Capacità termica e calore specifico
|
|
|
- Romina Manzoni
- 8 anni fa
- Visualizzazioni
Transcript
1 Calori specifici
2 Capacità termica e calore specifico Il calore si trasferisce da un corpo ad un altro fintanto che i corpi sono a temperature differenti. Potremo scrivere quindi: Q = C ΔT = C (T f T i ) Naturalmente questo trasferimento di calore dipenderà da quanta massa è coinvolta. La costante C che compare nella relazione è detta capacità termica ed è l inerzia termica di un corpo al variare della temperatura. Più grande è l inezia termica più difficile è far cambiare temperatura ad un corpo Risulta conveniente definire una capacità termica indipendente dalla quantità di massa utilizzata che chiameremo calore specifico Il calore specifico c s tiene conto solo della diversa natura del materiale Q = c s m (T f T i ) Sostanza stato J/(kg K) Acqua Ghiaccio Alluminio Acciaio Diamante Grafite Rame Oro Aria (secca) Ossigeno Silice (fusa) Silice Etanolo PolisHrene liquida solido Solido solido Solido gassoso Liquido solido
3 Calore specifico: gas monoatomici n moli di gas sono confinati in un cilindro e il suo stato è descritto dal punto p sulla curva verde. Dando calore al sistema, bloccato a volume costante, si avrà un aumento della pressione e della temperatura. Per il primo principio deve essere: ΔE int = Q w dove Q = n c v ΔT e w = 0 (c v è il calore specifico a volume costante) Quindi per un processo isocoro ΔE int = n c v ΔT ed il calore specifico a volume costante è: c v = ΔE int /nδt Per un gas perfetto ΔE int = (3/2)nR ΔT e quindi avremo 2nRΔT 3 1 c v = = R = 12,5 J mol K nδt 2 La E int si potrà anche esprimere come E int = n c v T 1 [ ] 3
4 Calore specifico a pressione costante Supponiamo ora di fornire calore al solito sistema, mantenendo costante la pressione e lasciando variare il volume: Q = n c p ΔT. c p > c v poiché il calore dovrà contemporaneamente far aumentare la temperatura e compiere lavoro esterno. Ricordiamo che ΔE int = Q w n c v ΔT = n c p ΔT p Δ n c v ΔT = n c p ΔT (n R ΔT) potremo riscriverla come: Dividendo tutto per nδt c v = c p R R = c p - c v c p = c v + R
5 Tabella dei calori specifici molari a volume costante molecola esempio c v [J/(mol K)] monoatomica biatomica poliatomica Ideale He Ar Ideale N 2 O 2 Ideale NH 4 CO 2 3/2 R = 12,5 12,5 12,6 5/2 R = 20,8 20,7 20,8 3R = 24,9 29,0 29,7 Per un gas ideale la variazione di E int non dipende dalla trasformazione termodinamica subita, ma solo dall entità della variazione di temperatura isobara isocora adiabatica T + ΔT T
6 Gradi di libertà Sempre J.C. Maxwell contribuì a risolvere il problema relativi alla deviazione dei valori previsti nei c v. Teorema dell equipartizione dell energia: Sono i gradi di libertà a definire in quanti modi una molecola possa immagazzinare energia. Per ogni molecola un grado di libertà ha una energia ½ kt c v = (f/2) R = 4,16 f [J/(mol K)]
7 Lavoro di un gas perfeoo Una curva isoterma, nel piano -p, è rappresentata da una iperbole. Infatti essa è il risultato di p = nrt (p = nrt/). Se T e costante p = cost Il lavoro svolto dal gas durante una espansione isoterma è: w = w = nrt i f pd i f = d i f nrt d = nrt[ln ] per una mole i f f = nrt ln Ricordiamo che il Lavoro, w, per una trasformazione isocora è nullo, per una trasformazione isobara è w = p ( f i ) e per una isoterma è w = nrt ln( f / i ). i
