MECCANICA APPLICATA ALLE MACCHINE L
|
|
|
- Vincenzo Marini
- 8 anni fa
- Visualizzazioni
Transcript
1 Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico II OVA IN ITINEE ( ) TESTO e TACCIA di SOLUZIONE u = penultima cifra del numero di Matricola UESITO No. Un corpo di massa m viene fatto salire con velocità uniforme lungo un piano inclinato mediante l applicazione di una forza di cui è nota la direzione. Sono noti la massa m del corpo, il coefficiente di attrito f tra il corpo ed il piano inclinato e l inclinazione del piano inclinato. Determinare: a) l intensità della forza 0 nel caso ideale b) l intensità della forza nel caso reale Dati: m = (0+ u) kg f = (0.5+u/50) θ=75 =0 Dall equilibrio della massa m risulta: θ + ϕ 0 0 θ θ + ϕ θ + ϕ sin Nel caso ideale: 0 = In presenza attrito: sinθ sin = sin ( + ϕ) ( θ + ϕ) C:\users\rivola\Didattic\FOLI\Anno0708\rove_Itinere_MAM\Sol_rova_0.doc
2 UESITO No. Determinare l intensità della forza da applicare nel punto A alla carriola di figura per farla avanzare con moto uniforme. Il peso, comprendente la carriola ed il suo carico, è concentrato nel baricentro G. Si può trascurare l attrito nella coppia rotoidale della ruota, mentre si tenga conto dell attrito volvente tra ruota e terreno attraverso il parametro δ. Dati: = 00 mm δ = 0 mm a = 600 mm b = 400 mm h = 800 mm = u N β K S Alla carriola sono applicate tre forze:. La forza peso.. La reazione S del terreno sulla ruota: di cui è nota la direzione (deve passare per l asse della ruota, poiché si trascura l attrito nella coppia rotoidale, ed è spostata A in avanti rispetto al punto teorico di contatto tra ruota e suolo della quantità δ). 3. La forza applicata in A necessaria per equilibrare la h carriola. er l equilibrio alla rotazione le direzioni delle tre forze devono passare per uno stesso punto K che si determina intersecando le direzioni delle prime due forze. Il modulo e il verso di si trovano annullando la risultante delle tre forze. Costruendo il triangolo di equilibrio e proiettando e sulla normale alla direzione di S si ottiene: sin β δ sin( + β) = sin β = dove β = arctan e = arctan a con sin ( + β) d h UESITO No. 3 Determinare la velocità angolare della ruota 4 del rotismo epicicloidale a lato in cui è nota la velocità del membro. Dati: z = 60+u z = 48 z 3 = 3 z 4 = 8 n = ( u) rpm Applicando la formula di Willis al rotismo ordinario equivalente si ottiene: n4 n 3 τ 0 = = da cui, essendo n =0, si ottiene: n4 = n + n n 4 b + δ d = tan β UESITO No. 4 In un ingranaggio conico gli assi delle due ruote formano tra di loro l angolo γ. Noto l angolo di semiapertura del cono primitivo della ruota e la sua velocità angolare determinare la velocità angolare della ruota. Dati: γ = 70 = (0+u) n = ( u) rpm n sin Il rapporto di trasmissione di un ingranaggio conico vale: τ = = dove = γ -. n sin sin È quindi immediato ricavare la velocità angolare della ruota : n = n sin 3 4 G B a b δ O d β C:\users\rivola\Didattic\FOLI\Anno0708\rove_Itinere_MAM\Sol_rova_0.doc
3 UESITO No. 5 La massa m viene issata con velocità uniforme attraverso la puleggia ad asse mobile di figura. Indicato con δ il parametro dovuto alla rigidea della fune (di natura non elastica) e con ρ il raggio del circolo di attrito della coppia rotoidale, determinare il valore del tiro T da applicare all estremo libero della fune. Dati: δ = mm ρ = mm m = (5+ u) kg = 00 mm Data la natura non elastica della rigidea alla flessione della fune i suoi due rami tendono a disporsi come mostrato in figura. Dall equilibrio alla traslazione della puleggia si ottiene: T + T0 = Considerando che la rotazione della puleggia è oraria il peso sarà tangente a sinistra del circolo di attrito. Dall equilibrio alla rotazione della puleggia si ottiene: δ ρ + + T kt0 con k δ ρ k = = + + T = δ ρ ( + k ) UESITO No. 6 In una coppia rotoidale di spinta il perno è caricato da una forza ed è mantenuto in rotazione uniforme attraverso l applicazione di un momento M m. Conoscendo il coefficiente di attrito f tra i due membri della coppia determinare: a) il valore del carico che la coppia può sopportare; b) il valore massimo della pressione di contatto. Dati: = 50 mm = 50 mm f = 0.3 M m = 0+5 u Nm Applicando al sistema l ipotesi del eye si ottiene: pr = C Dall equilibrio alla traslazione verticale: π π ( ) = p rdr = pr p = πr ( ) Il valore di si ottiene sostituendo l espressione di p nell equazione di equilibrio alla rotazione: + Mm = f da cui: M = m f ( + ) Il valore massimo della pressione di contatto si ha in corrispondenza del raggio : p max = π ( ) C:\users\rivola\Didattic\FOLI\Anno0708\rove_Itinere_MAM\Sol_rova_0.doc 3
