CORSO DI LOGICA. (Ing. Remigio Sciarra)
|
|
|
- Luigina Morelli
- 6 anni fa
- Visualizzazioni
Transcript
1 CORSO DI LOGICA (Ing. Remigio Sciarra)
2 CALCOLO COMBINATORIO Premessa Il calcolo combinatorio studia i raggruppamenti che si possono ottenere con un dato numero di n oggetti disposti su un dato numero k di posti. I raggruppamenti si possono formare senza ripetizioni o con ripetizioni degli oggetti.!2
3 CALCOLO COMBINATORIO Ad esempio, in un problema in cui si chiede di calcolare in quanti modi 7 alunni possono sedersi su 5 sedie, gli n oggetti sono i 7 alunni, il numero k di posti sono le 5 sedie e non c è ripetizione di oggetti poiché gli alunni sono tutti diversi. Ancora, in un problema in cui si chiede di calcolare in quanti modi si possono collocare 10 palline di cui 3 bianche, 3 rosse e 4 verdi, in 3 scatole, gli n oggetti sono le 10 palline, il numero k di posti sono le 3 scatole e c è ripetizione di oggetti poiché di palline ce ne sono 3 bianche, 3 rosse e 4 verdi.!3
4 PERMUTAZIONI Sono i raggruppamenti realizzati quando il numero di oggetti è uguale al numero di posti e conta l ordine con cui si dispongono. Le permutazioni possono essere senza ripetizioni di oggetti o con ripetizione di oggetti. Es. Permutazioni senza ripetizioni. Quante parole (anche senza senso) si possono formare con la parola LIBRO? n=5 K=5 Conta l ordine!!4
5 PERMUTAZIONI Si applica la formula delle Permutazioni senza ripetizione di oggetti: Pn = n! P5 = 5! = = 120!5
6 PERMUTAZIONI Es. Permutazioni CON ripetizioni. Quanti anagrammi possiamo ottenere con la parola MAMMA? n=5 K=5 Conta l ordine! Ci sono lettere che si ripetono: M si ripete 3 volte r 1 = 3 A si ripete 2 volte r 2 = 2!6
7 PERMUTAZIONI Riassumendo:!7
8 ESERCIZI Es. In quanti modi, lanciando consecutivamente per 6 volte una moneta, possono uscire 2 teste e 4 croci?!8
9 DISPOSIZIONI Sono i raggruppamenti realizzati quando il numero di oggetti è DIVERSO dal numero di POSTI e conta l ordine con cui si dispongono. Le disposizioni possono essere senza ripetizioni di oggetti o con ripetizione di oggetti. Es. Disposizioni senza ripetizioni. In quanti modi diversi 5 alunni si possono sedere su 3 sedie numerate? n=5 K=3 Conta l ordine!!9
10 DISPOSIZIONI!10
11 DISPOSIZIONI Es. Disposizioni senza ripetizioni. In quanti modi si possono accostare 7 palline in gruppi da 4? n=7 K=4 Conta l ordine! D n,k =?!11
12 DISPOSIZIONI Es. Disposizioni CON ripetizioni. Utilizzando le cifre 1, 2, 3 quanti numeri di 4 cifre si possono formare? n=3 K=4 Conta l ordine!!12
13 DISPOSIZIONI!13
14 ESERCIZI!14
15 ESERCIZI!15
16 DISPOSIZIONI Riassumendo:!16