8 Processi adiabahci Utilizzando l equazione di stato dei gas ideali p = nrt e risolvendo rispetto alla pressione p avremo: nrt γ = cost Dove nr può essere inglobato nella costante: T γ-1 = cost T i i γ-1 = T f f γ-1 Se durante un processo Q = 0 il processo è adiabatico ed il lavoro è w=pd=-de int Tale situazione si può realizzare, sia se il processo avviene rapidamente in modo da non lasciare il tempo al calore di propagarsi, sia se avviene lentamente in un sistema ben isolato. La conclusione sarà p γ = cost dove γ è il rapporto c p /c v Scorrendo l adiabatica si attraversano molte isoterme. Il processo è completamente descritto da p i i γ = p f f γ
9 Dimostrazione di γ l Supponiamo di eseguire una lenta espansione di modo che si possa parlare di processo adiabatico Q = 0. l Quindi il primo principio diventa de int = - pd e ricordando che de int = nc v dt avremo: nc v dt = - pd à ndt = - (pd)/c v l differenziando l equazione di stato dei gas perfetti (p = nrt): ( c c ) pd + dp = R ndt l sostituendo R con c p c v (vedi poi) e ndt con - (pd)/c : p pd + dp = pd = ( γ 1)pd dp cp d + = 0 c p c Ma il rapporto dei calori specifici è γ e integrando otteniamo: lnp + γln = cost Ricordando un po di algebra dei logaritmi otteniamo: lnp γ = cost
10 Relazione fra C e C p In una trasformazione a volume costante il primo principio porta a dire che dq = du + pd e dovendo essere d = 0 ne segue che dq = nc v dt o anche nc v dt = du Per una trasformazione a pressione costante dovrà essere nc p dt = du + pd. Essendo du v = du p risulterà nc v dt = nc p dt p d o meglio n (C p C v ) dt = pd Per l equazione di stato dei Gas Perfetti p = nrt e pd = nrdt quindi n (C p C v ) dt = nrdt ovvero C p C = R
11 Espansione libera L espansione libera è un processo adiabatico in cui il Lavoro è nullo. C è equilibrio solo allo stato iniziale e allo stato finale dell espansione. Le temperature iniziale e finale sono eguali T i = T f e per un gas ideale anche p i = p f Riassumendo: per un gas ideale le trasformazioni più interessanti sono riportate nel grafico:
Gas ideale: velocità delle particelle e pressione (1)
Gas ideale: velocità delle particelle e pressione (1) In un gas ideale le particelle sono considerate puntiformi e risentono di forze solo durante gli urti (perfettamente elastici) con le pareti del recipiente.
GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1
GAS IDEALI E MACCHINE TERMICHE G. Pugliese 1 Proprietà dei gas 1. Non hanno forma né volume proprio 2. Sono facilmente comprimibili 3. Le variabili termodinamiche più appropriate a descrivere lo stato
FISICA. Un sistema formato da un gas ideale monoatomico(= sistema) alla pressione costante di 110kPa acquista 820J di energia nella modalità calore.
Serie 5: Termodinamica V FISICA II liceo Esercizio 1 Primo principio Un cilindro contiene 4 mol di un gas(= sistema) monoatomico a temperatura iniziale di 27 C. Il gas viene compresso effettuano su di
PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente.
