Calore, lavoro e trasformazioni termodinamiche (1)
|
|
|
- Sibilla Ferretti
- 8 anni fa
- Visualizzazioni
Transcript
1 Calore, lavoro e trasformazioni termodinamiche (1) Attraverso scambi di calore un sistema scambia energia con l ambiente. Tuttavia si scambia energia anche quando le forze (esterne e interne al sistema) compiono lavoro. Nell esempio a fianco, un gas è racchiuso in una camera cilindrica con un pistone mobile. La pressione del gas è bilanciata ponendo dei pesi sul pistone e le pareti del cilindro isolano termicamente il gas dall esterno (pareti adiabatiche). Lo stato iniziale i del gas è caratterizzato dalle variabili di stato: pressione p i, volume V i, temperatura T i. Diminuendo il peso sul pistone, il gas si espanderà fino a un volume finale V f. In questo processo il gas compie un lavoro tramite la forza che esercita sul pistone, F = Ap (dove A è l area del pistone): dl = F ds = (Ap)ds = pdv L = Vf V i pdv Il calcolo dell integrale richiede la conoscenza di p p(v ), pressione del gas in funzione del volume. Si noti anche che in generale T f, temperatura finale, T i.
2 Calore, lavoro e trasformazioni termodinamiche (2) Esistono infinite trasformazioni che portano il gas dallo stato i allo stato f. Per rappresentarle si usa molto riportare il grafico p(v ) nel piano p V. Il lavoro fatto dal gas (vedi a sinistra) è pari all area sottostante la curva p(v ), dipende dal tipo di trasformazione. Si noti che (figura a destra): invertendo la trasformazione (da f ad i) il lavoro cambia segno; per un ciclo (trasformazione che riporta il sistema nello stato iniziale) il lavoro è pari all area racchiusa dal ciclo (positivo o negativo a seconda che il ciclo sia percorso in senso orario o antiorario). La quantità di calore Q scambiata dal sistema nella trasformazione non è quantificabile graficamente in modo semplice, ma come L dipende dal tipo di trasformazione. Riassumendo: Q ed L quantificano le energie scambiate dal sistema con l ambiente attraverso le due diverse modalità possibili.
3 Prima Legge della Termodinamica L energia, anche se trasferita e trasformata, nel suo complesso si conserva sempre! Se un sistema scambia energia con l ambiente (scambiando calore e/o compiendo lavoro), la somma delle energia di sistema e ambiente rimane inalterata. Chiamiamo l energia associata alle particelle del sistema energia interna, E int. Per la conservazione dell energia, possiamo enunciare la prima legge della Termodinamica: La variazione dell energia interna di un sistema è pari alla differenza tra calore scambiato e lavoro compiuto dal sistema con l ambiente. Cioè E int = Q L, o, in termini differenziali: de int = dq dl. 1 Nota: la variazione di energia interna fra due stati i e f è ben definita e indipendente dalla trasformazione tra i due stati! Una funzione il cui valore dipende solo dallo stato) si chiama funzione di stato. L energia interna è una funzione di stato La validità della prima legge della termodinamica comporta anche che, sebbene sia Q che L dipendano dalla trasformazione, la loro differenza Q L è da essa indipendente 1 Si usa anche la notazione de = δq δl per mettere in evidenza che i due termini di destra non sono differenziale di una funzione di stato, come è invece il termine a sinistra dell uguaglianza
4 Vari tipi di trasformazioni Adiabatica: non c e scambio di calore con l ambiente, Q = 0, E int = L Isocora o a volume costante: il sistema non compie lavoro, E int = Q Isobara o a pressione costante: possiamo dire che L = p(v f V i ) Ciclica: il sistema ripassa (ciclicamente) per lo stesso stato. In un ciclo, la natura di funzione di stato di E int implica E int = 0, quindi Q = L Espansione libera: un gas si espande liberamente (come in figura) all interno di un contenitore isolato termicamente. Q = 0 perchè il sistema è isolato, L = 0 perchè il gas non fa lavoro, da cui E int = 0 (notare che quest ultima trasformazione è sicuramente irreversibile, non passando per stati di equilibrio; le altre possono essere reversibili se passano da stati di equilibrio)