17 COMBINAZIONI Sono i raggruppamenti realizzati quando il numero di oggetti è diverso dal numero di posti e non conta l ordine con cui si dispongono. Le combinazioni possono essere senza ripetizioni di oggetti o con ripetizione di oggetti. Es. Combinazioni senza ripetizioni. Un negoziante vuole esporre in una piccola vetrina 4 paia di scarpe scelte tra 10 modelli diversi. In quanti modi si possono esporre le scarpe all interno della vetrina? NON Conta l ordine!!17
18 COMBINAZIONI!18
19 ESERCIZI!19
20 COMBINAZIONI Es. Combinazioni CON ripetizioni. Assegnati due contagocce, il primo contenente 5 gocce di colore bianco ed il secondo 5 gocce di colore nero. Mischiando tra loro 5 gocce scelte tra i due colori, quanti colori diversi si possono formare? NON Conta l ordine! n = 2 K = 5!20
21 COMBINAZIONI!21
22 COMBINAZIONI Riassumendo:!22
23 PERMUTAZIONI, DISPOSIZIONI, COMBINAZIONI!23
24 PERMUTAZIONI, DISPOSIZIONI, COMBINAZIONI!24
25 PERMUTAZIONI, DISPOSIZIONI, COMBINAZIONI!25
26 PERMUTAZIONI, DISPOSIZIONI, COMBINAZIONI!26
27 PERMUTAZIONI, DISPOSIZIONI, COMBINAZIONI!27
Esercizi Svolti Lezione 2
Esercizi Svolti Lezione 2 Università Mediterranea di Reggio Calabria Disposizioni D n,k (orinate, senza ripetizione) n 1 e 1 k n k¹ i1 n i 1 npn 1q pn k 1q n! pn kq! Le permutazioni sono un caso particolare
CALCOLO CALCOL COMBINATORIO COMBINAT
CALCOLO COMBINATORIO INDICE Che cos è il calcolo combinatorio? Concetto di raggruppamenti semplici e di raggruppamenti con ripetizione Disposizioni Combinazioni Permutazioni PROBLEMI 1. In quanti modi
IL CALCOLO COMBINATORIO:
1 IL CALCOLO COMBINATORIO: l arte di contare Il calcolo combinatorio permette di stabilire, ad esempio, quanti sono gli anagrammi di una parola, in quanti modi si possono sedere dieci amici attorno a un
ESERCITAZIONI CALCOLO COMBINATORIO
ESERCITAZIONI CALCOLO COMBINATORIO Esercizio 1 (C) La Quinella all ippodromo del luogo consiste nell indicare i cavalli che si classificheranno primo e secondo in una corsa senza riguardo all ordine. Se
CALCOLO COMBINATORIO
CALCOLO COMBINATORIO CHE COS E? Il calcolo combinatorio è un particolare ramo della matematica applicata avente come scopo la misurazione del numero di raggruppamenti diversi che si possono comporre prendendo
Elementi. di Calcolo Combinatorio. Paola Giacconi
Elementi di Calcolo Combinatorio di Paola Giacconi Premessa Con la Meccanica Quantistica Il concetto di probabilità è entrato a fare parte integrante della FISICA e quindi della nostra vita La visione
ESERCIZI DI CALCOLO COMBINATORIO
ESERCIZI DI CALCOLO COMBINATORIO (G.T.Bagni) Sintesi delle nozioni teoriche da utilizzare a) Dati n elementi e k n, si dicono disposizioni semplici di n elementi di classe k tutti i raggruppamenti ottenuti
Calcolo combinatorio
Fondamenti di Informatica per la Sicurezza a.a. 2007/08 Calcolo combinatorio Stefano Ferrari UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI TECNOLOGIE DELL INFORMAZIONE Stefano Ferrari Università degli
Elementi di Calcolo Combinatorio. Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n.