PRIMI ELEMENTI DI TERMODINAMICA Un sistema è un insieme di corpi che possiamo immaginare avvolti da una superficie chiusa, ma permeabile alla materia e all energia. L ambiente è tutto ciò che si trova
Calore, lavoro e trasformazioni termodinamiche (1)
Calore, lavoro e trasformazioni termodinamiche (1) Attraverso scambi di calore un sistema scambia energia con l ambiente. Tuttavia si scambia energia anche quando le forze (esterne e interne al sistema)
Entropia e secondo principio della termodinamica: prevedere la spontaneità di un processo
1 Entropia e secondo principio della termodinamica: prevedere la spontaneità di un processo Limitazioni della prima legge della termodinamica 2 E = q + w E universo = E sistema + E ambiente E sistema =
Macchine termiche: ciclo di Carnot
Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un
Lezione 4: Termodinamica. Seminario didattico
Lezione 4: Termodinamica Seminario didattico Esercizio n 1 Un vaso di massa 150g in rame (calore specifico 0,0923 cal/g K) contiene 220g di acqua, entrambi alla temperatura di 20,0 C. Un cilindro di 300g
Riepilogo di calorimetria
Riepilogo di calorimetria Applicate la conservazione dell energia: Calore assorbito = Calore ceduto Se non ci sono trasformazioni di fase: 1. Calore assorbito = massa x calore specifico x (T fin T iniz
QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA
QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA Un recipiente contiene gas perfetto a 27 o C, che si espande raggiungendo il doppio del suo volume iniziale a pressione costante. La temperatura finale
Cap 21- Entropia e II Legge della Termodinamica. Entropia
N.Giglietto A.A. 2005/06- Entropia nell espansione libera - 1 Cap 21- Entropia e II Legge della Termodinamica Ci sono diversi modi di esprimere la II Legge della Termodinamica. Tutte stabiliscono una limitazione
Fisica 1 Anno Accademico 2011/2012
Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (4 Giugno - 8 Giugno 2012) Sintesi Abbiamo formulato il primo principio della termodinamica che regola gli scambi di calore, la
Dalla legge dei gas perfetti si ha il rapporto tra il numero di moli dei due gas R T 1 V 2 P V 1. =n 1. RT 2 =V 2 qundi: n 1 = T 2. =n 2.
Compito intercorso Fisica II ICI 1 giugno 2006 1 Due recipienti uguali, isolati termicamente dall'ambiente esterno, sono connessi da un condotto con un rubinetto, inizialmente chiuso. Uno dei recipienti
IL CICLO DI CARNOT. Scambi di energia durante il ciclo
IL CICLO DI CNO Consideriamo un gas ideale, contenuto nel solito cilindro, che compie un ciclo di 4 trasformazioni reversibili (2 isoterme + 2 adiabatiche) rappresentate nel piano -p come in figura. cambi
COMPITO A. 4) Primo principio della termodinamica per sistemi chiusi ed aperti. 5)Teoremi di Carnot: enunciati ed esempi
COMPITO A 1)In un vaso di alluminio, di massa m1, è contenuta la massa m2 di acqua di cui non si conosce la temperatura. Nell acqua si immerge un pezzo di rame di massa m3, riscaldato a t1 C e con ciò
Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013
Fisica Facoltà di Ingegneria, Architettura e delle Scienze Motorie Lezione 6 maggio 2013 Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano Macchine Termiche Le macchine
Preparazione alle gare di II livello delle Olimpiadi della Fisica
Preparazione alle gare di II livello delle Olimpiadi della Fisica Incontro su temi di termodinamica Giuseppina Rinaudo - Dipartimento di Fisica dell Università di Torino Sommario dei quesiti e problemi
Esercitazione X - Legge dei gas perfetti e trasformazioni
Esercitazione X - Legge dei gas perfetti e trasformazioni termodinamiche Formulario Il primo principio della termodinamica afferma che la variazione dell energia interna di un sistema U è uguale alla somma
Lezione Termodinamica
Lezione Termodinamica 1 Sistemi termodinamici La termodinamica si occupa delle interazioni tra corpi macroscopici che comprendono sia scambi di energia meccanica sia scambi di calore (energia termica),
Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl
SOLUZIONI problemi cap.8 8.1 La pressione del vapore è mantenuta costante. Perciò, la temperatura del vapore rimane costante anche alla temperatura Se si suppone che la trasformazione non implichi irreversibilità
Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica
Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio 1 Definizione di Gas Perfetto Un gas perfetto è un gas ideale il cui comportamento approssima quello dei gas reali a densità
Il primo principio della termodinamica
1 Il primo principio della termodinamica Il primo principio della termodinamica Nelle lezioni precedenti abbiamo visto che per far innalzare la temperatura di un sistema vi sono due possibilità: fornendo
CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica. FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti. Esercitazione del 03/11/2010
CorsI di aurea in Ingegneria Aereospaziale-Meccanica-Energetica FONDAMENTI DI CIMICA Docente: Cristian Gambarotti Esercitazione del // Argomenti della lezione avoro, Calore, Energia Interna, Entalpia relativi
Compito di Fisica Generale I mod. B, Corsi di Laurea in Fisica e in Astronomia, AA 2010/11. Cognome... Nome... Matricola n...
