gas perfetto monoatomico, in equilibrio nello stato A a p A, V A e ), viene riscaldato in maniera irreversibile mantenendo il suo volume costante fino a raggiungere lo stato di equilibrio B, a pressione p B e temperatura T B = 300 K. In conseguenza di questo riscaldamento, il gas subisce una variazione di entropia di S = 4 J/K. Successivamente, il gas torna alla pressione iniziale, p A, tramite una trasformazione isoterma reversibile, che lo porta allo stato di equilibrio C con p C = p A e volume V C. Calcolare il lavoro compiuto dal gas nella trasformazione dallo stato A allo stato C. 2
4 Soluzione esercizio 1 1. La distanza minima da O indichiamola con x 1 ) viene raggiunta dopo il primo semi periodo. Utilizziamo il teorema delle forze vive. L energia iniziale è tutta potenziale e vale E in = 1 2 D2. 1) Dopo il primo semi periodo il punto si ferma e di nuovo l energia finale è tutta potenziale E fin = 1 2 L x 1) 2. 2) Il teorema delle forze vive dice che L Dx1 = T x1 T D = 0, 3) poiché l energia cinetica iniziale e quella finale sono nulle. D altra parte L Dx1 = 1 2 D2 1 2 L x 1) 2 + La forza d attrito è costante e ha come modulo x1 L+D F attr dx. 4) F attr = mgµ d 5) e si oppone al moto del punto. Quindi, alla fine si ottiene la seguente equazione 1 2 D2 1 2 L x 1) 2 µ d mgl+d x 1 ) = 0. 6) Per trovare x 1 dobbiamo quindi risolvere l equazione di secondo grado [ x µd mg ] +L x 1 D 2 +L 2 +2 µ dmg L+D) = 0. 7) Le due soluzioni sono x 1 = µ dmg +L± Quindi, abbiamo le due soluzioni [µd mg ] 2 +L +D2 L 2 2 µ dmg L+D). 8) x + 1 = 0.7 m, 9) x 1 = 0.15 m. 10) La soluzione x + 1 non è accettabile e si prende x 1 = x 1 = 15 cm. 11) 3
5 2. Per trovare la velocità in L si utilizza di nuovo il teorema delle forze vive. Il punto riparte da fermo in x 1 soggetto alla forza elastica e alla forza d attrito. Si ha e L x1 L = 1 2 L x 1) 2 + L L x1 L = 1 2 mv2 12) x 1 F attr dx = 1 2 L x 1) 2 mgµ d L x 1 ). 13) Quindi, prendendo il valore positivo della velocità: v = m L x 1) 2 2µ d gl x 1 ) = 3.13 m/s. 14) Soluzione esercizio 2 1. L unica forza esterna che agisce sul sistema è la forza di gravità, che è diretta lungo l asse delle y. Quindi durante il moto si conserva la componente x della quantità di moto del sistema. Se V x è la velocità finale del blocco, visto che v 0, velocità finale del punto materiale, è diretta lungo l asse delle x, si ha V x +mv 0 = 0, 15) da cui V x = m v 0 = 0.1 m/s. 16) 2. Per trovale il lavoro della forza d attrito, L attr, utilizziamo il teorema delle forze vive. Si ha L = T fin T in. 17) L energia cinetica finale del sistema è data dalla somma delle energie cinetiche delle due parti: T fin = 1 2 mv V x 2 = 1 2 mv m ), 18) mentre T in = 0. D altra parte, il lavoro totale L è dato dal lavoro compiuto dalla forza d attrito e dal lavoro della forza peso Quindi, in totale si ha L attr = T fin mgr = 1 2 mv2 0 L = mgr+l attr. 19) 1+ m ) mgr = 0.95 J. 20) 4
6 Soluzione esercizio 3 Siccome le reazioni vincolari sono concentrate in O, utilizzando la seconda cardinale impulsiva centrata in O abbiamo che il momento della quantità di moto subito dopo l urto è uguale al momento della quantità di moto subito prima dell urto poiché il momento delle forze impulsive rispetto ad O si annulla): dove e dove Si ricava quindi la velocità angolare iniziale L in O = L fin O, 21) L in O = mv 0D 22) L fin O = I totω 0, 23) I tot = 1 3 L2 +md 2 = 0.06 g m 2. 24) ω 0 = mv 0D I tot = 5.03 s 1. 25) Subito dopo l urto anelastico l energia si conserva e quindi possiamo ricavare l angolo massimo α dalla conservazione dell energia, ammettendo che in α il sistema sia fermo solo energia potenziale): 1 2 I totω0 2 = g L2 ) +md 1 cosα). 26) Si ottiene Soluzione esercizio 4 ) I tot ω0 2 α = arccos 1 = 0.95 rad. 27) gl +2mD) Troviamo la temperatura di equilibrio T eq. Si ha m R c R T R T eq ) = m A c A T eq ), 28) da cui T eq = m Rc R T R +m A c A = K. 29) m R c R +m A c A La variazione di entropia sarà data dalla somma delle variazioni dei due materiali. con S R = S A = T R dq T = m Rc R dq T = m Ac A T R dt T = m Rc R ln dt T = m Ac A ln Teq T R Teq ) = J/K, 30) ) = J/K, 31) S tot = S R + S A = 3.7 J/K. 32) 5