1 Elementi di Calcolo Combinatorio Def.: Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n. ( n 1)... 3 2 1 P n n In quanti modi diversi si possono disporre
Calcolo combinatorio
Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Calcolo combinatorio Ines Campa Probabilità e Statistica - Esercitazioni
Combinatoria. Lezione del 12/02/2014. Stage di Parma Progetto Olimpiadi
Combinatoria Lezione del 12/02/2014 Stage di Parma Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di tartaglia
Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo
Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano
Raggruppamenti. Esercizio 1
Raggruppamenti Nelle prossime lezioni ci occuperemo delle basi del calcolo combinatorio. Per semplicità partiremo da un esercizio e poi analizzeremo il caso generale con la definizione e la formula da
Combinatoria. Lezione del 04/01/2010. Stage di Terni Progetto Olimpiadi
Combinatoria Lezione del 04/01/2010 Stage di Terni Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di tartaglia
MINIGUIDA LOGICA AL CALCOLO COMBINATORIO
MINIGUIDA LOGICA AL CALCOLO COMBINATORIO www.logicamente.cloud LOGICAMENTE Cosa dobbiamo fare? Per risolvere gli esercizi relativi al calcolo combinatorio dobbiamo: Sapere eseguire un calcolo fattoriale;
Calcolo combinatorio
Probabilità e Statistica a.a. 2016/2017 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Meccanica e dei Materiali, Ingegneria Gestionale, Ingegneria Informatica C.d.L.: Ingegneria Elettronica
«l arte di contare senza contare»
«l arte di contare senza contare» Numero di oggetti disponibili Numero di oggetti che costituiscono una sola estrazione Regole per costruire le estrazioni: se si possono utilizzare tutti gli oggetti o
Miniguida logica al calcolo combinatorio LOGICAMENTE
LOGICAMENTE Cosa dobbiamo fare? Per risolvere gli esercizi relativi al calcolo combinatorio dobbiamo: Sapere eseguire un calcolo fattoriale; Sapere distinguere fra combinazioni e disposizioni; Saper distinguere
In una scuola di ballo sono iscritte dodici donne e sette uomini. Quante sono le possibili coppie che si possono formare [84]
Abbiamo cinque palline nere numerate da 1 a 5 e tre palline bianche numerate da 1 a 3. Quante coppie di palline una 1 nera ed una bianca entrambe dispari possiamo formare? [6] 2 In una scuola di ballo
CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica
) Un urna contiene 0 palline numerate da a 0. Si calcoli la probabilità che: a) estraendo successivamente palline, rimettendo ogni volta la pallina estratta nell urna, si abbiano due numeri primi; b) estraendo
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio
Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli
Mappe concettuali. 1 Calcolo combinatorio. Le domande più importanti della vita sono, per la gran parte, davvero soltanto problemi di probabilità.
Le domande più importanti della vita sono, per la gran parte, davvero soltanto problemi di probabilità. La probabilità è ormai entrata a far parte della vita di ognuno. Inconsapevolmente viene citata nei
ESERCIZI. MATEM A T i A
MATEM A T i A C Il calcolo della probabilità Caterina osserva Andrea che estrae, a occhi chiusi, una pallina colorata da un sacchetto dove ci sono 8 palline verdi e 2 palline gialle. PROA Completa le frasi
Esercizi di Calcolo combinatorio: disposizioni
Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli
Combinatoria. Lezione del 16/12/2009. Stage di Treviso Progetto Olimpiadi
Combinatoria Lezione del 16/12/2009 Stage di Treviso Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di
ELEMENTI DI PROBABILITA (parte 2) 1 / 27
ELEMENTI DI PROBABILITA (parte 2) 1 / 27 Combinazioni 2 / 27 Supponiamo di non essere interessati all ordine in cui sono disposti gli oggetti, per cui la parola abc sia indistinguibile dalla parola bca.
Calcolo combinatorio
Probabilità e Statistica a.a. 2017/2018 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Calcolo combinatorio Marco Pietro Longhi Probabilità e Statistica - a.a. 2017/2018
Cenni di analisi combinatoria
Cenni di analisi combinatoria In molti problemi concreti di teoria della probabilità e, in particolare, nell ambito della interpretazione classica occorre calcolare quanti sono gli esiti che compongono
Rispondere in modo conciso ai seguenti quesiti nelle apposite caselle. 1
Liceo Scientifico L. Cremona TEST DI MATEMATICA. Combinatoria. Classe: Docente: M. Saita Cognome: Nome: Maggio 2015 Rispondere in modo conciso ai seguenti quesiti nelle apposite caselle. 1 Esercizio 1.