22.06.2011 Compito di Fisica Generale I mod. B, Corsi di Laurea in Fisica e in Astronomia, AA 2010/11 Cognome... Nome... Matricola n... Esercizio 1. Si abbia un recipiente a pareti adiabatiche contenente
Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore
Sistemi termodinamici Sistema: regione dello spazio oggetto delle nostre indagini. Ambiente: tutto ciò che circonda un sistema. Universo: sistema + ambiente Sistema aperto: sistema che consente scambi
CdL Professioni Sanitarie A.A. 2012/2013. Unità 9: Gas e processi di diffusione
L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Gas Unità 9: Gas e processi di diffusione Equazione di stato dei gas perfetti Trasformazioni termodinamiche
Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni).
Gas, liquidi, solidi Tutti i gas raffreddati liquefano Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Sostanza T L ( C) T E ( C) He - -269 H 2-263
La macchina termica. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1
La macchina termica Universita' di Udine 1 La macchina termica Un insieme di trasformazioni che parta da uno stato e vi ritorni costituisce una macchina termica un ciclo termodinamico Universita' di Udine
il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche.
16 Il ciclo di Stirling Il coefficiente di effetto utile per il ciclo frigorifero di Carnot è, in base alla (2.9): T min ɛ =. (2.31) T max T min Il ciclo di Carnot è il ciclo termodinamico che dà il maggior
POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016
POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a. 015-16 I appello, 1 luglio 016 Giustificare le risposte e scrivere in modo chiaro e leggibile. Scrivere in stampatello nome, cognome, matricola
Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA
Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di
Formulario di Termodinamica
Formulario di Termodinamica Punto triplo dell acqua: T triplo = 273.16 K. Conversione tra gradi Celsius e gradi Kelvin (temperatura assoluta): t( C) = T (K) 273.15 Conversione tra Caloria e Joule: 1 cal
PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI)
1 PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI) Qui di seguito viene riportata la risoluzione dei problemi presentati nel file Unità omonimo (enunciati). Si raccomanda di prestare molta attenzione ai ragionamenti
PRIMO PRINCIPIO DELLA TERMODINAMICA SISTEMA
SISTEMA In termodinamica si intende per sistema una qualsiasi porzione della realtà fisica che viene posta come oggetto di studio Possono essere sistemi: una cellula il cilindro di un motore una cella
Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica
Bilancio di energia: il Primo Principio della Termodinamica Termodinamica dell Ingegneria Chimica 1 I Sistemi termodinamici Un sistema è definito da una superficie di controllo, reale o immaginaria, che
SECONDO PRINCIPIO TERMODINAMICA Problemi di Fisica secondo principio termodinamica
SEONO PRINIPIO ERMOINMI Problemi di Fisica secondo principio termodinamica SEONO PRINIPIO ERMOINMI PROEM alcolare il rendimento di una macchina di arnot che lavora fra la temperatura di ebollizione dell'acqua
Termodinamica e termochimica
Termodinamica e termochimica La termodinamica è una scienza che studia proprietà macroscopiche della materia e prevede quali processi chimici e fisici siano possibili, in quali condizioni e con quali energie
Università degli studi di Trento Corso di Laurea in Enologia e Viticoltura. Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica
Università degli studi di Trento Corso di Laurea in Enologia e Viticoltura Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Agrometeorologia 5. Caratteristiche dei moti atmosferici
Fisica per scienze ed ingegneria
Serway, Jewett Fisica per scienze ed ingegneria Capitolo 20 Fino a circa il 1850 su riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell
Figura 1 Trasformazione proibita dal Secondo Principio
ENUNCIATO DEL SECONDO PRINCIPIO DELLA TERMODINAMICA Si dice sorgente di calore o serbatoio di calore alla temperatura θ un corpo che si trovi uniformemente alla temperatura θ e sia in condizioni di scambiare
PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa ; ) Q 2 = Q 1 Q 1. t = dm. dt H; = nrt A ln 4 < 0; R 1 = 3 2 R: C + ln 4 C p = 1
PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa. Il funzionamento di una macchina a vapore puo essere approssimato a quello di una macchina di Carnot, che assorbe calore alla temperatura 2 della
Il principio di equivalenza
1 Il principio di equivalenza Un S.T. di energia interna U può interagire con l ambiente esterno (.E. ) secondo modalità diverse. d esempio : Il S.T. compie un lavoro L ( L > 0 ) sull.e., e riceve d all.e.