5 Il gas ideale (o perfetto) Per i gas, si usa molto indicare la quantità di gas in moli: una mole = un numero N A di Avogadro di particelle, N A = La mole, indicata come mol, è una delle unità fondamentali del S.I.. Se un campione di sostanza contiene N particelle (atomi o molecole), il numero di moli di tale sostanza è n = N/N A. In un gas, le particelle tendono a comportarsi come particelle indipendenti. A bassa densità, il comportamento di gas diversi diventa sempre più simile e tutti i gas reali soddisfano con buona approssimazione l equazione di stato 2 dei gas ideali pv = nrt In tale relazione n è il numero di moli del gas e R = J/(mol K) è la cosiddetta costante dei gas, determinabile sperimentalmente. In alternativa, utilizzando la costante di Boltzmann, k B = R/N A = J/K, e scrivendo N = nn A, la legge dei gas ideali diventa pv = Nk B T 2 In generale, un equazione di stato lega le variabili di stato fra di loro
6 Lavoro svolto da un gas ideale Lavoro svolto in una trasformazione isoterma (T = costante): vale p = p(v ) = nrt 1 V. Il lavoro L compiuto dal gas in un espansione dal volume V i al volume V f è L = Vf V i pdv = nrt Vf ( ) 1 Vf dv = nrt log V i V V i Lavoro svolto in una trasformazione isobara (p = costante): L = Vf V i pdv = p Vf V i dv = p(v f V i ) Lavoro svolto in una trasformazione isocora (V = costante): ovviamente L = 0!
7 Gas ideali e prima legge della termodinamica: applicazione (1) Si consideri una certa quantità di un gas ideale e sia data la trasformazione A B reversibile con p A = 20 atm e V A = 10 l, p B = 10 atm e V B = 20 l, indicata in figura. Determinare il punto della trasformazione, (p m, V m ), in cui la temperatura del gas è massima.
8 La trasformazione è reversibile e quindi in ogni suo punto posso scrivere T = pv nr. Nella trasformazione indicata deve essere p = a + bv dove a e b sono delle costanti da determinare. Imponendo p A = a + bv A e p B = a + bv B si ottiene a = 30 atm e b = 1.0 atm/l. Perciò, nei punti della trasformazione abbiamo p = a + bv nrt V = a + bv T = 1 (a + bv )V. nr Il punto V m di massima temperatura si ottiene imponendo dt dv = 1 (a + 2bV ) = 0; nr d 2 T dv = 2b 2 nr < 0 V m = a 2b = 15 l. Infine p m = a + bv m = 15 atm. Si noti che si poteva giungere allo stesso risultato considerando l intersezione tra una isoterma e la trasformazione data, imponendo che l intersezione (normalmente costituita da due punti distinti) si riduca ad un unico punto.
9 Gas ideali e prima legge della termodinamica: applicazione (2) Un recipiente cilindrico con pareti adiabatiche, di sezione A = 0.3 m 2 e lunghezza l = 1.0 m, è suddiviso in due camere uguali per mezzo di un pistone a tenuta (di spessore e massa trascurabili). Il pistone è adiabatico e può scorrere senza attrito lungo le pareti del cilindro. In una delle camere viene inserita una molla di costante elastica k = 100 N/cm, di lunghezza a riposo pari a l/2. L altra camera viene riempita con n moli di un gas ideale monoatomico. Sapendo che all immissione del gas la molla si accorcia di 15 cm e che per farla riallungare di 5 cm la temperatura del gas deve essere diminuita di 120 K, determinare: (a) il numero di moli n di gas ideale immesso; (b) la temperatura T 0 iniziale del gas; (c) la quantità di calore Q persa dal gas durante la diminuzione di temperatura. 3 3 Per rispondere a quest ultima domanda è necessario conoscere l espressione dell energia interna di un gas ideale: E int = nc v T, dove c v è il calore specifico a volume costante
10 Indicando con l 1 = 15 cm e l 2 = 10 cm gli accorciamenti della molla (rispetto alla lunghezza a riposo), le pressioni del gas nei due casi sono p 1 = k l 1 A = N/m 2 ; p 2 = k l 2 A = N/m 2 Analogamente i corrispondenti volumi del gas sono: V 1 = A(l/2 + l 1 ) = m 3 ; V 2 = A(l/2 + l 2 ) = 0.18 m 3. Applicando la legge dei gas ideali nei due casi avremo { p1 V 1 = nrt 0 ; p 2 V 2 = nr(t 0 120). T 0 T = p 1V 1 p 2 V 2 T 0 = p 1 V 1 p 1 V 1 p 2 V = 312 K. Conseguentemente n = p 1V 1 RT 0 = 0.38 mol Infine per la prima legge della termodinamica abbiamo E int = Q L Q = E int + L = nc V T k( l2 2 l2 1 ) = J, dove si è usato il fatto che il lavoro compiuto dal gas è pari alla variazione di energia potenziale subita dalla molla.
Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene:
Esercitazione 7 Esercizio 1 Una massa m g = 20 g di ghiaccio a 0 C è contenuta in un recipiente termicamente isolato. Successivamente viene aggiunta una massa m a = 80 di acqua a 80 C. Quale sarà, all
Gas ideale: velocità delle particelle e pressione (1)
Gas ideale: velocità delle particelle e pressione (1) In un gas ideale le particelle sono considerate puntiformi e risentono di forze solo durante gli urti (perfettamente elastici) con le pareti del recipiente.
FISICA. Un sistema formato da un gas ideale monoatomico(= sistema) alla pressione costante di 110kPa acquista 820J di energia nella modalità calore.
Serie 5: Termodinamica V FISICA II liceo Esercizio 1 Primo principio Un cilindro contiene 4 mol di un gas(= sistema) monoatomico a temperatura iniziale di 27 C. Il gas viene compresso effettuano su di
FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello straordinario del 28 maggio 2008
FISIC per SCIENZE BIOLOGICHE,.. 2007/2008 ppello straordinario del 28 maggio 2008 1) Un corpo di massa m = 40 g, fissato ad una fune di lunghezza L = 1m si muove di moto circolare (in senso antiorario)
b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K.
2.00 moli di un gas perfetto di volume V 1 = 3.50 m 3 e T 1 = 300 K possono espandersi fino a V 2 = 7.00 m 3 e T 2 = 300 K. Il processo è compiuto isotermicamente. Determinare: a) Il lavoro fatto dal gas;
Entalpia. L'entalpia è una funzione di stato ed è una grandezza estensiva. dh=du+pdv+vdp --> du+pdv = dh - Vdp
Entalpia Si definisce entalpia la grandezza H ( 1 H = U + pv L'entalpia è una funzione di stato ed è una grandezza estensiva. Differenziando la (1) si ha dh=du+pdv+vdp --> du+pdv = dh - Vdp In una generica
PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente.
PRIMI ELEMENTI DI TERMODINAMICA Un sistema è un insieme di corpi che possiamo immaginare avvolti da una superficie chiusa, ma permeabile alla materia e all energia. L ambiente è tutto ciò che si trova
Lezione 5: Termodinamica. Seminario didattico
Lezione 5: Termodinamica Seminario didattico Esercizio n 1 Ad una mole di gas monoatomico viene fatto percorrere il ciclo mostrato in figura il processo bc è una espansione adiabatica; p B =1.03 bar, V
GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1
GAS IDEALI E MACCHINE TERMICHE G. Pugliese 1 Proprietà dei gas 1. Non hanno forma né volume proprio 2. Sono facilmente comprimibili 3. Le variabili termodinamiche più appropriate a descrivere lo stato
CONVENZIONE SUI SEGNI
CONVENZIONE SUI SEGNI Si stabilisce una convenzione sui segni sia per gli scambi di calore che per il lavoro che il sistema compie o subisce L>0: LAVORO COMPIUTO DAL SISTEMA Q>0: CALORE ASSORBITO SISTEMA
L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura
Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica
Fisica per scienze ed ingegneria
Serway, Jewett Fisica per scienze ed ingegneria Capitolo 20 Fino a circa il 1850 su riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell
Fisica per scienze ed ingegneria
Serway, Jewett Fisica per scienze ed ingegneria Capitolo 20 Fino a circa il 1850 su riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell
Esercitazione 13/5/2016
Esercitazione 3/5/206 Esercizio Un anello di massa m e raggio r rotola senza strisciare su un piano orizzontale con velocità v CM costante. Ad un certo istante inizia a salire lungo un piano inclinato.