Probabilità e Statistica
Corso PON Competenze per lo sviluppo Liceo Scientifico "Bonaventura Rescigno Ing. Ivano Coccorullo Prof.ssa Angela D Ambrosio Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici
Introduzione. 1.Palline e Scatole Distinguibili
Introduzione L argomento è semplice, quasi infantile: abbiamo a disposizione un certo numero di palline da disporre in un insieme di scatole e ci chiediamo quanti modi ci sono per farlo. Affronteremo il
ESERCIZI SUL CALCOLO COMBINATORIO
ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUPPARE E CALCOLARE LE SEGUENTI ESPRESSIONI : numero esercizio risoluzione 1) D 3, ) P 4 3) P 6 3 4) 3,3 P 6 5) D ' 3, 6) C 4, 7) C n, n 8) D + D' C 4, 3, 3 3, 9)
Test di Matematica di base
Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo
PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96
QUESITI 1 PROBABILITÀ 1. (Da Medicina e Odontoiatria 2015) La probabilità con cui un paziente deve attendere meno di dieci minuti il proprio turno in un ambulatorio medico è 0,8. Qual è la probabilità
Corso di probabilità e statistica
Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof.ssa L.Morato) Esercizi Parte I: probabilità classica e probabilità combinatoria,
Calcolo combinatorio
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio
La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio Massimo Buzzi, Lucio Alberto Monti 1 Mappe Riassuntive 1.1 Calcolo combinatorio 1.2 Probabilità 1 2 Glossario
RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10
RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUARE E CALCOLARE LE SEGUENTI ESRESSIONI : numero esercizio risoluzione 1) D 3, 2 3 2 6 2) 4 3) 6 3 4! 4 3 24 6! 6 5 4 3 120 3! 3 4) 3,3 6 6! 6 5 4 3
Il calcolo combinatorio
Il calcolo combinatorio Per "calcolo combinatorio" (C.C.) si intende una branca della matematica che studia i modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l'obiettivo finale
Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.
CALCOLO COMBINATORIO Ad una gara partecipano 20 concorrenti; quanti terne di primi tre classificati si possono formare? (nell'ipotesi che non vi siano degli ex aequo) [6.840] Nelle ipotesi del precedente
Il Calcolo combinatorio.
Il Calcolo combinatorio. 1) Disporre persone. a) Andrea e Bea frequentano la stessa classe e sono vicini di banco. Sapendo che i banchi sono posizionati due a due, in quali e quanti modi possono disporsi?....
Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com
Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi
P (A) = P (B) = P (A ^ B) = P (A _ B) = P (A _ A c B)= P ([A _ B] ^ [A c _ B c ]) =
Esercizio 7 2 Un esperimento consiste nel lanciare una moneta e nell estrarre una pallina da un urna contenente 4 palline numerate da 1 a 4. Consideriamo gli eventi: A = Esce Testa, B = Si estrae la pallina
COMBINATORIA E PROBABILITA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO COMBINATORIA E PROBABILITA CALCOLO COMBINATORIO Il Calcolo Combinatorio è lo studio dei
DISTRIBUZIONI DI OGGETTI DISTINTI
DISTRIBUZIONI Pagina 1 DISTRIBUZIONI DI OGGETTI DISTINTI 12:09 r oggetti distinti, n scatole distinte # distribuzioni di r oggetti distinti in n scatole distinte # stringhe di lunghezza r i cui elementi
Calcolo Combinatorio e Probabilità
Calcolo Combinatorio e Probabilità Andrea Galasso 1 Calcolo Combinatorio Definizione 1 Fissati n, k N, con k n, indicheremo con D n,k := n! (n k)! le disposizioni di n oggetti in k posti e con DR n,k :=
combiniamo le lettere, ciascuna presa una sola volta per formare parole di n lettere;
CALCOLO COMBINATORIO Il calcolo combinatorio si occupa di contare i raggruppamenti che si possono fare con n oggetti di un insieme finito, secondo determinate regole. Vediamo di seguito come, a seconda
APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15
APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15 Elementi di calcolo combinatorio. Primi elementi di probabilita: denizioni
Esercizi di Probabilità - Matematica Applicata a. a Doriano Benedetti
Esercizi di Probabilità - Matematica Applicata a. a. 01-014 Doriano Benedetti 6 marzo 014 1 Esercizio 1 In quanti modi diversi si può vestire una persona che possiede 10 abiti, paia di scarpe e cappelli?