Formulario di Fisica Generale I
moto uniformemente accelerato Formulario di Fisica Generale I v(t) = a t + v(0) r(t) = r 0 + v 0 t + 1 at s = v 0 + v(t) moto circolare T = π ω ω = π ν v = πr T = ω R a = v R = ω R moto curvilineo generico
GAS IDEALI E REALI. Prendiamo ora in considerazione un sistema particolare termodinamico: il gas. Un gas è un fluido con le seguenti caratteristiche:
GAS IDEALI E REALI Gas ideale. Prendiamo ora in considerazione un sistema particolare termodinamico: il gas. Un gas è un fluido con le seguenti caratteristiche: - non ha forma, ne volume proprio; - e comprimibile.
Dipendenza dell'energia libera dalla T e P
Dipendenza dell'energia libera dalla T e P G = H - TS essendo H = U + PV G = U + PV - TS Una variazione infinitesima di una o più variabili che definiscono lo stato del sistema determina una variazione
Scritti di Termodinamica dt + R dt T. = cp. = 1.4 = gas biatomico = 78.0 K
Scritti di Termodinamica 2002 2016 (02/07/18) Una mole di gas ideale passa dallo stato A allo stato B con una trasformazione isobara in cui: H = 2269.72 J, U = 1621.23 J, S = 6.931 J/K Determinare i valori
Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013
Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.
Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009
Fisica Generale I (primo e secondo modulo) A.A. 2008-2009, 2 settembre 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale
1 Ripasso di Termodinamica
Definizioni Il gas ideale Il primo principio della termodinamica Espansione libera di un gas ideale Energia interna Calori specifici Trasformazioni adiabatiche Il secondo principio della termodinamica
FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013
FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 1) Un corpo di massa m = 500 g scende lungo un piano scabro, inclinato di un angolo θ = 45. Prosegue poi lungo un tratto orizzontale
IL PRIMO PRINCIPIO DELLA TERMODINAMICA
IL PRIMO PRINCIPIO DELLA TERMODINAMICA T R AT TO DA: I P ro b l e m i D e l l a F i s i c a - C u t n e l l, J o h n s o n, Yo u n g, S t a d l e r Z a n i c h e l l i e d i t o r e Fo n d a m e n t i
TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI
TERMODINAMICA Termodinamica: scienza che studia le proprietà e il comportamento dei sistemi, la loro evoluzione e interazione con l'ambiente esterno che li circonda. Studia le trasformazioni dei sistemi
8 1. Trasformazione AB : ISOBARA 2. Trasformazione BC: ISOCORA 3. Trasformazione CD: ISOBARA 4. Trasformazione DA: ISOCORA. V(l)
ermodinamica Un gas monoatomico compie il ciclo mostrato nella figura sotto, dove le trasformazioni, sono isobare e le trasformazioni e sono isocore. apendo che l, p 8atm, 6 l, p atm. alcolare il rendimento
2) Primo principio della Termodinamica
2) Primo principio della Termodinamica Antefatto: conservazione dell energia dalla descrizione molecolare (secondo la meccanica classica/quantistica) del sistema materiale Energia() = energia cinetica
Temi di termodinamica
Temi di termodinamica Prova scritta del 12/04/1995 Una mole di gas perfetto monoatomico alla temperatura T A =243 K e pressione p A = 2 atm, esegue un ciclo reversibile costituito dalle seguenti trasformazioni:
Lezione di Combustione