IL PRIMO PRINCIPIO DELLA TERMODINAMICA
IL PRIMO PRINCIPIO DELLA TERMODINAMICA T R AT TO DA: I P ro b l e m i D e l l a F i s i c a - C u t n e l l, J o h n s o n, Yo u n g, S t a d l e r Z a n i c h e l l i e d i t o r e Fo n d a m e n t i
Fisica 1 Anno Accademico 2011/2012
Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (4 Giugno - 8 Giugno 2012) Sintesi Abbiamo formulato il primo principio della termodinamica che regola gli scambi di calore, la
Lezione 4: Termodinamica. Seminario didattico
Lezione 4: Termodinamica Seminario didattico Esercizio n 1 Un vaso di massa 150g in rame (calore specifico 0,0923 cal/g K) contiene 220g di acqua, entrambi alla temperatura di 20,0 C. Un cilindro di 300g
Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica
Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio 1 Definizione di Gas Perfetto Un gas perfetto è un gas ideale il cui comportamento approssima quello dei gas reali a densità
Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013
Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.
Dalla legge dei gas perfetti si ha il rapporto tra il numero di moli dei due gas R T 1 V 2 P V 1. =n 1. RT 2 =V 2 qundi: n 1 = T 2. =n 2.
Compito intercorso Fisica II ICI 1 giugno 2006 1 Due recipienti uguali, isolati termicamente dall'ambiente esterno, sono connessi da un condotto con un rubinetto, inizialmente chiuso. Uno dei recipienti
Scritti di Termodinamica dt + R dt T. = cp. = 1.4 = gas biatomico = 78.0 K
Scritti di Termodinamica 2002 2016 (02/07/18) Una mole di gas ideale passa dallo stato A allo stato B con una trasformazione isobara in cui: H = 2269.72 J, U = 1621.23 J, S = 6.931 J/K Determinare i valori
il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche.
16 Il ciclo di Stirling Il coefficiente di effetto utile per il ciclo frigorifero di Carnot è, in base alla (2.9): T min ɛ =. (2.31) T max T min Il ciclo di Carnot è il ciclo termodinamico che dà il maggior
Esame 28 Giugno 2017
Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28
Termodinamica. studia le modificazioni subite da un sistema a seguitodel trasferimento di energia sotto forma di calore e lavoro.
Termodinamica studia le modificazioni subite da un sistema a seguitodel trasferimento di energia sotto forma di calore e lavoro. La termodinamica parte da osservazioni sperimentali e quindi si esprime
Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA
Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di
Riepilogo di calorimetria
Riepilogo di calorimetria Applicate la conservazione dell energia: Calore assorbito = Calore ceduto Se non ci sono trasformazioni di fase: 1. Calore assorbito = massa x calore specifico x (T fin T iniz
TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la
ERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la circonda e può influenzarne il comportamento ( ambiente
Leggi dei gas Equazione di stato dei gas perfetti
Le leggi dei gas Quale descrizione fisico-matematica si può usare per i diversi stati di aggregazione della materia? Essa è tanto più semplice (equazioni) quanto meno interagenti sono fra loro le particelle
1.Pressione di un Gas
1.Pressione di un Gas Un gas è formato da molecole che si muovono in modo disordinato, urtandosi fra loro e urtando contro le pareti del recipiente che le contiene. Durante gli urti, le molecole esercitano
L ENERGIA CINETICA DELLE MOLECOLE DI UN GAS E LA TEMPERATURA Ogni molecola ha in media un'energia cinetica
Primo principio- 1 - TERMODINAMICA ENERGIA INTERNA DI UN SISTEMA Ad ogni sistema fisico possiamo associare varie forme di energia, l energia cinetica delle molecole di cui è formato, energia potenziale,
Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore
Sistemi termodinamici Sistema: regione dello spazio oggetto delle nostre indagini. Ambiente: tutto ciò che circonda un sistema. Universo: sistema + ambiente Sistema aperto: sistema che consente scambi
Capacità termica e calore specifico
Calori specifici Capacità termica e calore specifico Il calore si trasferisce da un corpo ad un altro fintanto che i corpi sono a temperature differenti. Potremo scrivere quindi: Q = C ΔT = C (T f T i
14 Gas reali. Potenziali termodinamici
4 Gas reali. Potenziali termodinamici (9 problemi, difficoltà 62, soglia 43) Formulario Equazione di van der Waals per i gas reali per mol p + a v 2 (v b) RT, dove a e b sono due costanti diverse da gas
Il Gas Ideale. Il gas ideale é un'astrazione
Il Gas Ideale a) le particelle sono animate da moto perenne, ed occupano omogeneamente tutto lo spazio a loro disposizione b) il movimento delle particelle è casuale c) le particelle hanno volume proprio
I Test di Autovalutazione... 2 Esiti I Test... 4 Statistiche per domanda I Test... 4 II Test di Autovalutazione... 5 Esiti II Test...