Calcolo combinatorio - Quesiti esame di stato
Calcolo combinatorio - Quesiti esame di stato 1. Nello sviluppo di 2 a 2 3b 3 n compare il termine 1080 a 4 b 9. Qual è il valore di n? [Q3 2014] 2. Con le cifre da 1 a 7 è possibile formare 7!=5040 numeri
Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità
Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare
Soluzioni degli esercizi
.4 Esercizi 9 (a) Il barista non ricorda chi ha ordinato una data bevanda: in quanti modi può distribuire le bibite se hanno ordinato uno Spritz, 2 un Chinotto, 2 una Gassosa, del Prosecco e 4 persone
PREREQUISITI MATEMATICI TEORICI DI BASE PER LA PSICOMETRIA
PREREQUISITI MATEMATICI TEORICI DI BASE PER LA PSICOMETRIA INTRODUZIONE ALLO STUDIO Nell ambito di un progetto di ricerca dell Università di Cagliari riguardante i prerequisiti teorici matematici di base
Elementi di Analisi Combinatoria
Elementi di Analisi Combinatoria Angelica Malaspina Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata, Italy [email protected] Lo studio dei vari raggruppamenti
CALCOLO COMBINATORIO. Psicometria 1 - Lezione 5 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek
CALCOLO COMBINATORIO Psicometria 1 - Lezione 5 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek 1 Il problema del calcolo combinatorio è stabilire in quanti modi diversi una sequenza di eventi
.. x n k. n 1 x n 2. La differenza fra i due casi precedenti sta nella possibilità di ripetere oppure no una stessa scelta.
Calcolo combinatorio Problema Quante parole di 3 lettere si possono scrivere utilizzando solo le 4 lettere a, b, c, d? Soluzione: scriviamole tutte e poi le contiamo Esercizio 2 Quante sono le parole di
Modulo 9: Combinatoria III
Modulo 9: Combinatoria III Ambo secco su una ruota Un ambo secco si realizza quando si giocano due numeri su una ruota e vengono estratti esattamente quei due numeri su quella ruota. 2 / Bet on Math: un
Preparazione all esame in italiano del ALGEBRA -
TEST PSICOMETRICO Preparazione all esame in italiano del 2014 - - Febbraio Marzo 2014 Docente: Giacomo Sassun E-mail: [email protected] [email protected] Realizzato grazie al contributo dell UNIONE DELLE
PROBLEMI DI CALCOLO COMBINATORIO
PROBLEMI DI CALCOLO COMBINATORIO Vediamo come fare per risolvere un qualsiasi problema di Calcolo Combinatorio e, soprattutto, come si fa a capire se usare permutazioni, disposizioni o combinazioni, semplici
ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina?
ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? [4/52] 2. Estratta una Q, P che ad una seconda estrazione si presenti ancora
PROBABILITÁ e CALCOLO COMBINATORIO
PROBABILITÁ e CALCOLO COMBINATORIO Prof. Enrico Terrone A. S: 2008/09 Probabilità e calcolo combinatorio Abbiamo visto la definizione classica di probabilità: probabilità dell evento = (casi favorevoli)
IL CALCOLO DELLA PROBABILITÀ
IL LOLO LL PROILITÀ 1 Una scatola contiene quattro dischetti rossi numerati da 1 a 4, sei dischetti verdi numerati da 1 a e cinque dischetti bianchi numerati da 1 a 5. Si estrae un dischetto. Scrivi gli
Calcolo delle Probabilità
Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosiddette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello
Salto in alto.. Oltre le formule
Salto in alto.. Oltre le formule Corso PON Competenze per lo sviluppo Liceo Scientifico "Bonaventura Rescigno Ing. Ivano Coccorullo Prof.ssa Elisa Salvati Olimpiadi della Matematica Tematiche delle Olimpiadi
(5 sin x + 4 cos x)dx [9]
FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN SCIENZE NATURALI II Modulo di Matematica con elementi di statistica. Esercitazioni A.A. 009.00. Tutor: Mauro Soro, [email protected] Integrali definiti Risolvere
In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.
Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più
Matematica con elementi di statistica ESERCIZI: probabilità
Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.
4.3 Esercizi. (a) Qual è il numero massimo di cesti distinti che può formare?
4.3 Esercizi Esercizio 4.1 Un pasticcere prepara dei cesti di 6 ovetti di cioccolato; questi possono avere la carta che li confeziona di 5 colori: Blu, Verde, Rossa, Bianca, Gialla. L ordine con cui sono
Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo
Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: [email protected]