Lezione di Combustione Introduzione Da un punto di vista chimico-fisico la combustione è un processo reattivo fortemente esotermico Generalmente le temperature in gioco sono particolarmente elevate e dipendono
CONVENZIONE SUI SEGNI
CONVENZIONE SUI SEGNI Si stabilisce una convenzione sui segni sia per gli scambi di calore che per il lavoro che il sistema compie o subisce L>0: LAVORO COMPIUTO DAL SISTEMA Q>0: CALORE ASSORBITO SISTEMA
ESERCIZI ESERCIZI. 1) L equazione di stato valida per i gas perfetti è: a. PV = costante b. PV = nrt c. PV = znrt d. RT = npv Soluzione
ESERCIZI 1) L equazione di stato valida per i gas perfetti è: a. PV = costante b. PV = nrt c. PV = znrt d. RT = npv 2) In genere, un gas si comporta idealmente: a. ad elevate pressioni e temperature b.
2) Qual' e la massa di 10 litri di azoto alla pressione di 4 atmosfere ed alla temperatura di 30 C? (P.M.=28 g/mole). (R = J/moleK; ) Risp : 45g
Aria : Miscuglio di gas costituito da azoto (75,45% in peso), e ossigeno (23,14% in peso), con una piccola percentuale di gas nobili, anidride carbonica e vapor acqueo. La composizione dell'aria non è
ESERCIZIO (12) ( ) ( ) J ( ) ( )
onsideriamo una mole di gas perfetto monoatomico che compie il ciclo di figura (motore di Stirling), composto da due isoterme ( e ) e ESEIZIO (1) due trasformazioni a volume costante ( e ). alcolare: il
Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti
Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti Problema 1 Un disco omogeneo di massa m=2 kg e raggio R= 0.3 m ruota in un piano orizzontale intorno all asse
Corso di Chimica Fisica A. Prove d esame
Università di Torino Corso di Studi in Chimica - Laurea Triennale A. A. 2006-2007 Corso di Chimica Fisica A Prove d esame Roberto Dovesi Loredana Valenzano 1 CORSO DI LAUREA IN CHIMICA - ANNO ACCADEMICO
FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune
FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 II Compitino 26 Giugno 2014 1) FLUIDI Un bambino trattiene un palloncino, tramite una sottile fune. Il palloncino ha volume V= 5 dm 3. La sua massa, senza il
Lezione 9 Termodinamica
Argomenti della lezione: Lezione 9 Termodinamica introduzione misura della temperatura dilatazione termica calore / capacità termica, calore specifico, calore latente calore e lavoro primo principio della
Il Gas Ideale. Il gas ideale é un'astrazione
Il Gas Ideale a) le particelle sono animate da moto perenne, ed occupano omogeneamente tutto lo spazio a loro disposizione b) il movimento delle particelle è casuale c) le particelle hanno volume proprio
La Termodinamica è la disciplina che si occupa dello studio degli scambi di energia e di materia nei processi fisici e chimici
La Termodinamica è la disciplina che si occupa dello studio degli scambi di energia e di materia nei processi fisici e chimici Materia = tutto ciò che possiede una massa ed occupa uno spazio Energia =
Laurea in Biologia Molecolare. Chimica Fisica. Formulario. Elisabe1a Collini, O1obre 2014
Laurea in Biologia Molecolare Chimica Fisica Formulario Elisabe1a Collini, O1obre 2014 E(T, p, n) E m (T, p) = n Grandezze di stato H =U + pv G = H TS =U + pv TS grandezze molari: E m (T, p) = E(T, p,
dallo stato 1 allo stato 2 è uguale all integrale
Capitolo 13 L entropia 167 QUESITI E PROBLEMI 1 La grandezza fisica entropia può assumere valori solo positivi (vero/falso). Se sono determinati lo stato iniziale e lo stato finale di un sistema fisico,
Termodinamica: introduzione
Termodinamica: introduzione La Termodinamica studia i fenomeni che avvengono nei sistemi in seguito a scambi di calore (energia termica) ed energia meccanica, a livello macroscopico. Qualche concetto rilevante
Lezione 10 Termodinamica
rgomenti della lezione: Lezione 0 ermodinamica relazione di Mayer trasformazioni adiabatiche trasformazioni isoterme macchine termiche ciclo di arnot secondo riiio della termodinamica cenni sull entroia
Dimostrazioni e proposizioni di Fisica Tecnica Silvio Moioli
Dimostrazioni e proposizioni di Fisica Tecnica Silvio Moioli 1 Lavoro di dilatazione in forma integrale Si consideri un ST in espansione: sia P la pressione interna del sistema, Q un punto sulla superficie
I PRINCIPI DELLA TERMODINAMICA
Il diagramma - I RINCII DLLA TRMODINAMICA Un sistema termodinamico è una quantità di materia racchiusa all interno di una superficie chiusa, che può scambiare energia con l ambiente esterno. Lo stato di
Stati della materia. Esempio. Fusione e solidificazione. Esempio. Stati di aggregazione della materia
Stati della materia STATI DI AGGREGAZIONE DELLA MATERIA E GAS PERFETTI Cosa sono gli stati della materia? Gli stati della materia sono come si presenta la materia nell universo fisico e dipendono dalla
Termologia. Paolo Bagnaia - CTF Esercizi di termologia e termodinamica 1
ermologia Paolo Bagnaia - CF - 3 - Esercizi di termologia e termodinamica 1 Esercizio Un cubetto di ghiaccio di 150 g alla temeratura di 0 C è gettato in unreciiente, i che contiene 300 g di acqua alla
3. Le Trasformazioni Termodinamiche
3. Le Trasformazioni Termodinamiche Lo stato termodinamico di un gas (perfetto) è determinato dalle sue variabili di stato: ressione, olume, Temperatura, n moli ffinché esse siano determinate è necessario
Esercizi e Problemi di Termodinamica.
Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene
Trasformazioni termodinamiche: Esercizi svolti
Trasformazioni termodinamiche: Esercizi svolti 9 aprile 2013 Esercizio 1 Si consideri un sistema chiuso in cui si abbia inizialmente aria a 5 C, ad una pressione p 1 = 1 bar, che venga in un secondo momento
L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura
Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica
SCIENZA DEI MATERIALI. Chimica Fisica. VI Lezione. Dr. Fabio Mavelli. Dipartimento di Chimica Università degli Studi di Bari
SCIENZA DEI MATERIALI Chimica Fisica VI Lezione Dr. Fabio Mavelli Dipartimento di Chimica Università degli Studi di Bari Energia Libera di Helmholtz F 2 Definiamo la funzione di stato Energia Libera di
1.Pressione di un Gas
1.Pressione di un Gas Un gas è formato da molecole che si muovono in modo disordinato, urtandosi fra loro e urtando contro le pareti del recipiente che le contiene. Durante gli urti, le molecole esercitano
CORSO DI CHIMICA. Esercitazione del 7 Giugno 2016
CORSO DI CHIMICA Esercitazione del 7 Giugno 2016 25 ml di una miscela di CO e CO 2 diffondono attraverso un foro in 38 s. Un volume uguale di O 2 diffonde nelle stesse condizioni in 34,3 s. Quale è la
Lo stato gassoso e le sue proprietà
Lo stato gassoso e le sue proprietà Dr. Gabriella Giulia Pulcini Ph.D. Student, Development of new approaches to teaching and learning Natural and Environmental Sciences University of Camerino, ITALY 1