4 UESITO No. 7 In una trasmissione a cinghia piatta sono note le velocità dei due rami v e v, il modulo elastico della cinghia, l area della sua sezione trasversale, il raggio della puleggia motrice ed il tiro T del ramo più teso. Determinare l intensità del momento motore M. Dati: v = 0 m/s v = 9.5 m/s E = 0 8 a S = 300 mm T = 00 (0+u) N = ( u) mm er una trasmissione a cinghie vale la seguente relazione tra le velocità dei due rami: v + T/ ES = dalla quale è possibile ricavare il valore T del tiro nel ramo meno teso. v + T / ES Dall equilibrio alla rotazione della puleggia motrice è possibile calcolare il momento motore: M = T T ( ) UESITO No. 8 Nel parallelogramma articolato di figura la manovella O A ruota con velocità angolare costante n. Determinare l intensità della forza che si scarica sul telaio conoscendo la massa m m delle due manovelle e la massa m b della biella. Dati: n = 00 (0 + u) rpm m m = 30 g m b = 00 g O A = O B =00 mm O G = O G = 0 (0 + u/) mm Dato che si tratta di un parallelogramma articolato tutti i punti della biella hanno la stessa accelerazione, cioè il moto della biella è di pura traslazione. In particolare: aa = ab = agb = Ω OA Sulla biella agisce la forza di inerzia: F = ma = m Ω OA, b b Gb b mentre la coppia di inerzia è nulla (la biella trasla). La forza di inerzia che agisce su ciascuna manovella è: F = ma = ma = m Ω OG, m m G m G m mentre la coppia di inerzia è nulla (la velocità angolare è costante). La forza di inerzia che si scarica a telaio è data dalla somma vettoriale delle tre forze di inerzia. Essendo le forze parallele ed equiverse si può semplicemente sommare il loro modulo: Ftelaio = mbω ( OA ) + mmω ( OG ) con Ω= π n rad / s 60 C:\users\rivola\Didattic\FOLI\Anno0708\rove_Itinere_MAM\Sol_rova_0.doc 4
5 Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico II OVA IN ITINEE ( ) ISULTATI penultima cifra matricola uesito a uesito b uesito uesito 3 [rpm] uesito 4 [rpm] penultima cifra matricola uesito 5 uesito 6a uesito 6b [N/m ] uesito 7 [Nm] uesito C:\users\rivola\Didattic\FOLI\Anno0708\rove_Itinere_MAM\Sol_rova_0.doc 5
Fondamenti di Meccanica Esame del
Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.
Meccanica Applicata alle Macchine
Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali
Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU
Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU............ Tempo a disposizione (tre esercizi) 2 ore e 30 1 esercizio (esonero) 1 ora
MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2
MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA.2011-2012 prova del 01-02-2013 Problema N.1 Il sistema meccanico illustrato in figura giace nel piano verticale. L asta AB con baricentro G 2 è incernierata
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
MECCANICA Prof. Roberto Corradi Allievi informatici AA Prova del Problema N.1
MECCANICA Prof. Roberto Corradi Allievi informatici AA.2009-2010 Prova del 29-06-2010 1 Problema N.1 AC=140mm M=0.5 kg J G =0.005 kg m 2 M C =1 kg f d =0.3 v C =10m/s a C =25m/s 2 Il sistema articolato
Meccanica Teorica e Applicata I prova in itinere AA 06-07
I prova in itinere 06-07 Esercizio 1. F p D P E Tracciare i diagrammi delle azioni interne per la struttura rappresentata in figura. D=D=DE==L. Il triangolo F è isoscele rettangolo. Esercizio 2. fs P Q
Attrito statico e attrito dinamico
Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
268 MECCANICA DEL VEICOLO
LISTA SIMBOLI a accelerazione longitudinale veicolo [ms -2 ]; a distanza tra il baricentro e l avantreno veicolo [m]; a parametro caratterizzante la taratura del giunto viscoso; a fm decelerazione veicolo
UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria
UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello DM 509/99 e DM 270/04 e Diploma Universitario)
Corso di Fondamenti di Meccanica - Allievi MECC. II Anno N.O. II prova in itinere del 02/02/2005.