7 Soluzione esercizio 5 Lungo la trasformazione irreversibile non è possibile calcolare la differenza di entropia, ma possiamo considerare una trasformazione analoga, isocora reversibile, e trovare che S = B A dq TB T = nc dt V T = nc V ln TB ). 33) Nella trasformazione A B il lavoro è nullo isocora). Quindi dobbiamo considerare il lavoro fatto nella trasformazione B C. Trattandosi di una isoterma reversibile si ha ) VC L BC = nrt B ln. 34) Considerando che V B = V A e P A = p C e che p A V B = nr e p A V C = nrt B, si ha ) TB S L BC = nrt B ln = nrt B = 2T B S = 800 J. 35) nc V 3 V B 6
Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017
Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di
Esercitazione 13/5/2016
Esercitazione 3/5/206 Esercizio Un anello di massa m e raggio r rotola senza strisciare su un piano orizzontale con velocità v CM costante. Ad un certo istante inizia a salire lungo un piano inclinato.
Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene:
Esercitazione 7 Esercizio 1 Una massa m g = 20 g di ghiaccio a 0 C è contenuta in un recipiente termicamente isolato. Successivamente viene aggiunta una massa m a = 80 di acqua a 80 C. Quale sarà, all
UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009
COMPITO DI FISICA SPERIMENTALE I DEL 05/12/2008 1. Un proiettile di massa M=10 kg, nel vertice della sua traiettoria parabolica esplode in due frammenti di massa m 1 e m 2 che vengono proiettati nella
1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.
Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k
Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti
Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti Problema 1 Un disco omogeneo di massa m=2 kg e raggio R= 0.3 m ruota in un piano orizzontale intorno all asse
CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010
CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010 1) Due cariche +2q e q sono fissate lungo l asse x, rispettivamente nei punti O = (0,0) ed A=(d,0), con d = 2 m. Determinare:
Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009
Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e
IV ESERCITAZIONE. Esercizio 1. Soluzione
Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,
Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009
Fisica Generale I (primo e secondo modulo) A.A. 2008-2009, 2 settembre 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale
Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013
Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito
Soluzioni della prova scritta Fisica Generale 1
Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 01 1) FLUIDI: Un blocchetto di legno (densità 0,75 g/ cm 3 ) di dimensioni esterne (10x0x5)cm 3 è trattenuto mediante una fune
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 25 Settembre 2014
OSO DI LAUEA IN SIENZE BIOLOGIHE Prova scritta di FISIA 5 Settembre 4 ) Un corpo puntiforme di massa m5 g appoggia nel punto A su un piano inclinato di 3 ed è trattenuto mediante una fune di tensione T,
Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it)
Esercizio 001 Si consideri un piano inclinato di un angolo = 30 rispetto all orizzontale e di lunghezza L = 1 m. Sul piano è posta una massa m = 5, 0 kg collegata alla cima del piano tramite una molla
Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero
Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente
Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica. Esame di Fisica I Prova scritta del 20 luglio 2016.
Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica Esame di Fisica I Prova scritta del 20 luglio 2016 Compito A 1. Una bicicletta, con ruote di diametro D, procedesuuna
Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.
Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula
M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle
6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva
sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).
ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)
Applicazioni delle leggi della meccanica: moto armnico
Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di
ESERCIZI DI DINAMICA DEL PUNTO MATERIALE
ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-
196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv
Problemi sul lavoro Problema Un corpo di massa 50 kg viene trascinato a velocità costante per 0 m lungo un piano orizzontale da una forza inclinata di 45 rispetto all orizzontale, come in figura. Sapendo
Soluzioni dell Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):
Esame di Fisica per neneria Elettronica e delle Telecomunicazioni (Parte ): 5-0-06 Problema. Un saltatore in luno arriva alla fine della rincorsa con una velocità orizzontale v L 0m/s. A questo punto salta
FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013
FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 1) Un corpo di massa m = 500 g scende lungo un piano scabro, inclinato di un angolo θ = 45. Prosegue poi lungo un tratto orizzontale
2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2
1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto
M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.
Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M
Secondo Appello Estivo del corso di Fisica del
Secondo Appello Estivo del corso di Fisica del 25.7.2012 Corso di laurea in Informatica A.A. 2011-2012 (Prof. Paolo Camarri) Cognome: Nome: Matricola: Anno di immatricolazione: Problema n.1 Una semisfera
A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1
Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni
Fisica Generale I A.A , 16 Giugno Esercizi di meccanica relativi al primo modulo del corso
Fisica Generale I A.A. 2013-2014, 16 Giugno 2014 Esercizi di meccanica relativi al primo modulo del corso Esercizio I.1 m 1 m 2 θ Due corpi di massa m 1 = 14 Kg ed m 2 = 2 Kg sono collegati da un filo
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
b) DIAGRAMMA DELLE FORZE
DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro
Esercizio (tratto dal Problema 4.28 del Mazzoldi 2)
Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Un punto materiale di massa m = 20 gr scende lungo un piano inclinato liscio. Alla fine del piano inclinato scorre su un tratto orizzontale scabro (µ
Fisica Generale I (primo modulo) A.A , 9 febbraio 2009
Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in
POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016
POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a. 015-16 I appello, 1 luglio 016 Giustificare le risposte e scrivere in modo chiaro e leggibile. Scrivere in stampatello nome, cognome, matricola
VII ESERCITAZIONE - 29 Novembre 2013
VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.
Compito di Fisica Generale (Meccanica) 13/01/2014
Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella
Risoluzione problema 1
UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta
Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):
Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le
F (t)dt = I. Urti tra corpi estesi. Statica
Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell
Fisica 1 Anno Accademico 2011/2012
Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,
Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio
Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia
Esercizio 1 Meccanica del Punto
Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa
Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema
Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da
POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I Appello, 10 luglio 2013
POLITECNICO DI MILNO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 0-3 I ppello, 0 luglio 03 Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori
Conservazione dell energia
mercoledì 15 gennaio 2014 Conservazione dell energia Problema 1. Un corpo inizialmente fermo, scivola su un piano lungo 300 m ed inclinato di 30 rispetto all orizzontale, e, dopo aver raggiunto la base,
FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello straordinario del 28 maggio 2008
FISIC per SCIENZE BIOLOGICHE,.. 2007/2008 ppello straordinario del 28 maggio 2008 1) Un corpo di massa m = 40 g, fissato ad una fune di lunghezza L = 1m si muove di moto circolare (in senso antiorario)
Dinamica del punto materiale: problemi con gli oscillatori.
Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad
Compito di Fisica Generale (Meccanica) 16/01/2015
Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato
Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando
Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013
POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.
Compito di Fisica Generale (Meccanica) 25/01/2011
Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida
Problemi di dinamica del punto materiale
Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il
FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune
FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 II Compitino 26 Giugno 2014 1) FLUIDI Un bambino trattiene un palloncino, tramite una sottile fune. Il palloncino ha volume V= 5 dm 3. La sua massa, senza il
Esame 20 Luglio 2017
Esae 0 Luglio 07 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Dipartiento di ateatica Università degli Studi di Roa La Sapienza Anno Accadeico 06-07 Esae - Fisica Generale I 0 Luglio 07 R. Bonciani,
[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a
[1] Un asta rigida omogenea di lunghezza l = 1.20 m e massa m = 2.5 kg reca ai due estremi due corpi puntiformi di massa pari a 0.2 kg ciascuno. Tale sistema è in rotazione in un piano orizzontale attorno
Università degli Studi di Enna KORE Facoltà di Ingegneria e Architettura. 5 febbraio 2015 Prof.ssa M. Gulino
(parte II) C.d.L. Ing. Aerospaziale e delle Infrastrutture Aeronautiche 5 febbraio 2015 Prof.ssa M. Gulino Due sfere si avvicinano a uguali velocità scalari e si scontrano frontalmente in un urto elastico.
m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1
7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale
Prova scritta del corso di Fisica con soluzioni
Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 17/04/013 Quesiti 1. Una massa si trova al centro di un triangolo equilatero di lato L = 0 cm ed è attaccata con tre molle di costante
Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica. Esame di Fisica I Prova scritta del 9 giugno 2016.
Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica Esame di Fisica I Prova scritta del 9 giugno 2016 Compito A 1. Un trapezista di un circo (da assimilare a un punto materiale)
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
Fisica Generale I (primo modulo) A.A , 13 Gennaio Esercizi di meccanica relativi al primo modulo del corso
Fisica Generale I (primo modulo) A.A. 2013-2014, 13 Gennaio 2014 Esercizi di meccanica relativi al primo modulo del corso Esercizio I.1 m H 1 h α β M H 2 Un corpo puntiforme di massa m = 50 g è appoggiato
Esercizio (tratto dal problema 7.36 del Mazzoldi 2)
Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante
SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL
SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL 27-03-2014 ESERCIZIO 1 Un ragazzo, in un parco divertimenti, entra in un rotor. Il rotor è una stanza cilindrica che può essere messa in rotazione attorno al
Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N
Lavoro ed energia 1 Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N 2 vettorizzare una traiettoria Si divide la traiettoria s in
Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali
Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è
Problema (tratto dal 7.42 del Mazzoldi 2)
Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata
Calore, lavoro e trasformazioni termodinamiche (1)
Calore, lavoro e trasformazioni termodinamiche (1) Attraverso scambi di calore un sistema scambia energia con l ambiente. Tuttavia si scambia energia anche quando le forze (esterne e interne al sistema)
COMPITO DI FISICA SPERIMENTALE I DEL
COMPITO DI FISICA SPERIMENTALE I DEL 30/11/2007 1. Una slitta di massa M=150 kg, sul cui tetto è fissato un cannoncino di massa m=50 kg inclinato di un angolo α=30 rispetto all orizzontale, può scivolare
l'attrito dinamico di ciascuno dei tre blocchi sia pari a.
Esercizio 1 Tre blocchi di massa rispettivamente Kg, Kg e Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura). Sul blocco agisce una forza orizzontale pari a N. Si determini l'accelerazione
Fisica. Esercizi. Mauro Saita Versione provvisoria, febbraio 2013.