I Test di Autovalutazione... 2 Esiti I Test... 4 Statistiche per domanda I Test... 4 II Test di Autovalutazione... 5 Esiti II Test... 7 Statistiche per domanda II Test... 7 III Test di Autovalutazione...
Temi di termodinamica
Temi di termodinamica Prova scritta del 12/04/1995 Una mole di gas perfetto monoatomico alla temperatura T A =243 K e pressione p A = 2 atm, esegue un ciclo reversibile costituito dalle seguenti trasformazioni:
Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica. Esame di Fisica I Prova scritta del 20 luglio 2016.
Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica Esame di Fisica I Prova scritta del 20 luglio 2016 Compito A 1. Una bicicletta, con ruote di diametro D, procedesuuna
PRIMO PRINCIPIO DELLA TERMODINAMICA SISTEMA
SISTEMA In termodinamica si intende per sistema una qualsiasi porzione della realtà fisica che viene posta come oggetto di studio Possono essere sistemi: una cellula il cilindro di un motore una cella
Lezione Termodinamica
Lezione Termodinamica 1 Sistemi termodinamici La termodinamica si occupa delle interazioni tra corpi macroscopici che comprendono sia scambi di energia meccanica sia scambi di calore (energia termica),
Conseguenze del teorema di Carnot
Conseguenze del teorema di Carnot Tutte le macchine reversibili che lavorano tra le stesse sorgenti alle temperature T 1 e T 2 hanno rendimento uguale; qualsiasi altra macchina che lavori tra le stesse
1 Ripasso di Termodinamica
Definizioni Il gas ideale Il primo principio della termodinamica Espansione libera di un gas ideale Energia interna Calori specifici Trasformazioni adiabatiche Il secondo principio della termodinamica
dallo stato 1 allo stato 2 è uguale all integrale
Capitolo 13 L entropia 167 QUESITI E PROBLEMI 1 La grandezza fisica entropia può assumere valori solo positivi (vero/falso). Se sono determinati lo stato iniziale e lo stato finale di un sistema fisico,
Ultima verifica pentamestre. 1)definizione di miscuglio, soluzione, composto, elemento, molecola ( definizione importantissima!!!!!!!!