orso di Fondamenti di Meccanica - llievi ME. II nno N.O. II prova in itinere del 02/02/2005. ESERIZIO Del sistema rappresentato in figura sono note geometria, masse e curva caratteristica del motore. J
Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo.
Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. C Si consideri il veicolo rappresentato in figura per il quale valgono le seguenti
VII ESERCITAZIONE - 29 Novembre 2013
VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.
Fisica Generale I (primo modulo) A.A , 9 febbraio 2009
Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in
DINAMICA DI SISTEMI AEROSPAZIALI
DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e
MECCANICA APPLICATA - CdS in Ingegneria Industriale (Lecce) A.A Appello del
Esercizio 2 Per il freno a tamburo riportato in Fig. 2 (le misure sono in mm), nota la forza F agente in D, determinare il momento frenante sul tamburo e la reazione risultante della cerniera fissa O.
Compito di Fisica Generale (Meccanica) 17/01/2013
Compito di Fisica Generale (Meccanica) 17/01/2013 1) Un proiettile massa m è connesso ad una molla di costante elastica k e di lunghezza a riposo nulla. Supponendo che il proiettile venga lanciato a t=0
sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).
ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)
ESERCIZIO 1 (Punti 9)
UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data
j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1).
j B A l 2 1 ω1 r ϑ i Piede di biella Testa di biella Biella Braccio di manovella Siti interessanti sul meccanismo biella-manovella: http://it.wikipedia.org/wiki/meccanismo_biella-manovella http://www.istitutopesenti.it/dipartimenti/meccanica/meccanica/biella.pdf
IV ESERCITAZIONE. Esercizio 1. Soluzione
Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,
Macchina a regime periodico
Macchina a regime periodico rev. 1.2 J m J v τ, η t r φ motore l m F x, ẋ, ẍ (P.M.E.) p m p a Figura 1: Schema dell impianto di pompaggio Della pompa volumetrica a stantuffo a singolo effetto rappresentata
(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )
1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta
Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani
Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il
M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle
6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva
Risoluzione problema 1
UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta
Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto
Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Principi della dinamica. Aspetti generali 1. Un aereo di massa 25. 10 3 kg viaggia orizzontalmente ad una velocità
Compito di Fisica Generale (Meccanica) 25/01/2011
Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida
Lezione VI Cinematica e dinamica del manovellismo. Cinematica e dinamica di un manovellismo ordinario centrato
Cinematica e dinamica di un manovellismo ordinario centrato C x β l α r Definizioni lunghezza della biella raggio di manovella corsa dello stantuffo r posizione dello stantuffo rispetto al PMS α spostamento
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il
Equilibrio di un punto materiale (anelli, giunti ecc.)
Equilibrio di un punto materiale (anelli, giunti ecc.) Per l equilibrio di un punto basta Obiettivo: verificare che Σ F i 0 Determinare le forze trasmesse al nodo da tutti gli elementi concorrenti, e
1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.
Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k
4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];
1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta
approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare
approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m
DINAMICA E STATICA RELATIVA
DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.
Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata)
Esame scritto del corso di Fisica 2 del 2.09.20 Corso di laurea in Informatica A.A. 200-20 (Prof. Anna Sgarlata) COMPITO A Problema n. Un asta pesante di massa m = 6 kg e lunga L= m e incernierata nel
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 01 1) FLUIDI: Un blocchetto di legno (densità 0,75 g/ cm 3 ) di dimensioni esterne (10x0x5)cm 3 è trattenuto mediante una fune
Esercizi sul corpo rigido.
Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:
Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema
Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da
Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.
Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula
CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.
CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito
Lezione VII Calcolo del volano. Forze alterne d inerzia
Lezione VII Forze alterne d inerzia Dalla relazione ( cos cos ) = = ω α + λ α con m a pari alla massa totale del pistone, prima definita, più la massa m 1 che rappresenta quella parte della biella che,
Prova scritta di Meccanica Razionale
Prova scritta di Meccanica Razionale - 0.07.013 ognome e Nome... N. matricola....d.l.: MLT UTLT IVLT MTLT MELT nno di orso: altro FIL 1 Esercizio 1. Nel riferimento cartesiano ortogonale, si consideri
MOTO DI PURO ROTOLAMENTO
MOTO DI PURO ROTOLAMENTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOTO DI PURO ROTOLAMENTO
Prova scritta del corso di Fisica e Fisica 1 con soluzioni
Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato
Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1
Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume
Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1
Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare
Trasmissioni ad ingranaggi
Trasmissioni ad ingranaggi Trasmissioni del moto tra assi paralleli Ruote di frizione La trasmissione del moto on rapporto di trasmissione costante può essere realizzata utilizzando primitive del moto
Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data
CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO VERIFICA DI RIGIDEZZA DI ALBERO
CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO 25-6 VERIFICA DI RIGIDEZZA DI ALBERO E' dato l'albero riportato in Figura, recante all'estermità
Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009
Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito
Esercitazione 6 - Dinamica del punto materiale e. del corpo rigido
Università degli Studi di Bergamo Corso di Laurea in Ingegneria essile Corso di Elementi di Meccanica Esercitazione 6 - Dinamica del punto materiale e Esercizio n. del corpo rigido Studiare la dinamica
Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra
FISICA GENERALE I - Sede di Spezia - Prova A di Meccanica del 15/02/2016 ME 1 Un blocchetto di massa =5.0 è appoggiato sopra una di massa =10 e tra e blocchetto vi è attrito con coefficiente statico =0.90
m = 53, g L = 1,4 m r = 25 cm
Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua
Problemi di dinamica del punto materiale
Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica II parte Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
Esercizi di Statica - Moti Relativi
Esercizio 1 Esercizi di Statica - Moti Relativi Esercitazioni di Fisica LA per ingegneri - A.A. 2004-2005 Un punto materiale di massa m = 0.1 kg (vedi sotto a sinistra)é situato all estremitá di una sbarretta
Costruzione di Macchine Verifica a fatica degli elementi delle macchine
Costruzione di Macchine Verifica a fatica degli elementi delle macchine In figura 1 è rappresentato schematicamente un mescolatore: l albero con la paletta è mosso da un motore elettrico asincrono trifase
Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema.
Esercizio 1. Un sistema materiale è costituito da una lamina piana omogenea di massa M e lato L e da un asta AB di lunghezza l e massa m. La lamina scorre con un lato sull asse x ed è soggetta a una forza
Esercitazioni Fisica Corso di Laurea in Chimica A.A
Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo
PARANCO ELETTRICO. Fig. 1 - Paranco elettrico. Fig.2 - Schema del paranco elettrico - 1
Esercitazioni di Meccanica delle Macchine L -.d.l. Ingegneria Meccanica Università di ologna.. 2003-2004 - Prof. Ing. lberto Maggiore PRNO ELETTRIO Fig. - Paranco elettrico M F R D t motore freno riduttore
Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero
Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente
CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO
LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA
1 Sistemi di riferimento
Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate
ESERCIZI NUMERICI. Esercizio 1
Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Meccanica Progettazione di Sistemi Meccanici (Prof.ssa C. Colombo, Prof. C. Gorla) Appello esame 01.07.2015 ATTENZIONE:
Terzo esercizio. Stimare il coefficiente di attrito radente in funzione di caratteristiche meccaniche dei materiali a contatto.
Esercizi d esame relativi alla prova scritta di esame del Corso di Meccanica applicata alle macchine, per gli allievi iscritti al Corso di Laurea in Ingegneria Aerospaziale (A.A. 2001 / 2002) (Vecchio
2) Calcolare il peso di un corpo di m = 700 Kg e di un camion di 3 tonnellate?