Fisica. Esercizi Mauro Saita e-mail: [email protected] Versione provvisoria, febbraio 2013. Indice 1 Principi di conservazione. 1 1.1 Il pendolo di Newton................................ 1 1.2 Prove
Forze conservative. Conservazione dell energia. Sistemi a molti corpi 1 / 37
Forze conservative Il nome forze conservative deriva dal fatto che le forze che appartengono a questa categoria sono tali da conservare l energia. Una forza è conservativa se il lavoro da essa compiuto
Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere
Facoltà di Farmacia - Anno Accademico 2014-2015 A 08 Aprile 2015 Esercitazione in itinere Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio
Esercizio 1. Risoluzione
Esercizio 1 Un blocco di 10 Kg è appoggiato su un piano ruvido, inclinato di un angolo α=30 rispetto ad un piano orizzontale, ed alto al massimo 6 m. Determinare la forza F (aggiuntiva alla forza d attrito)
Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto
Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problema n. 1: Un carro armato, posto in quiete su un piano orizzontale, spara una granata
Lezione 4 Energia potenziale e conservazione dell energia
Lezione 4 Energia potenziale e conservazione dell energia 4. Energia potenziale e conservazione dell energia Energia potenziale di: Forza peso sulla superficie terrestre Serway, Cap 7 U = mgh di un corpo
Soluzioni della prova scritta di Fisica Generale
Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 20 Settembre 2010 Parte 1 Esercizio 1 Una massa M, approssimabile ad un punto materiale, è attaccata all estremo di una
m = 53, g L = 1,4 m r = 25 cm
Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua
UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I
FISICA GENERALE I - Sede di Spezia Prova A del 15/02/2016 ME 1 Un pezzetto di plastilina di massa m=100 g cade partendo da fermo da un altezza h= 5.0 m su una lastrina orizzontale di massa M=120 g attaccata
Fisica Generale I A.A , 22 Luglio 2014
Fisica Generale I A.A. 2013-2014, 22 Luglio 2014 Esercizio I.1 Un corpo di massa m = 1 kg è poggiato su una lastra di massa M = 4 kg. La lastra può scivolare su un piano orizzontale liscio (vedi figura).
Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani
Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il
Fisica Generale A 8. Esercizi sui Princìpi di Conservazione
Fisica Generale A 8. Esercizi sui Princìpi di Conservazione http://campus.cib.unibo.it/2462/ May 29, 2015 Esercizio 1 Un punto materiale di massa m = 0.1 kg è appoggiato su di un cuneo liscio, di massa
PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 10/07/2017
PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 10/07/2017 Esercizio n. 1 Una pallina di massa m=700 g e di dimensioni trascurabili viene fatta cadere da ferma da una altezza H=5R
Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE
Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla
Lezione 5: Termodinamica. Seminario didattico
Lezione 5: Termodinamica Seminario didattico Esercizio n 1 Ad una mole di gas monoatomico viene fatto percorrere il ciclo mostrato in figura il processo bc è una espansione adiabatica; p B =1.03 bar, V
FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello del 12 settembre 2008
FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello del 12 settembre 2008 1) Una nave pirata è ormeggiata a L = 500 m da un forte costruito su un isola, a livello del mare. Il forte è difeso da un cannone
Esercizi Concetto di energia
Esercizi Concetto di energia 1. Determinare il numero reale m in modo che il vettore X = (m, - m, m - 1) risulti complanare con i vettori: U = ( 3,, 1) e V = (-1,,-1). Soluzione: Se i vettori X, U e V
15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.
Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con
Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010
Fisica Generale I (primo e secondo modulo) A.A. 2009-0, Febbraio 200 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale e 2 per
Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze):
Forze Conservative In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): L = f i F d r, può dipendere dal percorso seguito dalla particella. Se il lavoro fatto da una forza
ESERCIZI SU LAVORO ED ENERGIA. Dott.ssa Silvia Rainò
1 SRCIZI SU LAVORO D NRGIA Dott.ssa Silvia Rainò sempio 3 a) v=0 k =0 ed p =0 b) v=0, F si sostituisce ad N e aumenta c) F = mg. v=0. k =0, p = mgh => meccanica = k + p = mgh d) Mentre il corpo cade l
Esercizi sul corpo rigido.
Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:
Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica
Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una