Ultima verifica pentamestre 1)definizione di miscuglio, soluzione, composto, elemento, molecola ( definizione importantissima!!!!!!!!) 2) gruppi dal IV al VIII 3) differenza tra massa atomica e massa atomica
UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009
COMPITO DI FISICA SPERIMENTALE I DEL 05/12/2008 1. Un proiettile di massa M=10 kg, nel vertice della sua traiettoria parabolica esplode in due frammenti di massa m 1 e m 2 che vengono proiettati nella
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 01 1) FLUIDI: Un blocchetto di legno (densità 0,75 g/ cm 3 ) di dimensioni esterne (10x0x5)cm 3 è trattenuto mediante una fune
POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016
POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a. 015-16 I appello, 1 luglio 016 Giustificare le risposte e scrivere in modo chiaro e leggibile. Scrivere in stampatello nome, cognome, matricola
POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I Appello, 10 luglio 2013
POLITECNICO DI MILNO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 0-3 I ppello, 0 luglio 03 Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori
Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica
Bilancio di energia: il Primo Principio della Termodinamica Termodinamica dell Ingegneria Chimica 1 I Sistemi termodinamici Un sistema è definito da una superficie di controllo, reale o immaginaria, che
Macchine termiche: ciclo di Carnot
Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un
TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI
TERMODINAMICA Termodinamica: scienza che studia le proprietà e il comportamento dei sistemi, la loro evoluzione e interazione con l'ambiente esterno che li circonda. Studia le trasformazioni dei sistemi
LA MATERIA ED I SUOI STATI
LA MATERIA ED I SUOI STATI GAS COMPOSIZIONE DELL ARIA 1. I gas ideali e la teoria cineticomolecolare Nel modello del gas ideale le particelle 1. l energia cinetica media delle particelle è proporzionale
Corso di Fisica Tecnica Ambientale. Introduzione alla Termodinamica: terminologia
Introduzione alla Termodinamica: terminologia Termodinamica La Termodinamica è la scienza che studia le modificazioni subite da un sistema in conseguenza del trasferimento di energia principalmente sotto
IL CICLO DI CARNOT. Scambi di energia durante il ciclo
IL CICLO DI CNO Consideriamo un gas ideale, contenuto nel solito cilindro, che compie un ciclo di 4 trasformazioni reversibili (2 isoterme + 2 adiabatiche) rappresentate nel piano -p come in figura. cambi
GAS IDEALI E REALI. Prendiamo ora in considerazione un sistema particolare termodinamico: il gas. Un gas è un fluido con le seguenti caratteristiche:
GAS IDEALI E REALI Gas ideale. Prendiamo ora in considerazione un sistema particolare termodinamico: il gas. Un gas è un fluido con le seguenti caratteristiche: - non ha forma, ne volume proprio; - e comprimibile.
Il primo principio della termodinamica
1 Il primo principio della termodinamica Il primo principio della termodinamica Nelle lezioni precedenti abbiamo visto che per far innalzare la temperatura di un sistema vi sono due possibilità: fornendo
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 25 Settembre 2014
OSO DI LAUEA IN SIENZE BIOLOGIHE Prova scritta di FISIA 5 Settembre 4 ) Un corpo puntiforme di massa m5 g appoggia nel punto A su un piano inclinato di 3 ed è trattenuto mediante una fune di tensione T,
Cap 21- Entropia e II Legge della Termodinamica. Entropia
N.Giglietto A.A. 2005/06- Entropia nell espansione libera - 1 Cap 21- Entropia e II Legge della Termodinamica Ci sono diversi modi di esprimere la II Legge della Termodinamica. Tutte stabiliscono una limitazione
Stati della materia. Esempio. Fusione e solidificazione. Esempio. Stati di aggregazione della materia
Stati della materia STATI DI AGGREGAZIONE DELLA MATERIA E GAS PERFETTI Cosa sono gli stati della materia? Gli stati della materia sono come si presenta la materia nell universo fisico e dipendono dalla
Macchine termiche: ciclo di Carnot
Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un
FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune
FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 II Compitino 26 Giugno 2014 1) FLUIDI Un bambino trattiene un palloncino, tramite una sottile fune. Il palloncino ha volume V= 5 dm 3. La sua massa, senza il
Secondo principio della termodinamica: perché????
Secondo principio della termodinamica: perché???? Primo principio: bilancio degli scambi energetici con l ambiente, ma non dà nessuna spiegazione del fatto che in natura alcune trasformazioni procedono
Trasformazioni termodinamiche: Esercizi svolti
Trasformazioni termodinamiche: Esercizi svolti 9 aprile 2013 Esercizio 1 Si consideri un sistema chiuso in cui si abbia inizialmente aria a 5 C, ad una pressione p 1 = 1 bar, che venga in un secondo momento
Lezione 7 I e II Prinicipio
Lezione 7 I e II Prinicipio Lavoro: W = pdv Serway, 17 ap. se la pressione é costante: Unitá di misura: 7.1 lavoro ed energia termica 7.1.1 XVII. 18 W = p V 1litro = 10 3 m 3 1atm 1.01310 5 P a = 1.01310
Il I principio della termodinamica. Calore, lavoro ed energia interna
Il I principio della termodinamica Calore, lavoro ed energia interna Riassunto Sistemi termodinamici Un sistema termodinamico è una porzione di materia descritto da funzioni di stato che ne caratterizzano
Fisica Generale I (primo e secondo modulo) A.A. 2009-10, 30 Agosto 2010
Fisica Generale I (primo e secondo modulo) A.A. 009-10, 30 Agosto 010 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e per
1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.
Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k
PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa ; ) Q 2 = Q 1 Q 1. t = dm. dt H; = nrt A ln 4 < 0; R 1 = 3 2 R: C + ln 4 C p = 1
PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa. Il funzionamento di una macchina a vapore puo essere approssimato a quello di una macchina di Carnot, che assorbe calore alla temperatura 2 della
CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica. FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti. Esercitazione del 03/11/2010
CorsI di aurea in Ingegneria Aereospaziale-Meccanica-Energetica FONDAMENTI DI CIMICA Docente: Cristian Gambarotti Esercitazione del // Argomenti della lezione avoro, Calore, Energia Interna, Entalpia relativi
QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA
QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA Un recipiente contiene gas perfetto a 27 o C, che si espande raggiungendo il doppio del suo volume iniziale a pressione costante. La temperatura finale
8 1. Trasformazione AB : ISOBARA 2. Trasformazione BC: ISOCORA 3. Trasformazione CD: ISOBARA 4. Trasformazione DA: ISOCORA. V(l)
ermodinamica Un gas monoatomico compie il ciclo mostrato nella figura sotto, dove le trasformazioni, sono isobare e le trasformazioni e sono isocore. apendo che l, p 8atm, 6 l, p atm. alcolare il rendimento
Lo stato gassoso e le sue proprietà
Lo stato gassoso e le sue proprietà Dr. Gabriella Giulia Pulcini Ph.D. Student, Development of new approaches to teaching and learning Natural and Environmental Sciences University of Camerino, ITALY 1
Soluzioni dell Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):
Esame di Fisica per neneria Elettronica e delle Telecomunicazioni (Parte ): 5-0-06 Problema. Un saltatore in luno arriva alla fine della rincorsa con una velocità orizzontale v L 0m/s. A questo punto salta
Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013
Fisica Facoltà di Ingegneria, Architettura e delle Scienze Motorie Lezione 6 maggio 2013 Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano Macchine Termiche Le macchine
Stati di aggregazione della materia
Stati di aggregazione della materia A seconda della natura dei legami tra gli atomi o delle forze tra le molecole si possono avere diversi stati di aggregazione della materia SOLIDO LIQUIDO GAS PLASMA
Termodinamica e termochimica
Termodinamica e termochimica La termodinamica è una scienza che studia proprietà macroscopiche della materia e prevede quali processi chimici e fisici siano possibili, in quali condizioni e con quali energie
Esercitazione X - Legge dei gas perfetti e trasformazioni
Esercitazione X - Legge dei gas perfetti e trasformazioni termodinamiche Formulario Il primo principio della termodinamica afferma che la variazione dell energia interna di un sistema U è uguale alla somma
Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl
SOLUZIONI problemi cap.8 8.1 La pressione del vapore è mantenuta costante. Perciò, la temperatura del vapore rimane costante anche alla temperatura Se si suppone che la trasformazione non implichi irreversibilità
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 016 1) Un corpo di massa M= kg si muove lungo una guida AB, liscia ed irregolare, partendo dal punto A a quota H = 9m, fino al
2) Primo principio della Termodinamica
2) Primo principio della Termodinamica Antefatto: conservazione dell energia dalla descrizione molecolare (secondo la meccanica classica/quantistica) del sistema materiale Energia() = energia cinetica
Programma svolto a.s. 2015/2016. Materia: fisica
Programma svolto a.s. 2015/2016 Classe: 4A Docente: Daniela Fadda Materia: fisica Dettagli programma Cinematica e dinamica: moto circolare uniforme (ripasso); moto armonico (ripasso); moto parabolico (ripasso);
Il prodotto della pressione per il volume di una determinata massa gassosa è direttamente proporzionale alla temperatura assoluta: PV = KT
ESERCITAZIONE 5 LEGGI DEI GAS Le leggi che governano i rapporti che si stabiliscono tra massa, volume, temperatura e pressione di un gas, sono leggi limite, riferite cioè ad un comportamento ideale, cui