ESERCIZI Dinamica 1) Si consideri un corpo di massa m = 5 Kg fermo soggetto a F = 5 N costante lungo l orizzontale. Ricavare le equazioni del moto e trovare lo spostamento dopo 5 sec. Se la forza ha direzione
UNIVERSITA DEGLI STUDI DI BRESCIA
UNIVERSITA DEGLI STUDI DI BRESCIA ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario) SEZIONE B - Seconda
Meccanica e Macchine esame 2008 MECCANICA APPLICATA E MACCHINE A FLUIDO
Meccanica e Macchine esame 008 MECCANICA APPLICATA E MACCHINE A FLUIDO Sessione ordinaria 008 Lo schema riportato in figura rappresenta un motore elettrico che eroga una potenza nominale di 0 kw ad un
FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013
FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 1) Un corpo di massa m = 500 g scende lungo un piano scabro, inclinato di un angolo θ = 45. Prosegue poi lungo un tratto orizzontale
Lezione 8 Dinamica del corpo rigido
Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della
P: potenza in kw, n: numero di giri R: raggio puleggia in metri B = 1,1 b + 10 mm dove: B: larghezza corona l = B dove l : lunghezza mozzo puleggia
ESERCIZIO Si deve provvedere all accoppiamento, con un riduttore a ruote dentate cilindriche a denti diritti, tra un motore asincrono trifase e un albero, rappresentato nello schema, che a sua volta trasmette
RUOTE DENTATE ELICOIDALI AD ASSI PARALLELI
RUOTE DENTATE ELICOIDALI AD ASSI PARALLELI Non interessa qui trattare del taglio delle ruote dentate elicoidali, basti ricordare che le superfici dei denti sono delle superfici coniugate a evolvente come
POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013
POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.
Equilibrio statico sul piano inclinato
Esperienza 3 Equilibrio statico sul piano inclinato Obiettivi - Comprendere la differenza tra grandezze vettoriali e grandezze scalari attraverso lo studio delle condizioni di equilibrio statico di un
Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h
Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 25 Settembre 2014
OSO DI LAUEA IN SIENZE BIOLOGIHE Prova scritta di FISIA 5 Settembre 4 ) Un corpo puntiforme di massa m5 g appoggia nel punto A su un piano inclinato di 3 ed è trattenuto mediante una fune di tensione T,
Trasmissione del moto: ruote di frizione ruote dentate cinghie
Istituto Istruzione Superiore G. Boris Giuliano" Via Carducci, 13-94015 Piazza Armerina (En) Corso di Tecnologie Meccaniche e Applicazioni Docente: Ing. Filippo Giustra Trasmissione del moto: ruote di
Compito di Fisica Generale (Meccanica) 16/01/2015
Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.
-gdl>gdv il sistema è staticamente labile (trave labile, cioè in grado di muoversi);
Meccanica a trave Trave in equilibrio con due vincoli I gradi di libertà per un corpo sul piano sono 3, mentre quelli di un corpo nello spazio sono 6. Consideriamo un sistema di riferimento formato da:
Alcuni problemi di meccanica
Alcuni problemi di meccanica Giuseppe Dalba Sommario Questi appunti contengono cinque problemi risolti di statica e dinamica del punto materiale e dei corpi rigidi. Gli ultimi quattro problemi sono stati
Errata Corrige. Quesiti di Fisica Generale
1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010
STATICA FORZE NEL PIANO
MECCANICA E MACCHINE I MODULO - Capitolo Statica Forze nel piano Capitolo STATICA FORZE NEL PIANO Esercizio : Due forze, F = 330 N e F 2 = 250 N, sono applicate nel punto A e formano tra loro l'angolo
Compito di Fisica Generale (Meccanica) 13/01/2014
Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella
Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):
Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le
Dinamica del punto materiale
Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica
ESERCIZI SULLA DINAMICA DI CORPI RIGIDI:
ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: risoluzione mediante le euazioni cardinali della dinamica Esercizio n.11 Siadatounpianoinclinatofisso e posto in un piano verticale. Su di esso rotola senza strisciare
Meccanica Teorica e Applicata I prova in itinere AA A
I prova in itinere 07-08 Esercizio 1. D P E C p Determinare le azioni interne nella struttura rappresentata in figura. CE=CD=C=L. EÂ=45. P=pL Esercizio 2 M Q, R fs M, r Trascurando la presenza di attrito
Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto
Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problema n. 1: Un carro armato, posto in quiete su un piano orizzontale, spara una granata
Esercitazione VI - Leggi della dinamica III
Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando
PROBLEMA N.2 Il motorino elettrico
PROBLEMA N.2 Il motorino elettrico Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della dinamica in presenza
A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1
Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni
