MECCANICA DI BASE DELLE TRASMISSIONI
|
|
|
- Giorgia Nicoletti
- 9 anni fa
- Visualizzazioni
Transcript
1 MECCANICA DI BASE DELLE
2 INDICE LA TRASMISSIONE DEL MOTO DAL MOTORE ALLE RUOTE... 4 SPINTA MOTRICE DEL VEICOLO... 6 CARATTERISTICHE DEL MOTORE... 6 FUNZIONAMENTO DEL MOTORE... 8 TRASMISSIONE DELLA POTENZA ALLE RUOTE... 9 RESISTENZA AL MOTO DELL AUTOVEICOLO FORZA DI INERZIA E MOMENTI DI INERZIA RESISTENZA AL ROTOLAMENTO RESISTENZA DEGLI ATTRITI INTERNI RESISTENZA AERODINAMICA RESISTENZA ALLA MARCIA IN SALITA RENDIMENTO DELLA TRASMISSIONE POTENZA NECESSARIA AL MOTO CARATTERISTICHE DELLE RUOTE DENTATE RUOTE DENTATE CILINDRICHE A DENTI ELICOIDALI TIPOLOGIA DI AD INGRANAGGI FORZE SCAMBIATE TRA I DENTI CICLO DI LAVORAZIONE INGRANAGGI ROTISMI ROTISMI EPICICLOIDALI RAPPORTO DI TRASMISSIONE CUSCINETTI CRITERI DI SCELTA DEI CUSCINETTI ALTRI TIPI DI CARICHI GIOCHI BLOCCAGGIO DEI CUSCINETTI MONTAGGIO DEI CUSCINETTI RADIALI ASSIALI LUBRIFICAZIONE DEI CUSCINETTI TIPOLOGIE DI GRASSI SCELTA DEL GRASSO VOLANO FRIZIONE CAMBIO ALBERO DI TRASMISSIONE GIUNTI PONTE ANTERIORE COMPONENTI DEL PONTE ANTERIORE PONTE POSTERIORE I DIFFERENZIALI BLOCCABILI Giunto viscoso (Ferguson) Differenziale Torsen Q LA TRAZIONE INTEGRALE: CENNI STORICI TRAZIONE ANTERIORE, POSTERIORE, INTEGRALE Trazione anteriore Trazione posteriore Trazione integrale Trazione integrale inseribile e permanente DIFFERENZIALI APERTI Differenziale aperto (open) Marcia rettilinea con uguali condizioni di aderenza UTILIZZO DEI DIFFERENZIALI BLOCCABILI DIFFERENZIALI TORSEN Torsen A Torsen B Torsen C APPLICAZIONE DELL ELETTRONICA Applicazione dell elettronica Frizioni Haldex
3 SCHEMI DI TRAZIONI INTEGRALI NUOVA PANDA 4X Generalita Coppia motrice ed aderenza La trazione integrale Trazione integrale permanente Trazione integrale inseribile Trasmissione del moto Presa di forza e gruppo di rinvio Albero di trasmissione Giunto viscoso Differenziale posteriore Sistema antibloccaggio in decelerazione (MSR) Complessivo trazione integrale panda 4x Descrizione Complessivo differenziale anteriore e coppia conica ( PTU) FIAT SEDICI Cambio Gruppo di rinvio Albero di trasmissione Giunto elettromagnetico Differenziale posteriore Dinamica della vettura FIAT SEDICI GESTIONE ELETTRONICA 4WD Descrizione generale Schema del circuito Connettore della centralina elettronica del Nodo 4WD Accesso al deviatore (interruttore) di comando Controllo funzionamento verifica Interruttore 2WD/4WD Controllo funzionamento del sensore temperatura interna del giunto Funzionamento dell interruttore 2WD/4WD Modalità di trazione Funzionamento dell indicatore AUTO/LOCK Funzionamento dell EMCD Segnali di ingresso e di uscita Caratteristiche dell EMCD Regolazione della corrente massima Diagnosi strumentale TRAZIONE INTEGRALE ALFA 156 CROSSWAGON Q4 E ALFA 156 SPORTWAGON Q Descrizione Percentuale di bloccaggio e ripartizione della coppia asse anteriore / posteriore Tiro Rilascio Funzionamento del differenziale epicicloidale Torsen tipo C Gruppo differenziale anteriore e coppia conica (PTU, Power Trasmission Unit) Revisione del gruppo differenziale anteriore e coppia conica (PTU, Power Trasmission Unit ) Torque tube Gruppo coppia conica e differenziale posteriore ( RDA, Rear Differential Axel) Revisione gruppo coppia conica e differenziale posteriore (RDA, Rear Differential Axel) DIAGNOSI DEGLI INCONVENIENTI PNEUMATICI ED ASSETTO RUOTE LA RUOTA IL PNEUMATICO
4 LA TRASMISSIONE DEL MOTO DAL MOTORE ALLE RUOTE PREMESSA: il moto dell autoveicolo si basa sulla spinta all asse delle ruote motrici generata per aderenza delle medesime al suolo. Tale spinta, in marcia avanti o in retromarcia, secondo il verso della coppia motrice alle ruote, è la risultante delle azioni che si sviluppano tra ruota e strada. Nel caso delle automobili le ruote motrici appartengono allo stesso asse e sono disposte in modo simmetrico rispetto al piano simmetrico del veicolo. La spinta risultante sul veicolo deve risultare applicata nel piano di mezzeria, altrimenti si richiederebbero al conducente delle azioni correttive di guida. L azione motrice deve essere egualmente ripartita su entrambe le ruote motrici dello stesso asse. LA TRASMISSIONE : il concetto di trasmissione rappresenta l insieme degli organi e dei sistemi che hanno lo scopo di trasmettere dal motore alle ruote la coppia motrice necessaria al movimento dell autoveicolo. In pratica si tratta di organi, collegati tra loro, in grado di trasmettere alle ruote la coppia motrice in funzione delle condizioni di marcia e delle caratteristiche del motore. Nel caso di un veicolo con motore anteriore e trazione anteriore, gli organi della trasmissione a partire dal motore sono: innesto a frizione; cambio di velocità; differenziale; semiassi (o semialberi); mozzi ruote. Nel caso di un veicolo con motore anteriore e trazione posteriore, gli organi della trasmissione a partire dal motore sono: innesto a frizione; cambio di velocità; giunti elastici o cardanici;
5 albero di trasmissione; coppia conica di riduzione; differenziale; semiassi (o semialberi); mozzi ruote.
6 SPINTA MOTRICE DEL VEICOLO Per realizzare il moto del veicolo è necessario vincere un insieme di resistenze variabili nella tipologia e nell intensità. In pratica considerando di mettere in movimento un autoveicolo, partendo dal suo stato di fermo, si incontreranno le seguenti principali resistenze al moto: FORZE E MOMENTI DI INERZIA; RESISTENZA AL ROTOLAMENTO; RESISTENZA DEGLI ATTRITI INTERNI; RESISTENZA AERODINAMICA; RESISTENZA DOVUTA ALLE PENDENZE STRADALI. Il marcato carattere di variabilità di queste resistenze durante il moto di un autoveicolo, si traduce nell esigenza di trasmettere alle ruote una coppia motrice di intensità variabile nel tempo, secondo i bisogni dell insieme delle forze resistenti. Le condizioni limiti della spinta motrice di un veicolo dipendono principalmente dal coefficiente di aderenza delle ruote motrici. Naturalmente il sistema motore trasmissione deve essere in grado di utilizzare l aderenza disponibile alle ruote. CARATTERISTICHE DEL MOTORE
7 Le prestazioni del motore vengono rilevate mediante prove al banco con funzionamento nel suo intero campo di utilizzo. I risultati di tali prove sono rappresentati dalle curve caratteristiche, ottenute a pieno carico in funzione del numero di giri, della coppia motrice, della potenza e del consumo specifico. Le curve di potenza e di coppia illustrate sono ottenute a motore rodato (50 ore di funzionamento) senza ventilatore con silenziatore di scarico e filtro aria, a livello del mare.
8 FUNZIONAMENTO DEL MOTORE A. area positiva della potenza motrice; B. area negativa della potenza frenante. Nelle curve caratteristiche del motore si distinguono quattro particolari condizioni: 1. il funzionamento al minimo, ossia quando il motore eroga la potenza sufficiente per comandare gli accessori; 2. funzionamento con coppia massima, generalmente questa condizione corrisponde al campo di funzionamento con maggior rendimento energetico; 3. funzionamento con massima potenza, corrisponde alle migliori prestazioni complessive ed in particolare di velocità; 4. funzionamento al massimo numero di giri, è caratterizzato dall inizio della caduta delle prestazioni in termini di potenza e soprattutto di rendimento, per cui oltre tale limite è sconveniente.
9 TRASMISSIONE DELLA POTENZA ALLE RUOTE i rappresenta in % la pendenza della strada; D rappresenta la massima velocità prevista, con pendenza della strada 0%. Il principale metodo di regolazione della potenza trasmessa alle ruote si ottiene mediante la variazione di carico al motore, intervenendo sulla posizione dell acceleratore. La trasmissione a sua volta, mediante il cambio di velocità, consente di avere la potenza massima disponibile alle ruote motrici per diversi valori di velocità del veicolo. A tale scopo sono determinanti il numero delle marce ed i rispettivi rapporti di trasmissione. Nella figura sopra riportata vengono messe a confronto le diverse curve di potenza trasmissibili ottenute alle diverse marce in avanti del cambio di velocità.
10 RESISTENZA AL MOTO DELL AUTOVEICOLO FORZA DI INERZIA E MOMENTI DI INERZIA Partecipano alla determinazione delle forze d inerzia durante il moto di accelerazione o decelerazione, tutte le masse traslate del veicolo, secondo la relazione: F i = - m a [ N ] Le masse che subiscono un accelerazione (positiva o negativa) durante il loro moto di rotazione intorno ad un asse, generano una coppia resistente data dal prodotto del momento di inerzia I per l accelerazione angolare : M i = - I [ N m ] In figura viene illustrato l accelerazione massima in funzione della velocità di un veicolo dotato di un cambio di velocità a quattro marce in avanti.
11 RESISTENZA AL ROTOLAMENTO Considerando il veicolo in condizioni di moto uniforme, il rotolamento del pneumatico sulla strada comporta una complessiva resistenza al moto che dipende principalmente dal pneumatico e dalle condizioni dinamiche agenti su di esso. Tale resistenza assume la denominazione di resistenza al rotolamento ; essa è dovuta maggiormente all isteresi del materiale costituente il pneumatico ed in piccola parte alle resistenze di tipo aerodinamiche sulla ruota, agli strisciamenti (piccoli) che si verificano nella zona di aderenza tra pneumatico e strada ed all attrito del perno. Questo tipo di resistenza è presente su tutte le ruote ed aumenta col crescere della deformazione della ruota sulla strada sotto l azione statica del carico. Quindi aumentando il carico sugli assi delle ruote aumenta sia l aderenza sia la resistenza al rotolamento, come è facile verificare per il traino di un asse (carico / scarico) con le ruote folli. In pratica la resistenza al rotolamento si può rappresentare mediante la relazione: F R = - f P i [ N ]; dove: f è analogo al coefficiente di attrito ed è ricavato per via sperimentale, dipende dalla pressione di gonfiaggio, dalla velocità, dal raggio della ruota, dall area di contatto con il suolo, dal peso sulla ruota, dal tipo di struttura del pneumatico dal materiale che la costituisce, dalla natura e dalle condizioni della strada ecc. In particolare f cresce con la velocità, all inizio molto lentamente ma, raggiunti determinati valori di velocità, cresce molto rapidamente al punto da rendere sconveniente e naturalmente anche pericoloso il suo utilizzo in questo campo. P i è il la forza agente sull asse della ruota.
12 RESISTENZA DEGLI ATTRITI INTERNI Si considerano come resistenze dovute agli attriti quelle interne ai gruppi o componenti contenenti gli organi mobili o comunque in moto relativo tra loro: ingranaggi; perni; cuscinetti; ecc. Queste resistenze sono particolarmente presenti nei gruppi della trasmissione (cambio, differenziale ecc.). Naturalmente una corretta lubrificazione di questi organi riduce ma non elimina tali resistenze. Esse dipendono direttamente dai carichi trasmessi, dalle geometrie dei componenti, dalle tolleranze di accoppiamento, dal montaggio, dallo stato di usura, dai materiali, dalla lubrificazione. Alcune soluzioni tecniche tendono a ridurre i valori delle resistenze di attrito, per esempio l adozione di cuscinetti volventi in luogo di quelli a strisciamento. Principalmente il modo per ridurre le resistenze di attrito è adottare e mantenere le idonee condizioni di lubrificazione, con la scelta della tipologia degli oli, con regolari e periodici controlli; inoltre sono importanti i controlli delle condizioni di usura dei componenti per poter applicare una manutenzione preventiva o a condizione. In pratica si cerca di mantenere al minimo i valori dei coefficienti di attrito evitando il contatto diretto e lo strisciamento dei vari organi meccanici. Un importante fattore di influenza sullo stato di lubrificazione è la temperatura del lubrificante che a sua volta dipende dalla potenza trasmessa, dal sistema di lubrificazione, dal sistema di raffreddamento, dalle quantità di lubrificante impiegate, ecc.
13 RESISTENZA AERODINAMICA Un importante influenza sulla determinazione delle caratteristiche della trasmissione è la resistenza aerodinamica dell autoveicolo. In pratica essa è la forza diretta secondo la velocità relativa del fluido rispetto al corpo dell autoveicolo e si oppone al moto. Dipende dall attrito del fluido, dalla superficie d ingombro e dalla forma esterna dell involucro immerso nel fluido. La viscosità del fluido consente ad uno strato molto piccolo di aderire all involucro del corpo; gli altri strati a poca distanza hanno velocità rapidamente crescenti. Le maggiori resistenze derivano dai cosiddetti vortici di scia; veri e propri moti turbolenti di fluido. L influenza della velocità relativa del fluido rispetto alla vettura segue la legge del quadrato, cioè raddoppiando la velocità la resistenza aumenta di ben quattro volte. Ciò è importante, quando per l autoveicolo sono previste velocità elevate con superficie di forma frontale significativa.
14 RESISTENZA ALLA MARCIA IN SALITA Le strade destinate alla circolazione degli autoveicoli non superano la pendenza del 10%. Nella figura illustrata si rappresenta la resistenza alla marcia in salita applicata nel baricentro G dell autoveicolo. l è l interasse; mg la forza peso; l angolo che determina la pendenza della strada (i = tg ). La forza resistente al moto attribuibile alla salita è rappresentata dalla componente della forza peso lungo la direzione del piano inclinato: F R = - m g sen [ N ] Essa dipende direttamente dalla massa e dalla pendenza stradale, inoltre le condizioni di aderenza alle ruote motrici devono garantire l applicazione di una forza di spinta ben maggiore della resistenza di salita. Da ciò deriva il limite di pendenza massima superabile che caratterizza ciascun autoveicolo omologato.
15 RENDIMENTO DELLA TRASMISSIONE Il rendimento della trasmissione dipenderà in primo luogo dal tipo di trasmissione, per esempio secondo il tipo di cambio di velocità di cui è dotata, es. meccanico, semiautomatico, automatico. Nel caso di una trasmissione meccanica con cambio ad ingranaggi si può affermare che il rendimento della stessa sarà molto alto ed il suo valore dipenderà principalmente dal tipo di ruote dentate, dal sistema e dalle condizioni di lubrificazione, dal montaggio e dalla velocità di rotazione. I valori del rendimento per i tipi di trasmissioni più comuni possono essere indicativamente distinti nei seguenti: nel caso di veicoli con motore e trazione anteriore, trasmissione con cambio con presa diretta, = 92%; con le altre marce = 87%; nel caso di veicoli con motore anteriore e trazione posteriore, trasmissione con cambio con presa diretta, = 93%; Nel caso di una trasmissione con cambio automatico con convertitore di coppia idraulico il rendimento è difficilmente valutabile, infatti dipende principalmente dai valori di scorrimento tra pompa e turbina del convertitore. Un applicazione con lo scopo di aumentare il rendimento della trasmissione è quella di bloccare, in corrispondenza di bassi valori di scorrimento, il convertitore di coppia trasformandolo in pratica in un giunto rigido. Nel caso di una trasmissione con cambio automatico con cinghie su pulegge a diametro variabile il rendimento è difficilmente rilevabile, in termini di confronto si può affermare che esso è più elevato in presenza di una singola cinghia.
16 POTENZA NECESSARIA AL MOTO La potenza disponibile alle ruote motrici deve essere la somma delle potenze dissipate dalle singole resistenze al moto del veicolo. In termini di prestazioni diventa fondamentale l insieme delle caratteristiche del sistema motore trasmissione aderenza ruote, determinando la curva di potenza disponibile alle ruote in funzione della rotazione del motore e della marcia innestata. Nelle figure illustrate sono rappresentate nell ordine: o la potenza del motore P m e la potenza disponibile alle ruote P d in funzione della velocità di rotazione del motore m ; o la determinazione del rapporto di trasmissione che permette di raggiungere la velocità massima Vmax, mediante la curva della potenza necessaria al moto P n in corrispondenza di una determinata pendenza i; o trasmissione. la determinazione della massima pendenza superabile i, con un determinato rapporto di
17 INGRANAGGI I gruppi della trasmissione, quali il cambio di velocità e il differenziale, sono composti da ingranaggi, quindi ruote dentate. Le caratteristiche di queste ultime determinano in modo univoco il comportamento di trasmissione del gruppo cui appartengono. Per tale ragione è necessario approfondire la conoscenza delle principali tipologie e caratteristiche delle ruote dentate. L ingranamento di due ruote dentate deve avvenire tra denti che hanno le stesse caratteristiche geometriche, di resistenza meccanica e di durezza superficiale per avere un usura uniforme. E invece diverso il numero dei denti delle due ruote, ciò per consentire la variazione dei parametri della potenza trasmessa. CARATTERISTICHE DELLE RUOTE DENTATE Il profilo del dente può essere di diversi tipi e realizzato con diversi gradi di precisione nel suo processo di fabbricazione. Questa caratteristica influisce sulla durata, sulla rumorosità, sul rendimento della trasmissione, ecc.
18 Il numero minimo dei denti della ruota più piccola rappresenta il limite al di sotto del quale non è più garantita la regolarità della trasmissione (almeno due denti in presa). La dimensione del dente, è determinata dalla massima forza scambiata tra i denti in presa e dal materiale che lo costituisce. La scelta dei materiali è determinata dai carichi sui denti e dall importanza della riduzione degli ingombri e dal numero di ore di funzionamento previste per l ingranaggio. Il rendimento delle ruote dentate è il rapporto tra la potenza trasmessa alla ruota condotta e la potenza della ruota conduttrice. RAPPORTO DI TRASMISSIONE Il rapporto di trasmissione tra due ruote dentate coniugate è dato dal rapporto del numero dei denti delle due ruote da cui consegue il rapporto dei numeri di giri dei due rispettivi alberi (n condotto / n conduttore). In questo modo ad una riduzione del numero di giri trasmesso si ha un aumento inversamente proporzionale della coppia trasmessa, in virtù del principio che la potenza trasmessa rimane al più costante.
19 RUOTE DENTATE CILINDRICHE A DENTI ELICOIDALI Il modo per aumentare il numero di denti contemporaneamente in presa è quello di avere ruote dentate cilindriche con i denti elicoidali. Questa condizione migliora la distribuzione delle forze scambiate tra i denti delle ruote coniugate, ciò significa che a parità di carichi si possono utilizzare ruote più piccole con guadagno sugli ingombri e sui pesi, inoltre si hanno minori urti tra i denti a causa di un più regolare accesso dei denti nella zona d ingranamento, a tutto vantaggio della silenziosità e della durata. Ai fini del rapporto di trasmissione, dei materiali, ecc. vale quanto già detto per le ruote cilindriche a denti dritti.
20 TIPOLOGIA DI AD INGRANAGGI Ruote cilindriche Ruote coniche INGRANAGGI Vite fine senza Cremagliera DENTE E SUO PROFILO Diritto
21 Elicoidale Bielicoidale Spiroidale Ipoidale
22 Paralleli DISPOSIZIONE DEGLI ASSI Perpendicolari Sghembi
23 FORZE SCAMBIATE TRA I DENTI La forza scambiata tra due denti lungo l arco di ingranamento mantiene costante la retta d azione grazie al particolare profilo del dente. RUOTE CILINDRICHE A DENTI DIRITTI Nel caso delle ruote dentate cilindriche a denti dritti, la retta d azione (a) forma un angolo di pressione () costante. La forza F scambiata tra i denti è la risultante di due componenti: radiale e tangenziale. La coppia della ruota è data dalla componente tangenziale F u moltiplicata per il raggio della circonferenza primitiva (r p1 ). Sui supporti dell albero della ruota si scaricano entrambe le componenti. RUOTE CILINDRICHE A DENTI ELICOIDALI Nel caso delle ruote dentate cilindriche a denti elicoidali le componenti della forza F sono tre: tangenziale F u, assiale F a, radiale F r ; la coppia si ricava nello stesso modo del caso precedente. Diverso è il carico sui supporti dell albero i quali, in questo caso, devono bilanciare anche la forza assiale, richiedendo allo scopo appositi cuscinetti in grado di reagire ai carichi assiali.
24 RUOTE CILINDRICHE BIELICOIDALI La ruota dentata cilindrica bielicoidale nasce allo scopo di bilanciare sulla stessa ruota le componenti assiali generate dalle forze scambiate tra i denti. Quindi ai fini dei carichi sui supporti si avranno solo carichi radiali. RUOTE CONICHE Nella trasmissione pignone-corone della coppia conica, pur nel caso più semplice dei denti dritti, la forza scambiata tra i denti P, scomposta da luogo: alla componente tangenziale F che determina con i raggi delle primitive le coppie sui due alberi; alla componente S che a sua volta genera le componenti radiale e tangenziale che si scaricano sui supporti degli alberi. Quindi qualunque sia il tipo di dente delle ruote coniche della coppia i cuscinetti dovranno resistere anche alle spinte assiali. VITE SENZA FINE Nella trasmissione tra vite senza fine ruota adenti elicoidali la forza risultante R da luogo A: F t (tangenziale per la vite e assiale per la ruota); F a (assiale per la vite e tangenziale per la ruota); S (componente radiale per entrambi gli alberi). L entità della componente assiale per la vite senza fine richiede ai supporti l applicazione di cuscinetti reggispinta o robusti cuscinetti assial-radiali. CICLO DI LAVORAZIONE INGRANAGGI
25 STAMPAGGIO: gli ingranaggi sono stampati a caldo e successivamente subiscono un trattamento di ricottura isotermica. TORNITURA: operazione necessaria per determinare le dimensioni di circonferenza e spallamento dell ingranaggio. Sul foro interno verrà lasciato un sovrametallo per permettere la rettifica dello stesso foro dopo trattamento. DENTATURA: una apposita macchina (dentatrice) crea il taglio con il creatore della ruota sia per ingranaggi a denti diritti sia a quelli elicoidali. Verrà lasciato un sovrametallo per la finizione del dente. SMUSSATURA: operazione effettuata con (smussatrice) e necessaria ad eliminare le bavature di lavorazione del dente, nonché creare lo smusso sul profilo. FRESATURA E FORATURA: su tutti gli ingranaggi ove necessita la lubrificazione. RASATURA SBARBATURA: lavorazione necessaria alla finizione del dente. Ove necessita il dente viene rettificato. PIANTAGGIO: sotto pressa dell anello dentato sincronizzatore sull ingranaggio. SALDATURA: effettuata con saldatrice laser o fascio elettronico. FILETTATURA: sulla superficie conica del cono accoppiatore ove richiesta. TEMPRA SUPERFICIALE: trattamento di cementazione e tempra. RETTIFICA: foro, rasamenti e cono. SMERIGLIATURA: operazione che si effettua su ingranaggi di 1 a e 2 a velocità. LAVAGGI: nel ciclo di lavorazione i lavaggi sono un operazione essenziale in lavorazione per evitare che esistano incompatibilità di refrigeranti, in saldatura per evitare che durante l operazione si formino cricche ecc., in trattamento termico per garantire omogeneità di penetrazione del trattamento stesso. Completato il ciclo di lavorazione il lavaggio finale garantisce una buona pulizia al montaggio interno del cambio.
26 ROTISMI I rotismi sono meccanismi costituiti da due o più ruote dentate ingranante tra loro allo scopo di trasmettere la potenza meccanica dell albero d ingresso all albero di uscita del sistema, variandone i valori dei suoi parametri (coppia e numero di giri). Il rotismo si denominerà riduttore quando il numero di giri dell albero di uscita del moto è minore rispetto a quello dell albero d ingresso, in questo caso si ottiene una moltiplicazione della coppia di uscita rispetto a quella entrante. Nel caso opposto si denominerà moltiplicatore. Il rapporto di trasmissione del rotismo è dato dal numero di giri dell albero d ingresso rispetto a quello di uscita. = n i / n u Quando il sistema rotismo, mediante opportuni organi di comando, è in grado di variare il rapporto di trasmissione del complessivo (n rapporti di trasmissione) prende il nome di cambio di velocità. I rotismi si suddividono in: rotismi ordinari (gli assi di tutte le ruote dentate sono fissi); rotismi epicicloidali (le cui ruote dentate si distinguono in planetari cioè quelli ad asse fisso e satelliti cioè quelli aventi gli assi in rotazione intorno ad un altro asse del rotismo).
27 RAPPORTO DI TRASMISSIONE Il rotismo in figura è composto di: n. 4 alberi (albero motore in ingresso, a e b intermedi, albero mosso in uscita); n. 6 ruote dentate, tutte solidali ai rispettivi alberi. Il rapporto di trasmissione globale del rotismo è dato dal prodotto dei rapporti di trasmissione delle coppie di ruote dentate ingrananti. = (n 1 / n 2 ) (n 2 / n 3 ) (n 3 / n 4 ) = n 1 / n 4 ; = (Z 1 / z 1 ) (Z 2 / z 2 ) (Z 3 / z 3 );
28 ROTISMI EPICICLOIDALI Questi rotismi sono caratterizzati dalla presenza di alcune ruote dentate (satelliti) che sono trasportate con i loro assi da un equipaggio mobile (portatreno), mentre le altre ruote a dentatura esterna o interna sono ad asse fisso (planetari). In figura sono illustrati due rotismi semplici di questo tipo di uso molto comune, nel primo i due planetari sono entrambi a dentatura interna; nel secondo i due planetari sono uno a dentatura interna e l altro a dentatura esterna. P: portatreno; A: planetario (pignone); B: planetario (corona a dentatura esterna); a: satellite; b: satellite; A : velocità angolare ruota A; B : velocità angolare ruota A; : velocità angolare del portatreno; RAPPORTO DI TRASMISSIONE Con questo meccanismo sono possibili diverse condizioni: 1. un albero motore, uno condotto ed uno fisso; 2. un albero motore e due condotti;
29 3. due alberi motori ed uno condotto. Considerando il caso 1), a seconda dell albero che si blocca si ha un diverso rapporto di trasmissione tra i due rimanenti. Nella figura seguente è rappresentato il caso più comune, nel quale risulta bloccato il planetario B. Immaginando di dare al portatreno una velocità angolare di - il rotismo diventerà ordinario. In questo caso sarebbe fermo ed i planetari avrebbero le velocità angolari ( A - ) e ( B - ). In seguito a questa considerazione risulta facile comprendere la formula di Willis: ordinario = ( A - ) / ( A - ) ; che consente di determinare il rapporto di trasmissione del rotismo = (A - ) = 1 + (ZB - ZA) ; CUSCINETTI
30 I cuscinetti impiegati per supportare agli alberi e i mozzi degli organi della trasmissione sono del tipo volvente. Ciascun tipo di cuscinetto sarà più o meno adatto ad una particolare applicazione in funzione della sua conformazione. Quindi la scelta dei cuscinetti viene impostata in base ai bisogni applicativi: entità dei carichi, tipologia dei carichi, precisione di funzionamento, silenziosità, orientabilità, dilatazioni assiali ecc. La funzione principale dei cuscinetti è di consentire la rotazione degli organi in movimento e scaricare sui supporti i carichi sia statici, sia dinamici del sistema meccanico. Il montaggio del cuscinetto per un albero di trasmissione e la sua sistemazione sul supporto rappresenta la realizzazione di un vincolo.
31 TIPOLOGIE DI CUSCINETTI IMMAGINE TIPOLOGIA APPLICAZIONE CUSCINETTI RADIALI SFERE A CUSCINETTI RADIALI RULLI A CUSCINETTI ASSIALI SFERE A CUSCINETTI ASSIALI RULLI A CUSCINETTI RADIALI ASSIALI A RULLI A BOTTE CUSCINETTI ORIENTABILI A RULLI CONICI
32 CRITERI DI SCELTA DEI CUSCINETTI SPAZIO DISPONIBILE Generalmente il diametro del foro del cuscinetto (nominale dell albero) è un valore prefissato e dipendente solo dalle caratteristiche meccaniche del gruppo. Il diametro esterno del cuscinetto dipende quindi dal tipo di cuscinetto, in particolare da: tipo e dimensione del volvente; classe del cuscinetto; presenza dell anello esterno. Naturalmente l aumento dell entità di carico induce alla scelta di cuscinetti di dimensione maggiore, quindi le due esigenze: maggior resistenza e minor ingombri risultano contrastanti. Quando lo spazio in senso radiale è limitato si utilizzano i cuscinetti a rullini. Quando lo spazio è limitato in senso assiale si possono usare alcune tipologie di cuscinetti ad una corona di volventi. Lo stesso criterio si adotta per i cuscinetti per carichi puramente assiali.
33 CARICHI RADIALI ED ASSIALI ENTITÁ DEL CARICO Il limite di resistenza degli elementi resistenti del cuscinetto è alla pressione specifica dovuta allo schiacciamento dei corpi. Per questa ragione è molto importante il valore della durezza degli elementi a contatto (volventi e piste degli anelli). A parità di limite di pressione specifica e di diametro del volvente, si verifica che i rulli resistono a carichi più elevati rispetto alle sfere DIREZIONE DEL CARICO Un fattore importante nella scelta del tipo di cuscinetto è la direzione del carico scomposto secondo le direzioni radiale e assiale. Quindi la distinzione dei cuscinetti in: radiali; assial-radiali; assiali. CARICO ASSIALE Il carico assiale può essere controbilanciato da appositi cuscinetti secondo il verso del carico o da cuscinetti assiali, in grado di rispondere in entrambi i versi. Per esempio a questo scopo risulta molto interessante, per alcuni cambi di velocità, l applicazione dei cuscinetti a quattro contatti a sfere. Per i carichi assiali moderati ad alte velocità si impiegano i cuscinetti assiali a sfere obliqui a semplice effetto o combinati. In certi casi si rende necessaria l applicazione di cuscinetti assiali orientabili a rulli orientabili Per i carichi assiali moderati agenti in un solo senso, sono adatti i tipi assiali a rullini. Per forti carichi assiali alternatisi possono montare l uno accanto all altro, due cuscinetti assiali a rulli cilindrici o due assiali orientabili a rulli.
34
35 CARICHI COMBINATI Il carico combinato è costituito da una componente radiale e da una componente assiale agenti contemporaneamente. La capacità di un cuscinetto di reggere alla parte assiale del carico è determinata dal suo angolo di contatto. La capacità di resistere ai carichi assiali dei cuscinetti radiali a sfere dipende dal loro giuoco interno. I cuscinetti a rulli cilindrici possono reggere anche i carichi assiali quando presentano l anello di spalleggiamento. Quando predominano i carichi assiali, trovano migliore applicazione i cuscinetti obliqui a quattro contatti, quelli assiali orientabili a rulli e quelli a rulli cilindrici o conici incrociati.
36 ALTRI TIPI DI CARICHI CARICO DA MOMENTO RIBALTANTE In presenza di carico eccentrico rispetto al cuscinetto, nasce un momento ribaltante. I cuscinetti in grado di resistere a questo pericoloso tipo di carico sono quelli a doppia corona ( radiali od obliqui a sfere) per entità di carico moderate, quelli a rulli conici contrapposti con montaggio ad X o ad O, per entità di carico elevati. DISALLINEAMENTO In caso di alberi lunghi soggetti a flessione si genera tra l albero e l alloggiamento un disallineamento che, se ostacolato dal cuscinetto, genera un imprevisto sovraccarico per lo stesso. In questi casi si adottano cuscinetti atti a consentire piccole variazioni di inclinazione dell asse dell albero rispetto a quello della sede.
37 ALTRI REQUISITI PER LA SCELTA DEI CUSCINETTI PRECISIONE I cuscinetti di precisione superiore trovano applicazione dove è richiesta una elevata precisione di lavorazione, per esempio i mandrini delle macchine utensili. VELOCITA L elevata velocità di rotazione porta ad un aumento della potenza di attrito dissipata in calore, quindi ad un aumento delle temperature dei componenti. Risultano quindi idonei allo scopo i cuscinetti con volventi a sfere per presentano il minimo attrito. SILENZIOSITA La rumorosità è causata dai microurti di rotolamento dei volventi, quindi la silenziosità sarà una caratteristica dei cuscinetti a sfere ed in generale i cuscinetti di maggior precisione. RIGIDEZZA La rigidezza di un cuscinetto è la sua capacità di resistere a lasciarsi deformare elasticamente sotto carico. Dove previsto la rigidezza viene aumentata al montaggio col precarico sul cuscinetto. SPOSTAMENTO ASSIALE Una delle principali cause che producono l allungamento dell albero rispetto alle sedi è di natura termica. Per questi casi si realizzano con i cuscinetti dei vincoli che consentono piccoli spostamenti assiali. La condizione di libertà di movimento può appartenere al cuscinetto o può essere realizzata tra il cuscinetto e la sua sede.
38 GIOCHI GIUOCO PRIMA E DOPO IL MONTAGGIO È importante distinguere tra il giuoco interno di un cuscinetto prima del montaggio e quello di un cuscinetto montato e funzionante. Il giuoco durante il funzionamento è minore di quello prima del montaggio in quanto gli anelli si espandono o si comprimono per effetto dei forzamenti e a causa della dilatazione termica. VALORE DEI GIUOCHI Per i cuscinetti obliqui appaiati ad una corona di sfere, per quelli appaiati a rulli conici e per i cuscinetti obliqui a doppia corona di sfere viene riportato il giuoco interno assiale in quanto è più facile da misurare e da tenere sotto controllo di quello radiale. Espansione interno dell anello Come regola generale, il giuoco interno in funzionamento è leggermente maggiore di zero. Compressione dell anello esterno Per i cuscinetti a rulli cilindrici ed orientabili a rulli, in funzionamento deve essere previsto un certo giuoco interno, seppur leggero; per i cuscinetti a rulli conici è di solito consigliabile. I cuscinetti obliqui a sfere e a rulli conici per sistemazione che richiedono rigidezza, come nei pignoni conici o nei mandrini delle macchine utensili, sono montati con un certo precarico.
39 BLOCCAGGIO DEI CUSCINETTI BLOCCAGGIO RADIALE DEI CUSCINETTI In certe condizioni di carico gli anelli devono essere bloccati radicalmente per impedire che ruotino sulla sede. CARICO ROTANTE Montare con interferenza l anello fermo in cui, in un giro, tutti i punti della sua pista sono soggetti a carico. CARICO FERMO Montare con interferenza l anello che ruota. Quando la direzione del carico è indeterminata, ad esempio nelle applicazioni vibranti, montare con interferenza entrambi gli anelli. ANCORAGGIO ASSIALE DEI CUSCINETTI Per l ancoraggio assiale appropriato degli anelli non basta l interferenza, ma sono necessari altri sistemi. Ancoraggio assiale del cuscinetto di vincolo. Disposizione del cuscinetto non di vincolo con l anello interno vincolato assialmente. Ancoraggio assiale di cuscinetti in opposizione con ancoraggio assiale da un solo lato.
40 MONTAGGIO DEI CUSCINETTI RADIALI ASSIALI Il comparatore deve essere impiegato per misurare il giuoco assiale interno. Una volta montato il comparatore, per rilevare il giuoco bisogna spingere completamente in un senso e nell altro. La sistemazione ad O, rispetto a quella ad X, comporta una maggiore resistenza al carico da momento ribaltante, ma nel contempo una maggiore difficoltà di montaggio. La registrazione con coperchio e spessori è un metodo valido per le disposizioni ad X. I piccoli cuscinetti possono essere registrati con una ghiera ed una chiave a settore. Con i grossi cuscinetti può essere necessario usare l iniezione d olio.
41
42 LUBRIFICAZIONE DEI CUSCINETTI LUBRIFICAZIONE La funzione principale di un lubrificante è quella di formare un film in grado di separare tra loro le parti in movimento dei cuscinetti, per ridurre l attrito e l usura. Alcune delle proprietà importanti di un lubrificante sono la viscosità, la capacità a formare il film e, per il grasso, la consistenza. VISCOSITÁ La viscosità è la facilità con cui un liquido fluisce. Tecnicamente è la misura dell attrito interno esistente tra i vari strati molecolari di tale liquido quando questo viene messo in moto. CONSISTENZA La consistenza è il grado di rigidezza di un grasso. Viene classificata in gradazione NLGI (National Lubricanting Grease Institute, USA), secondo una scala universalmente accettata. ESEMPIO L acqua ha una bassa viscosità, il miele ha una viscosità elevata. NOTE (A) Grasso morbido: bassa consistenza, basso indice NLGI. (B) Grasso duro: alta consistenza, alto indice NLGI.
43 LUBRIFICAZIONE A STRATO LIMITE Si ha una lubrificazione a strato limite quando lo spessore del film è troppo piccolo per separare adeguatamente le superfici in contatto. È una condizione presente quando la quantità di lubrificante è insufficiente o quando il moto relativo tra le due superfici è troppo lento per la formazione di un film. Questo si verifica anche quando la viscosità del fluido è troppo bassa o fin dall inizio oppure per una temperatura elevata di funzionamento. In questa condizione di lubrificazione avvengono contatti diretti metallo contro metallo, che provocano saldature localizzate dei picchi di rugosità. Alla fine si ha attrito ed usura elevati e affaticamento superficiale. LUBRIFICAZIONE IDRODINAMICA In questa condizione si ha la separazione completa delle superfici in moto relativo da parte del film lubrificante. L attrito è assai minore che nel caso della lubrificazione a strato limite e non ci sono contatti intermetallici. GRASSI AL CALCIO La maggioranza dei grassi al calcio si può usare solo a temperature fino a 60 C, anche se taluni grassi di qualità sono efficaci fino a 120 C. Impieghi dei grassi al calcio sono le macchine da carta e le macchine che operano in ambiente marino.
44 TIPOLOGIE DI GRASSI GRASSI AL SODIO I grassi al sodio si possono usare in un ampio campo di temperature e si hanno dei grassi sintetici al sodio che arrivano fino a 120 C. GRASSI AL LITIO I grassi al litio offrono un eccellente resistenza al calore e si possono utilizzare in un ampia gamma di temperature. Di questa tipologia sono i grassi utilizzati da SKF. MISCIBILITÁ DEI GRASSI Non bisogna mai mescolare grassi che non siano compatibili, in quanto possono dare luogo ad una miscela che di solito ha una minore consistenza e che può provocare successivamente dei cedimenti a causa del trafilamento. Se non si conosce il tipo di grasso immesso all origine, prima di lubrificare bisogna toglierlo dal suo cuscinetto e dal suo intorno.
45 SCELTA DEL GRASSO I fattori più importanti da considerare quando si sceglie un grasso lubrificante sono: Tipo di macchina Tipo e dimensione del cuscinetto Temperatura di lavoro Condizioni di carico Campo di velocità Condizioni di funzionamento, come la vibrazione e la posizione dell albero, orizzontale o verticale Raffreddamento Efficacia delle guarnizioni di tenuta Ambiente esterno GRASSI PER ALTE TEMPERATURE (HT) Si usa un grasso HT in generale quando la temperatura di funzionamento supera gli 80 C o quando non sono accettabili intervalli di lubrificazione per cuscinetti che lavorano nell intervallo di C. GRASSI PER BASSE TEMPERATURE (LT) Si usa un grasso LT quando la temperatura ambiente e quella di funzionamento sono al di sotto di 0 C oppure per cuscinetti sottoposti a carichi leggeri, rotanti ad alte velocità, in applicazioni in cui non si possono tollerare aumenti nelle temperature di funzionamento. COMPONENTI DELLA CATENA CINEMATICA Trazione anteriore innesto a frizione; cambio di velocità;
46 differenziale; semiassi (o semialberi); mozzi ruote. Trazione anteriore VOLANO FRIZIONE CAMBIO RUOTE PONTE ANTERIORE DIFFERENZIALE Trazione posteriore innesto a frizione; cambio di velocità; giunti elastici o cardanici; albero di trasmissione; coppia conica di riduzione; differenziale; semiassi (o semialberi);
47 mozzi ruote. Trazione posteriore VOLANO FRIZIONE CAMBIO PONTE POSTERIORE COPPIA CONICA E DIFFERENZIALE ALBERO DI TRASMISSIONE CON GIUNTI RUOTE
48 VOLANO E' l'organo che rende uniforme la rotazione del motore, accumulando energia durante le fasi attive (espansioni) e restituendola durante le fasi passive. Il volano è dimensionato per consentire al motore di girare al minimo senza arrestarsi e vincere il lavoro di attrito da questo sviluppato durante il funzionamento a vuoto. FRIZIONE La frizione è il primo organo della trasmissione dell autoveicolo ed ha la funzione di collegare il volano motore al cambio di velocità. L innesto a frizione ha la proprietà di innestare e disinnestare il collegamento della trasmissione al motore durante il moto, con un semplice comando proveniente dal pedale della frizione o da un servocomando. Ciò consente al motore di funzionare al regime di minimo alimentando di energia solo gli organi ausiliari senza rischiare lo spegnimento. In fase di avviamento del veicolo la frizione ha il compito di collegare dolcemente e progressivamente il motore alla trasmissione in modo da trasmettere il moto senza contraccolpi o strappi.
49 CAMBIO Il cambio di velocità è l organo che inserito fra il motore e le ruote consente di variare la coppia motrice alle ruote per equilibrare la coppia resistente, mantenendo costante il campo di funzionamento ottimale del motore (compreso tra il punto di coppia massima ed il punto di potenza massima).
50 ALBERO DI TRASMISSIONE 1. Tronco anteriore 2. Giunti cardanici 3. Cuscinetto 4. Supporto elastico 5. Staffa 6. Tronco posteriore Negli autoveicoli con gruppo motore/cambio anteriore e ruote motrici posteriori, o negli autoveicoli a trazione integrale o 4x4, trasmissione del moto dal cambio di velocità al ponte posteriore avviene per mezzo dell albero di trasmissione disposto lungo l asse longitudinale dell autoveicolo. L albero di trasmissione, perfettamente equilibrato, deve soddisfare le seguenti condizioni: Leggerezza; per evitare le sollecitazioni composte causa di vibrazioni. Robustezza per trasmettere la coppia motrice alle ruote. Queste condizioni risultano soddisfatte con l adozione di alberi tubolari ottenuti da laminati di acciaio saldati elettricamente. L albero di trasmissione può essere in uno o più pezzi, a seconda della lunghezza e della posizione del cambio di velocità rispetto al ponte; alle estremità si trovano le flange e le forcelle di attacco ai giunti di collegamento (in alternativa alle forcelle sono usati giunti assiali). Negli autoveicoli da turismo e di media cilindrata l albero di trasmissione è costruito in un sol pezzo e, attraverso i giunti, resta collegato direttamente al cambio di velocità ed al ponte. Negli autoveicoli veloci o con telaio molto lungo, l albero di trasmissione e costruito in due o tre tronchi onde evitare ampie oscillazioni: il primo tronco è collegato mediante un giunto (normalmente flessibile) al manicotto a forcella o giunto assiale calettato sull albero del cambio di velocità, mentre il secondo tronco è collegato al primo ed al ponte mediante altri giunti. Un supporto centrale elastico fissa l albero al telaio od alla carrozzeria. In alcuni veicoli con motore anteriore e cambio collegato al ponte si sono avute delle applicazioni di un albero di trasmissione flessibile costituito da un tondino di acciaio del diametro di circa 20 mm. Quest albero consente di raggiungere una deformazione elastica di circa 30 per assorbire le vibrazioni che si verificheranno fra motore e propulsore. In questa trasmissione con albero flessibile mancano i giunti elastici in quanto i due gruppi vengono collegati rigidamente mediante un tubo entro il quale passa, guidato da cuscinetti, l albero di trasmissione. GIUNTI I giunti, posti alle estremità dell albero di trasmissione, sono elementi deformabili che consentono all albero di trasmettere il moto dal cambio al ponte, vincolato elasticamente al telaio od alla carrozzeria. I giunti deformabili, a seconda dell inclinazione dell albero, dell entità e della variazione della coppia motrice, possono essere così classificati: Giunti elastici
51 Giunti cardanici Giunti assiali. Giunti elastici I giunti elastici hanno lo scopo di rendere più morbida e graduale la trasmissione della coppia motrice all albero di trasmissione e sono impiegati per collegare alberi i cui assi formano angoli da 3 a 10. Albero Albero 2 Un giunto elastico impiegato per angoli di inclinazione non superiori a 3 e il giunto Dinaflex. 1. disco di gomma 2. anelli metallici 3. bussola di acciaio Esso è costituito da un disco di gomma vulcanizzata in cui sono annegati delle maglie flessibili, costruite con trefolo metallico o con trefolo di fibre molto resistenti, che collegano a due a due le boccole metalliche poste ai vertici di un esagono regolare ai quali fanno capo le forcelle degli alberi. In corrispondenza delle boccole, il disco di gomma è rinforzato da piastrine metalliche che ripartiscono più uniformemente sul disco la pressione di serraggio dei bulloni. Un altro tipo di giunto elastico è il giunto GIUBO.
52 Esso ha forma poligonale ed i suoi lati sono costituiti da elementi cilindrici in gomma. In ogni vertice, apposite boccole metalliche incorporate nella gomma portano un foro passante per collegare le forcelle degli alberi. Catteristiche di questo giunto sono: a) Notevole deformazione angolare, in quanto la gomma consente grandi sollecitazioni a taglio ed a torsione; può essere impiegato per collegare alberi i cui assi formano un angolo superiore a 10. b) Notevole deformazione torsionale (3 10 ), per cui il giunto può funzionare ottimamente da parastrappi tra parte motrice e parte trascinata. c) Notevole deformazione assiale, permettendo di sopportare movimenti assiali di parecchi millimetri (2 10) senza necessità di alberi scanalati. Giunto cardanico 1. forcella 2. crociera 3. forcella Il giunto cardanico permette il moto fra due alberi formando angoli d inclinazione maggiori di quelli consenti dai giunti elastici. Esso è costituito da una crociera sui cui perni si articolano, tramite cuscinetti a rullini, le estremità delle forcelle solidali rispettivamente all albero conduttore ed a quello condotto. Oscillazione periodica del giunto cardanico Se i due alberi risultano perfettamente allineati non vi sarà variazione di velocità angolare. Se invece gli assi dei due alberi formano fra loro un certo angolo, a parità di velocità angolare ω1 dell albero conduttore, quella ω2 dell albero condotto risulterà variabile periodicamente (oscillante) come è rappresentato nella figura sottostante, cioè ad ogni giro si avranno due accelerazioni e due decelerazioni tanto maggiori quanto più grande è l angolo formato tra i due alberi. Poiché dopo 180 il giunto riprende la configurazione iniziale, la frequenza delle oscillazioni è doppia del numero di giri e quindi si avranno quattro sollecitazioni per giro alternate nei due sensi, causa di vibrazioni e di usura del complesso.
53 ω1= velocità angolare albero conduttore ω2= velocità angolare albero condotto Poiché il comportamento del giunto è irreversibile, negli autoveicoli si adotta la disposizione della figura sottostante disponendo nello stesso piano le forcelle collegate all albero di trasmissione (2) 1. Albero del cambio di velocità 2. Albero di trasmissione 3. Manicotto del pignone conico.
54 Con questa soluzione pur risultando oscillante la velocità angolare dell albero di trasmissione, le variazioni determinate dai due giunti cardanici si compensano a vicenda così che se l albero del cambio girerà a velocità angolare costante anche il manicotto del pignone girerà a velocità angolare costante. Giunti assiali Questi giunti permettono la variazione di lunghezza dei due tronchi d albero collegati durante le oscillazioni del ponte posteriore dovute, come precedentemente detto, alle diverse condizioni di carico dell autoveicolo ed alle diverse accidentalità della strada. Giunto assiale 1. Giunto cardanico 2. Giunto cardanico 3. Giunto assiale L albero di trasmissione, in vicinanza di uno dei giunti, è diviso in due parti: una termina con scanalature interne longitudinali, l altra con scanalature esterne che s innestano con le prime. Se l albero di trasmissione è in due tronchi, il giunto assiale si trova generalmente sul secondo tronco in vicinanza di un giunto cardanico essendo questo assialmente rigido. PONTE ANTERIORE FUNZIONE: il sottogruppo ponte ha la funzione di trasmettere alle ruote motrici la coppia fornita dal motore, convenientemente moltiplicata sia dal cambio che dalla coppia conica. Ovviamente il ponte è presente dove è necessario trasmettere il moto alle ruote motrici, perciò normalmente si indica il ponte anteriore; diversamente, nel caso di vettura a trazione posteriore o integrale si ha anche un ponte posteriore. COSTITUZIONE: i componenti principali di un ponte sono i semiliberi, l albero intermedio, ove presente, i giunti omocinetici che hanno la funzione di consentire una certa libertà di oscillazione delle ruote rispetto alla scocca, pur continuando a trasmettere la potenza, e da una massa equilibratrice che ha la funzione di smorzare le oscillazioni indotte dalla rotazione dei semialberi.
55 CARATTERISTICHE: i componenti del ponte ed, in particolare, i semiliberi lavorano a torsione o a torsione flessione, sono spesso assoggettati a brusche variazioni di sforzo. Per la realizzazione di tali componenti vengono perciò utilizzati acciai ad alta resistenza meccanica al fine di sopportare le sollecitazioni indotte dal funzionamento. Inoltre l entità delle coppie trasmesse è tale che durante il funzionamento i semialberi sono soggetti a notevoli deformazioni angolari (a causa dello sforzo di torsione), a causa della posizione non simmetrica del differenziale rispetto alla mezzeria del veicolo, che imporrebbe l utilizzo di un semialbero più lungo dell altro, se le coppie trasmesse sono molto alte, si adotta un semialbero intermedio che consente utilizzare due semiliberi uguali ottenendo una maggiore regolarità della coppia trasmessa; la figura riportata sopra mostra come per la stessa vettura siano utilizzate tre diverse soluzioni di ponte secondo la coppia trasmessa dal motore. COMPONENTI DEL PONTE ANTERIORE SEMIALBERI 1. semialberi 2. giunti omocinetici 3. nucleo interno 4. guscio esterno 5. sfere 6. gabbia di contenimento 7. albero intermedio MATERIALE: i semialberi e l albero intermedio sono realizzati in acciaio con spiccate doti di resistenza meccanica, dovendo resistere a sforzi di torsione e di flessione; inoltre sono spesso sottoposti a trattamenti termici volti a migliorare le caratteristiche di resistenza. CARATTERISTICHE: i semialberi e l albero intermedio sono a sezione cilindrica e sono dotati alle estremità di scanalature che hanno la funzione di permettere un agevole collegamento con i
56 giunti. L esecuzione di tali scanalature richiede particolare cura dovendosi mantenere il gioco di accoppiamento col giunto entro limiti tali da non generare battiti fastidiosi e anche pericolosi perché assoggettano il semialbero a sollecitazioni anormali che hanno il carattere dell urto; in sede di revisione sarà opportuno controllare lo stato di queste scanalature operando la sostituzione del semialbero, quando si notano segni di usura o fenomeni di vaiolatura (presenza di piccole buche) dei denti dello scanalato. CRITICITA : quando il veicolo marcia alle alte velocità (con rapporti di trasmissione del cambio uguali od inferiori all unità), se il semialbero non è ben proporzionato ed equilibrato, staticamente e dinamicamente, si possono manifestare oscillazioni e vibrazioni che si ripercuotono sulla trasmissione originando rumorosità fastidiose. L entità di tali vibrazioni aumenta con la lunghezza del semialbero, perché alla sollecitazione di torsione provoca, oltre alla deformazione angolare, anche una freccia nel semialbero che ruota non più equilibrato. Per evitare l instaurarsi di questa condizione sul semialbero più lungo, la lunghezza di tale semialbero viene limitata adottando un albero intermedio vincolato alla scocca del veicolo; in questo modo lo sforzo di torsione sollecita i due semialberi in maniera uniforme evitando squilibri e vibrazioni indesiderate. GIUNTI OMOCINETICI Schema di un giunto R-Zeppa Particolare del giunto R-Zeppa Giunto a tripode (scorrevole) FUNZIONE: durante la marcia del veicolo, per la presenza del cinematismo delle sospensioni interposte fra il mozzo ruota e la scocca della vettura, il ponte stesso oscilla continuamente rispetto al cambio di velocità a causa delle asperità stradali. Per consentire al ponte di adattarsi alle oscillazioni delle ruote, sono interposti dei giunti omocinetici che consentono la trasmissione del moto tra alberi i cui assi non sono incidenti (come avviene tra l asse del mozzo ruota e l asse del semialbero).
57 TIPOLOGIE: nelle autovetture sono solitamente impiegati giunti omocinetici tipo R-ZEPPA o giunti scorrevoli o a tripode. GIUNTO OMOCINETICO R-ZEPPA GIUNTO OMOCINETICO SCORREVOLE 1. corona esterna condotta 4. anello elastico di ancoraggio 2. elemento interno conduttore 5. cuffia di protezione 3. sfera di trasmissione PRINCIPIO DI FUNZIONAMENTO: i giunti di trasmissione sono detti omocinetici perché permettono la trasmissione del moto senza variazioni di velocità angolare istantanea; nei giunti articolati tipo Cardano la trasmissione del moto tra due alberi i cui assi sono concorrenti avviene con una oscillazione della velocità angolare istantanea dovuta al funzionamento stesso del giunto; nei giunti omocinetici questa trasmissione avviene senza oscillazioni, grazie alla conformazione del giunto stesso; nel caso dell R-ZEPPA, il giunto è costituito da un nucleo interno conduttore dotato di gole che trascina in rotazione una serie di sfere a loro volta impegnate nelle scanalature presenti in un guscio esterno condotto; il nucleo interno viene mantenuto in posizione sul semialbero al quale è collegato grazie alla presenza di una anello elastico, mentre le sfere sono vincolate nella loro posizione da una gabbia; il giunto è simile ad un cuscinetto a sfere nel quale però le piste esterne ed interne sono dotate di scanalature assiali che non consentono rotazioni relative di un anello rispetto all altro; questa caratteristica si mantiene anche quando un anello (l interno o l esterno) si inclina rispetto all altro. GIUNTO SCORREVOLE: il funzionamento del giunto scorrevole è del tutto simile al funzionamento dell R-ZEPPA appena spiegato, ma possiede una minore capacità di articolazione. GIUNTO A TRIPODE: anche il giunto tripode funziona nello stesso modo degli altri giunti omocinetici, ma si differenzia dall R-ZEPPA per una diversa costruzione: infatti come elemento di collegamento tra nucleo interno e guscio esterno non sono più utilizzate sfere ma dischetti.
58 CUFFIE DI PROTEZIONE 1. giunto omocinetico lato ruota 2. fascetta ritegno cuffia 3. semialbero 4. cuffia per giunto omocinetico 5. flangia per giunto omocinetico 6. giunto omocinetico lato cambio 7. semialbero intermedio PROTEZIONI: le cuffie di protezione hanno la funzione di evitare le perdite di olio dai giunti e, soprattutto, di impedire le infiltrazioni di impurezze dall esterno per potrebbero portare al grippaggio dei giunti stessi. MASSA SMORZATRICE 1. flangia di collegamento del semilibero al cambio 2. boccola 3. vite di fissaggio massa smorzatrice 4. massa smorzatrice FUNZIONE: la massa smorzatrice ha la funzione di smorzare le oscillazioni indotte sul semialbero al fine di migliorare il comfort di guida, specialmente alle alte velocità. FUNZIONAMENTO: lo smorzamento delle oscillazioni avviene grazie alla inerzia rotazionale della massa stessa, che si comporta esattamente come un volano opponendosi alle variazioni di velocità angolare; in questo modo il regime di rotazione del semialbero è più regolare. PONTE POSTERIORE Col nome di ponte posteriore s intende un involucro metallico, in fusione di ghisa o di acciaio o in lamiera stampata o in alluminio. Esso contiene il gruppo di comando (coppia conica) ed i due semi-alberi che trasmettono il moto alle ruote.
59 Complessivo ponte posteriore Il ponte posteriore può essere: rigido sospeso sterzante. In campo automobilistico il ponte sterzante non è utilizzato. PONTE RIGIDO Si ha il ponte rigido, quando il ponte contiene oltre al gruppo di comando anche i due semi-alberi che trasmettono il moto alle ruote realizzando così un collegamento rigido fra loro. In questo tipo di ponte i semi-alberi sono generalmente montati secondo due soluzioni: a) Alberi flottanti
60 Il semi-albero flottante porta esternamente una flangia che viene fissata al mozzo della ruota, sopportato all estremità del ponte da due cuscinetti. Il semi-albero flottante durante il movimento risulta sollecitato soltanto a torsione. 1. flangia di trascinamento 2. ghiera di fissaggio 3. distanziale 4. cuscinetto a rulli 5. mozzo ruota 6. cuscinetto a rulli 7. distanziale 8. semi-albero 9. scatola ponte 10. guarnizione per flangia a) Alberi semi-flottante L estremità del ponte sopporta il semi-albero tramite un cuscinetto; il mozzo della ruota è avvitato o calettato con chiavetta e tenuto in sito da un dado. Il semi-albero essendo anche portante risulta sollecitato a torsione ed anche a flessione. 1. ponte 2. guarnizione 3. flangia per mozzo ruota 4. chiavetta 5. semi-albero 6. piastra ritegno cuscinetto 7. disco porta freno 8. cuscinetto 9. guarnizione
61 1. coppa raccogli olio 2. disco porta freno 3. cuscinetto a sfere 4. guarnizione interna tenuta olio 5. semi-albero 6. scatola ponte 7. ghiera ritegno cuscinetto 8. anello in gomma di tenuta cuscinetto 9. piastra ritegno cuscinetto 10. flangia per mozzo ruota PONTE SOSPESO Si ha il ponte sospeso, quando la scatola, contenente il gruppo di comando, è collegata al telaio od alla carrozzeria portante ed i semialberi sono articolati in modo da rendere indipendenti le due ruote motrici. In questo modo si diminuisce il peso del ponte e si migliora la tenuta di strada. Si riportano le seguenti due soluzioni caratteristiche di ponte sospeso: Sistema De Dion Sistema a semi-alberi oscillanti Sistema De Dion Schema De Dion 1. Scatola differenziale 2. Semi-albero 3. Flangia per mozzo 4. Giunti Fra differenziale e ruota è inserito un semi-albero portante alle estremità due articolazioni costituite da giunti cardanici. Le due ruote inoltre sono collegate da un asse rigido.
62 Esempio di applicazione ( Lancia delta 4WD ) Sistema a semi-alberi oscillanti Schema a semi-alberi oscillanti 1. Giunto a pattino o a tripode 2. Semi-albero 3. Giunto 4. Planetario 5. Scatola differenziale 6. Flangia per mozzo Il semi-albero è accoppiato al differenziale mediante giunto a pattini, il quale gli consente di scorrere ed oscillare nella scanalatura del planetario. L altra estremità del semi-albero porta un manicotto che, tramite un giunto elastico, si accoppia con l alberino della ruota. ( sistema adottato su vecchie fiat 500, 600 e 850 ) DIFFERENZIALE Il differenziale è un ruotismo epicicloidale che, interposto fra i due semi-alberi sui quali sono montate le ruote motrici, consente di trasmettere alle ruote un differente numero di giri in funzione delle condizioni del percorso stradale. Quindi consente di svolgere due compiti fondamentali per la marcia del veicolo: ripartire equamente la coppia motrice, proveniente dalla trasmissione attraverso una presa di moto, tra i due alberi in uscita dal differenziale, i quali possono essere o i due semiassi solidali alle ruote oppure gli assi per la trasmissione del moto verso l avantreno/retrotreno nel caso in cui il differenziale sia posizionato centralmente (applicazione tipica delle trazioni integrali); consentire alle ruote di uno stesso assale oppure alle ruote di due assali diversi di assumere un regime di rotazione differente.
63 Quest ultimo aspetto è particolarmente importante: infatti, in curva le ruote di un asse sono costrette a percorrere traiettorie diverse; in particolar modo quella seguita dalla ruota esterna ha un raggio più ampio rispetto a quella interna. COSTITUZIONE pignone conico 2. corona conica 3. satelliti 4. perno portasatelli ti 5. planetari 6. scatola 7. semiasse destro 8. semiasse sinistro 7 5 Un differenziale per autoveicoli nella sua versione più semplice è costituito da una scatola, solidale alla corona della coppia conica (per trazioni posteriori) o cilindrica (per trazioni anteriori). Contiene al suo interno due ruote dentate coniche (5) (planetari) fissate sui semiassi (7 ed 8) e due ruote coniche (3) (satelliti) montate folli sul perno (4) fissato alla scatola (6) ed ingranate con i planetari (5).
64 Coppia conica Il gruppo di comando ( dove si trova alloggiato il differenziale) è realizzato mediante un accoppiamento dentato conico, necessario per trasmettere il moto fra assi concorrenti. (Vedi figura) La ruota più piccola, detta pignone, è collegata all estremità posteriore dell albero di trasmissione; la ruota più grande, detta corona, è fissata alla scatola del differenziale potendo così realizzare rapporti di demoltiplicazione al ponte Rrp = 3,2 7,8 in modo che, quando il cambio di velocità è in presa diretta, le ruote motrici girino ad una velocità minore. La coppia conica può essere costruita con dentatura a spirale oppure con dentatura ad ipoide. Dentatura spiroidale. Dentatura ipoidale. Il pignone ipoide, per essere montato disassato rispetto alla corona, presenta in confronto ad un analogo pignone conico a dentatura spiroidale un diametro maggiore a parità di rapporto e di diametro della corona. In conseguenza risultando i denti del pignone più robusti consentono di sopportare sollecitazioni maggiori e quindi possono essere impiegati per trasmettere coppie motrici più elevate. Il pignone ipoide, a causa della maggiore inclinazione dei denti, è sollecito da una notevole spinta assiale che dovrà essere contrastata da supporti di notevoli dimensioni che rendono più stabile il pignone e più silenziosa la marcia. Coppia cilindrica
65 Negli autoveicoli con trazione anteriore ed i complessivi motore/cambio montati trasversalmente, il gruppo di comando è realizzato mediante un accoppiamento dentato cilindrico che consente di trasmettere il moto fra assi paralleli. Vedi figura Riduzione al ponte Il pignone, durante la trasmissione del moto, imprime alla corona una forza Fr (dovuta alla spinta che si esercita fra i denti) che dà luogo ad una coppia motrice: Mr = Fr x b la quale, tramite il differenziale, viene ripartita ai semi-assi e quindi alle ruote. Una reazione uguale e contraria viene impressa dalla corona al pignone questa, trasmettendosi al ponte, dà luogo ad una coppia di reazione ( uguale e contraria alla Mr ) la quale non potendo far ruotare il ponte attorno al suo asse cerca di far impennare l autoveicolo che si oppone col proprio peso. Indicando con: Mu la coppia motrice sull albero di trasmissione. Nu la potenza sull albero di trasmissione.
66 nu il numero dei giri al minuto dell albero di trasmissione. ηp il rendimento del ponte. rrp il rapporto di riduzione al ponte. Si può calcolare la coppia motrice Mr al ponte: Mr = Mu x ηp x rrp Analogamente per la potenza Nr: Nr = Nu x ηp Conseguentemente il numero di giri (nr) della scatola del differenziale e quindi delle ruote sarà: nr = nu : rrp
67 CARATTERISTICHE DEL DIFFERENZIALE Funzionamento Il moto proveniente tramite la coppia conica o cilindrica arriva al differenziale e quindi ai satelliti che esercitando con i loro denti uno sforzo uguale sui due planetari li trascinano in rotazione. Indicando con: n1p il numero dei giri al minuto di un planetario n2p il numero dei giri al minuto del secondo planetario nr il numero dei giri al minuto della scatola ( quindi della corona ) e considerando il porta satelliti ( scatola ) fisso, essendo uguali i due planetari il rapporto di demoltiplicazione sarà: rrd = 1 tenendo presente che col porta-satellite fisso i due planetari girano in senso contrario, si ha: ( n1p- nr ):( n2p-nr ) = 1 e risolvendo si ha: n1p + n2p = 2 x nr relazione che deve essere sempre soddisfatta per ogni condizione di marcia. Equivale a dire che il numero di giri della scatola del differenziale è sempre la media della somma dei numeri di giri dei due planetari ( quindi delle ruote ).
68 C 1 : coppia del pignone; C 2 : coppia della corona, quindi della scatola del differenziale (portatreno); A e B: planetari collegati ai semiassi; a, b: satelliti; = ( A - ) / 2 ; La velocità della scatola del differenziale è la media di quelle dei semiassi. C A = C B = - C P / 2 ; In ogni condizione il differenziale ripartisce equamente la coppia in ingresso C P tra le due coppie in uscita C A e C B. Marcia in rettilineo con uguali condizioni di aderenza. Quando l autoveicolo marcia su strada rettilinea e le ruote compiono ugual numero di giri, i satelliti non potendo ruotare attorno ai loro assi funzionano da chiavette trascinando i planetari che trasmettono infine la coppia ai semiassi e quindi alle ruote, le quali (in questi particolari condizioni di marcia) compiono lo stesso numero di giri. La coppia C è equamente ripartita (50%-50%).
69 C, n C s, n s C d, n d marcia rettilinea con uguali condizioni di aderenza con C s = C d n s = n d C = 2 x C s = 2 x C d n = 2 x n s = 2 x n d dove: C = coppia motrice sulla scatola n = numero di giri scatola C s = coppia sulla ruota sinistra n s = numero di giri ruota sinistra C d = coppia sulla ruota destra n d = numero di giri ruota destra Marcia in curva o su fondo stradale sconnesso. In curva la distribuzione della coppia non cambia, tuttavia il differenziale deve consentire alle ruote collegate di ruotare diversamente. Questa funzione è svolta attraverso l azione dei satelliti: i due planetari (collegati alle ruote), per i motivi già visti, ruotano a velocità differenti; i satelliti, oltre al moto di rivoluzione fornito attraverso la scatola, sono soggetti ad una rotazione intorno al proprio asse per effetto della differenza di velocità tra i due planetari. E proprio questo moto dei satelliti a consentire alla ruota esterna di accelerare e alla ruota interna di rallentare.
70 C, n C s n s n d C d in curva con uguali condizioni di aderenza con n s > n e n d < n C s = C d = C/2 In differenti condizioni di aderenza Nel caso di mancata aderenza di una ruota motrice dovuta ad una causa qualsiasi ( neve, sabbia, fango ecc. ) non è più possibile far avanzare l autoveicolo per mezzo del motore in quanto il differenziale imprimerà alla ruota priva di aderenza una velocità angolare doppia di quella della scatola, mentre l altra rimarrà ferma. Infatti, se per esempio il numero di giri np1 di un planetario e uguale a zero (e quindi anche quello della ruota corrispondente), il numero di giri np2 del secondo planetario e della relativa ruota sarà: n2p = 2 x nr inoltre essendo la ruota priva di resistenza, tenderà ad accelerare all aumentare della coppia motrice e la coppia motrice totale trasmessa sarà doppia di quella applicata alla ruota a bassa aderenza. In questo caso, infatti, sulla ruota in questione non è applicata coppia resistente, quindi la potenza che le arriva si trasforma tutta in velocità di rotazione: P = C x Dall espressione della potenza è chiaro che se la coppia (resistente) è molto bassa, deve necessariamente crescere la velocità di rotazione per mantenere la potenza costante. La ruota senza aderenza slitta quindi a velocità elevata, mentre l altra resta ferma in quanto non gli arriva coppia sufficiente ad avviare la marcia del veicolo.
71 C, n C s n d C d ruota destra su fondo a scarsa aderenza con n s = 0 (non visualizzato in figura) n d = 2 x n C d 0 C s = C d La ruota sinistra quindi resta ferma, di conseguenza anche il suo planetario; i satelliti invece, già soggetti al moto di rivoluzione impresso dalla scatola, ruotano su se stessi consentendo alla destra di accelerare liberamente fino alla velocità massima consentitale dal differenziale, che è doppia rispetto alla scatola. In formule: n = (n s + n d ) / 2 n d = 2 x n + n s Da queste espressioni è immediato osservare che il regime della scatola è dato dalla semisomma dei regimi delle due ruote che, come già visto, possono anche non coincidere (es. in curva). Supponendo che sia la ruota destra a slittare e quella sinistra a star ferma, si osserva subito ribaltando l espressione che n s è due volte n (n s = 0). Per ovviare a tale inconveniente sono stati studiati differenziali autobloccanti che permettono di trasmettere un adeguata coppia motrice alle due ruote, tale da avere una forza di trazione maggiore alla ruota con maggiore aderenza. Con il differenziale autobloccante può quindi verificarsi la condizione di trasferire tutta la coppia motrice sulla ruota che ha la maggiore aderenza. Per questo motivo i semi-alberi devono essere necessariamente più robusti. I DIFFERENZIALI BLOCCABILI DIFFERENZIALI BLOCCABILI A BLOCCAGGIO MANUALE AUTOBLOCCANTI
72 1. con dispositivo meccanico 1. con dischi di frizione 2. elettropneumatico 2. con fluido viscoso 3. a depressione 3. Torsen I differenziali autobloccanti saranno trattati in modo più approfondito nel capitolo La trazione integrale In questo capitolo tratteremo i due sistemi di autobloccaggio per trazioni anteriori usati sulle vetture del gruppo Fiat Auto: Giunto ferguson Torsen B
73 Giunto viscoso (Ferguson) Il giunto viscoso o giunto Ferguson è un dispositivo impiegato per collegare due alberi, pur lasciandoli liberi di avere piccoli slittamenti relativi, in modo che possano ruotare a velocità leggermente differenti. E costituito da una serie di dischi, forati o alettati, immersi in un liquido viscoso dalle proprietà particolari. Questi dischi sono disposti in modo da essere alternativamente solidali uno all albero che riceve il moto e uno all albero a cui deve essere fornito il moto alberi in/out 2. scatola 3. dischi forati 4. dischi alettati composizione di un giunto viscoso In figura è possibile osservare i dischi alettati (4) solidali all albero in ingresso (1) attraverso un profilo scanalato e quelli forati (3) solidali invece alla scatola esterna (2), la quale trasmette il moto all albero in uscita. La peculiarità è rappresentata dal fluido viscoso, la cui viscosità aumenta all aumentare della temperatura, al contrario di quanto accade normalmente negli olii. Quando i due alberi hanno lo stesso regime, il giunto si comporta come un collegamento rigido. Quando invece i due alberi manifestano velocità di rotazione differenti, anche i dischi ruoteranno a velocità diverse rimescolando perciò il fluido, facendone aumentare la temperatura. Non appena la temperatura aumenta, il fluido diventa più viscoso,quindi più gelatinoso, costringendo i dischi dei due alberi ad assumere la stessa velocità. Infatti, i dischi, che tenderebbero ad accelerare, sono frenati dal fluido; per effetto della viscosità e della differenza di velocità si genera una coppia che è così trasmessa ai dischi più lenti. La coppia passa così dalle ruote che slittano a causa della scarsa aderenza verso le altre che invece fanno presa a terra. Il collegamento diventa rigido e le ruote devono ruotare alla stessa velocità. La differenza di velocità tende quindi ad annullarsi e il fluido si raffredda, pronto a correggere una nuova condizione di slittamento. Il fluido quindi agisce come sensore per rilevare la differenza di velocità e come attuatore. Si può arrivare al bloccaggio quasi totale del giunto, con il trasferimento di quasi tutta la coppia verso le ruote a maggiore aderenza. Il seguente grafico evidenzia, a titolo qualitativo, il comportamento del giunto, evidenziando che all aumentare della differenza di velocità tra ingresso e uscita del giunto (n) aumenta la coppia di bloccaggio (T)
74 comportamento qualitativo di un giunto viscoso Il giunto Ferguson può essere impiegato in due differenti configurazioni: come dispositivo di bloccaggio anteriore come differenziale centrale Ferguson come dispositivo di bloccaggio anteriore Il Ferguson viene montato in serie ad un differenziale (per es. quello anteriore) o ad un ripartitore di coppia epicicloidale (per ripartire tra avantreno/retrotreno), consentendo così, come qualsiasi altro dispositivo di bloccaggio, di distribuire la coppia in funzione delle effettive condizioni di aderenza delle ruote (es. Fiat Coupè v turbo).
75 Generalità Il giunto viscoso viscodrive è montato all uscita destra del differenziale. E costituito da: 1. Scatola esterna 2. Mozzo interno 3. Serie di dischi calettati sul mozzo interno 4. Serie di dischi calettati sulla scatola esterna 5. Innesto frontale La parte esterna (1) è solidale alla scatola differenziale (6) tramite un innesto frontale (5), mentre la parte interna è solidale all albero intermedio (7) mediante uno scanalato interno. Il compito del giunto viscoso è quello di ripartire la coppia sulle ruote motrici, quando una di loro tende a perdere aderenza. Questa azione è esercitata dall attrito del liquido siliconico contenuto nel giunto, che limita la possibilità di pattinare della ruota anteriore meno in presa provocando in modo progressivo e graduale il trasferimento sull altra ruota di una parte della coppia motrice. L adozione del Viscodrive: Migliora la guidabilità della vettura in curva, riducendo la naturale tendenza al sottosterzo propria della trazione anteriore. Stabilizza la traiettoria nelle curve veloci, consentendo anche in queste condizioni il pieno sfruttamento della coppia motrice. Incrementa sensibilmente la sicurezza attiva non soltanto in curva, ma in tutte le principali condizioni critiche ( acquaplanning, piogge, macchie d olio, strade innevate con aderenza differenziata ). Migliora le prestazione in accelerazione brillante, impedendo i serpeggiamenti dell avantreno causati da micropattinamenti alterni delle ruote motrici. Conferisce alla vettura capacità di disimpegno su fondi a scarsa aderenza. È compatibile con l ABS
76 Il giunto viscoso ha il vantaggio di essere sempre in funzione, senza interventi manuali, e di non trasmettere anomale sollecitazioni ai vari componenti della trasmissione. Tale giunto non ha bisogno di alcuna manutenzione e non è revisionabile; pertanto in caso di anomalia deve essere sostituito. FUNZIONAMENTO La scatola (1 vedere disegno precedente) e i relativi dischi (4), su di essa calettati, ricevono il moto, tramite l innesto a denti dritti (5), dalla scatola differenziale (6). Il mozzo (2) ed i relativi dischi (3), su di esso calettati, ricevono il moto dell albero intermedio (7). Quando le due ruote hanno uguale velocità, all interno del giunto viscoso tutto ruota alla stessa velocità. All insorgere di una diversa velocità di rotazione fra le due ruote (differenza di aderenza), anche i relativi dischi (3e4) tendono ad assumere velocità diverse, ma sono frenati dal liquido viscoso che limita lo scorrimento fra essi e, di conseguenza, fra le ruote. In conseguenza alla diversa velocità fra i dischi (3 e 4), il liquido viscoso è sottoposto ad una forza di taglio. Tale forza aumenta con l aumentare della differenza di velocità delle ruote. La forza di taglio, agente sui dischi affacciati, crea un sensibile aumento della coppia sulla ruota con migliore aderenza, che tende a ruotare, con benefici in termini di trazione e stabilità. Data la caratteristica del differenziale di trasferire la coppia motrice in modo uguale attraverso le ruote pur ruotando a velocità diverse, la coppia resistente del giunto Viscodrive si somma a quella della ruota a minore aderenza, incrementando così la coppia trasferita a quella con più aderenza. Il giunto viscoso si comporta di conseguenza come un freno che tende ad irrigidire il differenziale, permettendo a quest ultimo di trasferire alla ruota con maggiore aderenza la coppia della ruota a bassa aderenza e quella resistente del giunto stesso. In curva dove la differenza di velocità di rotazione tra le due ruote è relativamente bassa, il giunto permette il relativo scorrimento dei suoi dischi interni, non influenzando il normale funzionamente del differenziale. Il riscaldamento del fluido presente nel giunto viscoso, provocato dallo scorrimento relativo dei dischi, modifica le caratteristiche fisiche del fluido stesso, incrementando la coppia resistente del giunto e consentendo, di fatto, un parziale bloccaggio del differenziale; questo fenomeno, sfruttabile per particolari condizioni (per esempio impantanamento di una ruota), non deve essere protratto per un tempo superiore a secondi, in quanto un eccessivo riscaldamento potrebbe danneggiare irrimediabilmente il giunto viscoso. Nota: l equilibratura delle ruote su vettura deve essere effettuata sollevando entrambe le ruote da terra, onde non danneggiare il giunto viscoso Viscodrive. Differenziale Torsen Q2
77 GENERALITA Il differenziale epicicloidale TorSen B sale a bordo di Alfa 147 e Alfa GT 1.9 JTD M 150 CV. Progettato per consentire di poter avere i vantaggi sia della trazione posteriore sia di quella anteriore, limitando al massimo le penalizzazioni. In generale si può dire che la trazione anteriore è decisamente più semplice e immediata nella guida, con una buona motricità anche su fondi viscidi a patto che le potenze in gioco non siano eccessive (intorno ai 200 CV massimi). Oltre questi limiti, però, l influenza della coppia motrice sulla direzione di marcia e sulle reazioni dello sterzo comincia ad essere eccessivamente rilevante. Con la sgradevole sensazione di dover rinunciare ad aprire il gas in percorrenza di curva, soprattutto alla presenza di fondi stradali sdrucciolevoli. Per ridurre questo effetto si è lavorato sia sulla sospensione anteriore, che su un nuovo differenziale a slittamento limitato denominato Q2,ricercando quell equilibrio ideale tra trazione e precisione di guida che solo la trazione integrale, in certe situazioni, è in grado di dare. Differenziali TorSen Il Torsen è un differenziale autobloccante sensibile alle differenze di coppia (Tor = torque ; sen = sensing) che utilizza una complessa geometria degli ingranaggi al fine di: differenziare la velocità delle ruote o dei due assi in curva, a seconda che sia montato rispettivamente su un asse oppure in posizione centrale; evitare lo slittamento di una ruota o entrambe (in caso di TorSen centrale) in condizioni di scarsa aderenza, forzando la coppia ad andare verso la ruota o l asse a maggiore aderenza. COMPONENTI DIFFERENZIALE TORSEN B Nella figura sottostante è illustrato l esploso del differenziale TorSen B del sistema Q2. Legenda: 1. Coperchio scatola differenziale 2. Scatola differenziale 3. Anelli d attrito inferiori 4. Anelli d attrito centrali
78 5. Anelli d attrito superiori 6. Solare 7. Solare 8. Planetario 9. Uscita semiasse 10. Uscita semiasse 11. Ingresso coppia motrice mediante corona dentata 12. Vite FUNZIONAMENTO DEL DIFFERENZIALE TORSEN B Generalità L avvento dell elettronica in campo automobilistico e la diffusione dei sistemi ABS, ha permesso l introduzione di un altro metodo per ovviare al problema del controllo sulla distribuzione della coppia motrice agli assi condotti tipico del differenziale "aperto". Il controllo elettronico della trazione, utilizzando i sensori ABS, attiva il freno della ruota che gira molto più velocemente sullo stesso asse, cioè a quella con minore aderenza. In questo modo, si può dare gas senza problemi, il differenziale "aperto" manderà una quantità di coppia motrice minore alla ruota che slitta (dove però è assorbita dal freno) e maggiore alla ruota con trazione, che provvederà a far muovere il veicolo. Questo sistema adottato ha la necessità per intervenire che una ruota slitti; questo comporta comunque una perdita di aderenza e di trazione prima che il sistema intervenga, con conseguente riduzione della velocità del veicolo. Inoltre l applicazione del freno sulla ruota con poca aderenza assorbe coppia motrice, riducendone la quantità disponibile per far avanzare il veicolo. Infine, su terreni molto scivolosi, il continuo intervento del sistema può sollecitare pesantemente i freni. Il differenziale TorSen meccanico anticipa gli slittamenti della ruota. La configurazione del differenziale TorSen è più complessa di quella di un differenziale "aperto", permettendo di distribuire la coppia motrice applicata in modo ineguale agli assi condotti nel caso in cui la velocità di rotazione degli assi condotti sia diversa. Prima di iniziare la descrizione del funzionamento del differenziale, occorre introdurre il concetto di TBR o Rapporto di Sbilanciamento di Coppia che vuol dire: Torque (coppia) Bias (deviazione) Ratio (rapporto) che indica il rapporto tra la coppia applicata alla ruota che gira più lentamente rispetto alla coppia applicata alla ruota che gira più velocemente. Ad esempio: TBR = 3 (talvolta il TBR è espresso 1 : 3 ) applicando sull albero conduttore del differenziale una coppia di 2000Nm, quest ultimo trasmetterà 500Nm alla ruota che slitta e 1500Nm alla ruota che ha maggiore trazione.
79 Il vantaggio rispetto un differenziale "aperto" è evidente, la ruota che non slitta riceve una coppia motrice sostanzialmente maggiore a tutto beneficio della trazione. Le Leggi che descrivono il differenziale TorSen sono: I Legge: La velocità di rotazione dell albero conduttore è sempre il valore medio delle velocità degli alberi condotti (come in un differenziale ""aperto"") II Legge: La somma delle coppie disponibili sugli alberi condotti è sempre uguale a quella applicata all albero condotto, ma l albero che ruota più lentamente riceve TBR volte più coppia dell albero che ruota più velocemente. % bloccaggio = (TBR - 1) / (TBR + 1) x100 Si può dire dunque che un TorSen è una sorta di compromesso, che cerca di mantenere il meglio del differenziale "aperto", permettendo agli assi condotti di ruotare a velocità diverse, e un po del buono di un differenziale "bloccato", trasmettendo più coppia motrice alla ruota con maggiore trazione, cosa utile sui terreni con poca aderenza. Il TorSen non distribuisce uniformemente la coppia tra i due assi nelle curve, poiché nelle curve una ruota gira più velocemente dell altra, e il TorSen agisce comunque rispettando la II Legge. L effetto è che il guidatore percepisce una sensazione di auto-raddrizzamento delle ruote, modesta ma avvertibile. In generale, per minimizzare le reazioni al volante sarà conveniente adottare un TorSen con un TBR basso che influenza di meno la guida in curva. Il differenziale TorSen, in poche parole, garantisce una ripartizione dinamica (tra le due ruote anteriori motrici) della trazione in accelerazione ed in rilascio, coerentemente con l aderenza a terra, ottimizzando la stabilità e massimizzando il piacere di guida. In effetti guidando una vettura con sistema Q2, il conducente avverte una maggiore sicurezza che può essere tradotta in sintesi : più tenuta di strada più trazione più stabilità in rilascio meno sottosterzo in accelerazione meno interventi dei controlli elettronici di trazione e stabilità è più piacere di guida. Funzionamento del Torsen B Il differenziale TorSen B è posizionato nel cambio di velocità nella stessa posizione che ha il differenziale anteriore tradizionale. La coppia motrice proveniente dal motore/cambio (11) viene trasmessa alla corona del differenziale la quale è solidale alle due semiscatole (1) e (2). All interno della scatola del differenziale (2) sono ricavate n 5 sedi dove sono alloggiate 5 coppie di planetari (8) con dentatura elicoidale; essi possono ruotare sul proprio asse all interno della loro sede che li contiene.
80 La scatola del differenziale mette in rotazione attorno all asse trasversale del differenziale i planetari (8) che a sua volta trasmettono una coppia di rotazione ai Solari (6 e 7) ingranati per mezzo di una dentatura elicoidali. In cascata i Solari (6 e 7) trasmettono il moto ai semi-assi delle ruote motrici anteriori (9,10). Nel caso in cui la coppia resistente a terra trasmessa dal terreno alla ruote motrici non sia omogenea, ( esempio percorrenza su terreni con aderenza variabile o in curva ), il solare collegato al semiasse della ruota (9 o10) con minore aderenza tenderebbe a ruotare più velocemente dell altro; in queste condizioni sulla dentatura di contatto (solare-planetario) si generano delle spinte assiali ( vedi figura seguente) che si scaricano sugli anelli d attrito, impedendo al solare relativo alla ruota con minore aderenza di girare più velocemente. Legenda: P1a: Planetario P1b: Planetario Sd : scatola differenziale S1: Solare 1 S2: Solare 2 Tr: Coppia motrice applicata In questo modo la coppia erogata dal motore non viene scaricata interamente sulla ruota con minore aderenza ( Differenziale aperto) ma trasferita in buona parte sulla ruota con le migliori condizioni di aderenza ( effetto autobloccante). A seconda delle condizioni ambientali d utilizzo del veicolo TIRO o RILASCIO su terreni con aderenza variabile o in curva, entrano in gioco un numero differente di anelli d attrito ( 3,4,5), i quali sono responsabili della ripartizione differenziata della coppia motrice verso i semi-assi delle ruote motrici anteriori (9,10). Oltre certi valori di bloccaggio il differenziale si apre e permette rotazioni diverse tra i due semiassi delle ruote motrici anteriori (9,10).
81 Schema Funzionale del gruppo epicicloidale ( velocità o giri ingresso cambio = zero ) Nella sottostante figura è illustrato il funzionamento del gruppo epicicloidale nelle condizioni: Motore spento Velocità ingresso cambio zero ( cambio in folle ) Ruote anteriori alzate dal terreno In queste condizioni ruotando la ruota ( esempio destra ) collegata al semiasse R2,si impone una rotazione anche al Solare S2. Quest ultimo collegato, mediante una dentatura elicoidale, trasferisce il moto al planetario P1a e a sua volta al planetario P1b ( i planetari P1a e P1b sono collegati tra di loro mediante dentatura elicoidale). Il planetario P1b è collegato al solare S2, mediante una dentatura elicoidale, quest ultimo trasferisce il moto al semiasse R1 collegato alla ruota ( esempio sinistra ) invertito rispetto al semiasse R2. Nota: nella figura è illustrato il collegamento di un solo gruppo planetario di cinque presenti. Per esigenze illustrative il planetario P1b è stato disegnato due volte per evidenziare il collegamento con il solare S1, ma in realtà e accoppiato al planetario P1a. Legenda: A1: Anelli di attrito inferiori A2: Anelli di attrito centrali A3: Anelli di attrito superiori P1a: Planetario a P1b: Planetario b R1: Semiasse ( esempio sinistro ) R2: Semiasse ( esempio destra ) S1: Solare 1 S2: Solare 2 Di seguito si può vedere il dettaglio dell accoppiamento tra i cinque coppie di planetari e i due solari:
82 Fiat Auto S.p.A Legenda: 1. Coperchio scatola differenziale 2. Scatola differenziale 3. Anelli d attrito inferiori 4. Anelli d attrito centrali 5. Anelli d attrito superiori 6. Solare destro 7. Solare sinistro 8. Planetario 9. Uscita semiasse destro 10. Uscita semiasse sinistro 11. Ingresso coppia motrice mediante corona dentata 12. Vite PE ALFA / Fiat Group S.p.A. - Tutti i diritti sono riservati
83 MECCANICA DI BASE DELLE Fiat Group S.p.A Schema Funzionale del gruppo epicicloidale ( in tiro e rilascio) Il gruppo epicicloidale ha un comportamento autobloccante diverso in base alla condizioni di guida e ambientali diverse. In tiro Il gruppo epicicloidale del differenziale Torsen B in condizioni di guida in Tiro (accelerazione) del veicolo, i solari S1 e S2 attivano gli anelli di attrito (A1) e (A3). In queste condizioni si ha un effetto autobloccante del 25% ( TBR = ). Nota: in tiro l asse che vorrebbe girare più veloce è l asse con meno attrito In rilascio Il gruppo epicicloidale del differenziale Torsen B in condizioni di guida in Rilascio (decelerazione) del veicolo, i solari (S1) e (S2) attivano gli anelli di attrito (A2). In queste condizioni si ha un effetto autobloccante del 28% ( TBR = ). Nota: In rilascio l asse che vorrebbe girare più veloce è l asse con più attrito 83/ Fiat Group S.p.A. - Tutti i diritti sono riservati
84 Fiat Group Automobiles S.p.A. Comportamento dinamico in curva senza Sistema Q2 Percorrendo una curva in condizioni di scarsa aderenza (strada bagnata, innevata, fango, ecc.) spesso ci si trova nella condizione di perdita di aderenza della ruota interna, dovuta al fatto che il differenziale ripartisce la coppia alla ruota più scarica sottraendola a quella esterna che, essendo gravata dal peso aggiuntivo del rollio della vettura, potrebbe sfruttare un attrito complessivo più elevato. In questa situazione si possono avere due risposte diverse a seconda dell equipaggiamento della vettura: Caso1- ABS senza ASR - VDC, il risultato percepito è un pattinamento della ruota interna, una perdita di controllo del veicolo (forte sottosterzo) e la mancanza di accelerazione all uscita della curva. Caso2- ABS dotata di ASR - VDC, l intervento dei sistemi di assistenza alla guida tolgono potenza al motore, intervenendo sulla valvola a farfalla, rendendo di fatto impossibile la modulazione dell acceleratore e dando una sensazione di calo di potenza e interazione con la vettura. In entrambi i casi il risultato è che all uscita di una curva si ha la sensazione di essere fermi. Comportamento dinamico in curva con Sistema Q2 Caso1 - trazione in curva Nel momento in cui la ruota interna inizia a perdere aderenza, il differenziale trasferisce parte della coppia disponibile verso la ruota esterna, prevenendo lo slittamento della ruota interna e generando un momento imbardante che contribuisce a ridurre il sottosterzo. Il sistema Q2 ottimizzando l aderenza contribuisce ad una maggiore stabilità, una più alta velocità di percorrenza della curva, un intervento dei sistemi di controllo del veicolo meno frequenti e invasivi. A tutto vantaggio dei piacere di guida e del pieno controllo del veicolo. 84 / Fiat Group S.p.A. - Tutti i diritti sono riservati
85 Fiat Group Automobiles S.p.A. Caso2 - rilascio in curva Nel rilascio in curva, lo squilibrio di coppia va a favore della ruota esterna, contribuendo a ridurre il sovrasterzo. Comportamento su terreni a scarsa aderenza Comportamento dinamico senza Sistema Q2 Nella marcia su terreni con condizioni di bassa aderenza, spesso succede di avere le ruote motrici in condizioni di diversa motricità. Per esempio, percorrendo una strada dopo una nevicata o una pioggia intensa, una ruota si trova sul margine della carreggiata, a diretto contatto con la neve residua, mentre l altra si trova in una zona già pulita o asciutta. In queste particolari condizioni, una partenza o una forte accelerata porta ad avere uno slittamento della ruota con condizioni critiche di attrito, con forti reazioni sul volante, uno spunto inadeguato e la necessità di effettuare continue correzioni con il volante per mantenere la traiettoria. Comportamento dinamico con Sistema Q2 Gli effetti negativi vengono contrastati grazie al trasferimento progressivo di coppia verso la ruota che può sfruttare il maggiore coefficiente di attrito, rendendo più semplice, ad esempio, una partenza in salita su una strada di montagna e più sicura e confortevole la marcia su tratti di strada con mutevoli condizioni del manto stradale. Insomma, il sofisticato sistema Q2 è l ennesima dimostrazione dell eccellenza Alfa Romeo nella ricerca di soluzioni tecniche orientate alla sicurezza e al piacere di guida. 85 / Fiat Group S.p.A. - Tutti i diritti sono riservati
86 Fiat Group Automobiles S.p.A. LA TRAZIONE INTEGRALE 86 / Fiat Group S.p.A. - Tutti i diritti sono riservati
87 MECCANICA DI BASE DELLE Fiat Group S.p.A LA TRAZIONE INTEGRALE: CENNI STORICI In questo capitolo viene offerta una breve trattazione storica della trazione integrale: dalla sua comparsa ai giorni nostri. Prima della seconda guerra mondiale le applicazioni della trazione integrale sulle auto rappresentarono solo sporadici esperimenti. Infatti il vero capostipite in questo senso si ebbe durante la seconda guerra mondiale, quando il governo americano emanò un bando di concorso per la realizzazione di una vettura agile, robusta ed in grado di disimpegnarsi facilmente in tutte le condizioni, in special modo quelle di scarsa aderenza come terreni fangosi o innevati: il veicolo, la cui vita media era stimata in novanta giorni, era per lo più impiegato in operazioni di ricognizione e perlustrazione. Il concorso fu vinto dalla Bantam, una società di dimensioni modeste, ragione che portò il governo statunitense ad affidare il grosso della produzione alla Willys e al colosso Ford. Particolare fortuna ebbe il modello della Willys che presentava uno schema di trasmissione con trazione permanente sull asse posteriore ed inseribile su quello anteriore. Fig.1: Modello Bantam Fig.2: Modello Willys Fig.3: Modello Ford Il trend iniziato dalla Willys, con la trazione integrale prerogativa della guida off-road continuò nell immediato dopoguerra quando il governo italiano commissionò un veicolo analogo alle Jeep americane: nacquero così le AR 51, acronimo che sta per Autoveicolo da Ricognizione seguito dalla sigla dell anno di costruzione (1951). Tale veicolo venne quindi prodotto da Fiat e Alfa Romeo che in seguito destinarono il veicolo a fini civili cambiandone il nome in Fiat Campagnola e Alfa Romeo Matta. Fig.4: Fiat Campagola: modello del 1959 Fig.5: Alfa Romeo Matta in versione civile e militare 87 / Fiat Group S.p.A. - Tutti i diritti sono riservati
88 MECCANICA DI BASE DELLE Fiat Group S.p.A A partire dagli anni 80 poi la trazione integrale cominciò a non essere più adottata solo per finalità off-road, ma anche per il raggiungimento di standard di sicurezza e prestazioni superiori, in particolar modo in caso di bassa aderenza; questa soluzione prevede generalmente l utilizzo di tre differenziali, di cui uno centrale per garantire una predeterminata ripartizione di coppia sulle ruote motrici. In questa direzione si svilupparono i successivi modelli a trazione integrale fino ad arrivare ai giorni nostri dove l impiego dell elettronica permette di ottenere livelli di efficienza e affidabilità superiori. Qui di seguito sono riportati i più significativi autoveicoli a trazione integrale prodotti dal gruppo Fiat: FIAT ALFA ROMEO LANCIA Fiat CAMPAGNOLA (1951) Alfa Romeo MATTA (1951) Lancia Y10 4WD (1986) Fiat PANDA 4x4 (1983) Alfa Romeo 33 4WD (1983) Lancia PRISMA 4WD (1986) Fiat TEMPRA 4WD (1992) Alfa Romeo 155 Q4 (1992) Lancia DELTA S4 (1986) Alfa Romeo 164 Q4 (1994) Lancia DELTA HF 4WD* (1987) Lancia DEDRA 4WD (1989) * 6 volte consecutive campione del mondo di Rally 88 / Fiat Group S.p.A. - Tutti i diritti sono riservati
89 MECCANICA DI BASE DELLE Fiat Group S.p.A TRAZIONE ANTERIORE, POSTERIORE, INTEGRALE In questo capitolo vengono analizzate le tre tipologie di trazione, mettendone in luce vantaggi e svantaggi. Il capitolo si conclude con un confronto tra le due tipologie di trazione integrale: inseribile e permanente. Trazione anteriore, posteriore, integrale Le automobili sono veicoli spinti da motori a combustione interna che trasformano l energia termica in potenza meccanica, la quale viene trasferita alle ruote. In relazione alle modalità di trasferimento si distinguono veicoli a trazione anteriore, nei quali la potenza viene fornita alle ruote anteriori, veicoli a trazione posteriore, nei quali viene fornita alle ruote posteriori e veicoli a trazione integrale (o quattro ruote motrici o 4x4) in cui tutte e quattro le ruote sono motrici. Per esser più precisi esistono ancora due grandi gruppi nei quali si possono ulteriormente suddividere le auto 4x4: quelle a trazione integrale permanente, che hanno quindi sempre tutte e quattro le ruote motrici, e quelle a trazione integrale inseribile in cui è possibile collegare tutte e quattro le ruote al motore. Riassumendo: Storicamente lo schema che ha incontrato maggior diffusione prevedeva il motore anteriore disposto longitudinalmente e la trazione posteriore: questo perché, a causa dell assenza dei giunti omocinetici, la trazione anteriore presentava il problema di ottenere la sterzata con angoli anche di 45. Inoltre i primi veicoli a trazione anteriore avevano grossi problemi di instabilità dovuti alla forte concentrazione del peso sull anteriore. Oggi lo schema più diffuso, è quello del motore e trazione anteriore in quanto è caratterizzato da indiscutibili vantaggi. Prima di tutto occorre evidenziare la differenza del comportamento stradale dei tre tipi di trazione: per far ciò si introduce il concetto di angolo di deriva, definito come l angolo compreso tra il piano di mezzeria della ruota e la tangente alla traiettoria. L angolo di deriva è dovuto alla deformazione del pneumatico ed è proporzionale alla forza laterale, se questa è inferiore al limite di aderenza; oltre questo limite, il pneumatico inizia a strisciare, cosa che aumenta notevolmente gli angoli di deriva. 89 / Fiat Group S.p.A. - Tutti i diritti sono riservati
90 MECCANICA DI BASE DELLE Fiat Group S.p.A Trazione anteriore Con una vettura a trazione anteriore in curva può succedere, in special modo se si esagera con l'acceleratore o su fondi viscidi, che le ruote anteriori perdano aderenza e il veicolo tenda a descrivere una traiettoria più ampia(il cosiddetto sottosterzo). Ciò accade perché gli angoli di deriva dell avantreno sono superiori rispetto a quelli del retrotreno e quindi le condizioni limite vengono raggiunte prima all avantreno. Il comportamento da adottare per ovviare al problema è quello più naturale, ossia alzare leggermente il piede dall'acceleratore. Fig.8: Sottosterzo rispetto alla traiettoria ideale La funzione matematica che esprime il valore dell angolo di sterzo in funzione della velocità del veicolo V è: = p*(1+kv 2 )/R essendo p il passo della vettura, V la velocità del veicolo, R il raggio di curvatura e K, fattore dipendente dal tipo di trazione: K>0 per veicolo sottosterzante; K=0 per veicolo neutro e K<0 per veicolo sovrasterzante. Il grafico seguente esprime il valore dell angolo di sterzo al variare della velocità V e avendo ipotizzato un raggio di curvatura R costante (si vuole mantenere la traiettoria). 90 / Fiat Group S.p.A. - Tutti i diritti sono riservati
91 Angolo volante MECCANICA DI BASE DELLE Fiat Group S.p.A R=cost Max iniziale V u Sottosterzo Min Velocità Dal grafico possono essere tratte le seguenti conclusioni: min e max sono gli angoli minimo e massimo consentiti dal sistema di sterzo e iniziale rappresenta l angolo volante a inizio traiettoria; in un veicolo sottosterzante per mantenere la traiettoria all aumentare della velocità bisogna aumentare l angolo di sterzo nel verso della curva: in tal caso il veicolo può raggiungere una velocità massima pari a V u oltre la quale allarga la traiettoria perché l angolo volante ha raggiunto il suo valore massimo. Come accennato in precedenza i veicoli a trazione anteriore presentano vantaggi che possono essere riassunti come segue: migliore utilizzo dello spazio destinato all abitacolo e al bagagliaio a causa dell assenza dell albero di trasmissione e del differenziale posteriore, cosa che permette una semplificazione della sospensione posteriore con i relativi vantaggi di peso e di costo; il pavimento e, conseguentemente, il baricentro del veicolo, sono più bassi; rispetto alla trazione posteriore si ha maggior motricità su bassa aderenza: infatti le ruote anteriori traenti consentono il superamento di avvallamenti e buche, sabbia, neve e terreno fangoso al contrario della trazione posteriore che tende, durante la spinta in avanti, a far crescere l ostacolo davanti alle ruote anteriori e ad affondare quelle posteriori, nel tentativo di far superare l ostacolo all assale anteriore. 91 / Fiat Group S.p.A. - Tutti i diritti sono riservati
92 MECCANICA DI BASE DELLE Fiat Group S.p.A Trazione posteriore Sulle vetture a trazione posteriore il problema in curva è l'opposto della trazione anteriore: se si esagera nell'accelerare può accadere che il retrotreno del veicolo tenda a sbandare, comportamento noto con il nome di sovrasterzo. Ciò accade perché gli angoli di deriva del retrotreno sono superiori rispetto a quelli dell avantreno e quindi le condizioni limite vengono raggiunte prima al retrotreno. In questo caso la manovra da fare è molto delicata: occorre togliere potenza al motore, stando però attenti a non toglierne molta, pena aumentare la sbandata del posteriore a causa del trasferimento di carico verso l avantreno, e ridurre l angolo di sterzo, fino a sterzare dalla parte opposta alla curva (controsterzo). E' chiaro che tale manovra richiede maggior sensibilità di guida ed è meno intuitiva di quella delle trazioni anteriori. Fig.9: Sovrasterzo in confronto con la traiettoria ideale I vantaggi del veicolo con trazione posteriore possono essere riassunti come segue: migliore manovrabilità in spazio ristretto e in parcheggio grazie alla possibilità di avere maggiori angoli di sterzo delle ruote anteriori, a causa dei minori ingombri del vano motore: ciò permette inoltre un dimensionamento generoso dei pneumatici anteriori; usura più equilibrata tra i pneumatici anteriori e posteriori in quanto le ruote motrici, non essendo sterzanti, sopportano inferiori forze trasversali; nei confronti della trazione anteriore, la trazione posteriore presenta il vantaggio della motricità su alta aderenza, soprattutto su terreni in salita o durante le forti accelerazioni, a causa del parziale trasferimento di carico dall asse anteriore a quello posteriore: ciò permette di poter sfruttare e, quindi, installare alte potenze motore. 92 / Fiat Group S.p.A. - Tutti i diritti sono riservati
93 Angolo volante MECCANICA DI BASE DELLE Fiat Group S.p.A Poiché i veicoli sovrasterzanti hanno un fattore di stabilità negativo (K< 0) il grafico relativo sarà del seguente tipo: R=cost Max iniziale V cr Sottosterzo Sovrasterzo Min V o Velocità Dal grafico possono essere tratte le seguenti conclusioni: min e max sono gli angoli minimo e massimo consentiti dal sistema di sterzo e iniziale rappresenta l angolo volante a inizio traiettoria; in un veicolo sovrasterzante, all aumentare della velocità, l angolo di sterzo diminuisce fino ad annullarsi in corrispondenza della velocità critica V CR, oltre la quale è necessario sterzare in direzione opposta. Qualora la velocità venisse ulteriormente aumentata, si arriverebbe alla velocità V o, corrispondente al limite fisico dell angolo di sterzata, oltre il quale il veicolo non può più seguire la curva. 93 / Fiat Group S.p.A. - Tutti i diritti sono riservati
94 Angolo volante MECCANICA DI BASE DELLE Fiat Group S.p.A Trazione integrale Le vetture a trazione integrale tendono ad avere un comportamento neutro, cioè a descrivere la stessa traiettoria a bassa ed alta velocità e con lo stesso angolo di sterzo. A tal proposito si consideri però che molti costruttori utilizzano un differenziale centrale per ripartire la coppia "in tempo reale" tra assale anteriore e posteriore: cosa che, se da un lato assicura maggior aderenza, ha come rovescio della medaglia un comportamento del veicolo a volte sottosterzante, altre sovrasterzante. Il grafico seguente è riferito ad ognuna delle tre tipologie di veicolo (sottosterzante, sovrasterzante e neutro). R=cost Max iniziale V cr V u Vo Sottosterzo Neutro Sovrasterzo Min Velocità Dal grafico possono essere tratte le seguenti conclusioni: min e max sono gli angoli minimo e massimo consentiti dal sistema di sterzo e iniziale rappresenta l angolo volante a inizio traiettoria; un veicolo neutro mantiene idealmente sempre lo stesso angolo di sterzata indipendentemente dalla velocità cui affronta la curva. E ovvio che sia preferibile ottenere, per la sicurezza di marcia e l istintività della correzione, comportamenti di tipo neutro o sottosterzante. 94 / Fiat Group S.p.A. - Tutti i diritti sono riservati
95 MECCANICA DI BASE DELLE Fiat Group S.p.A I vantaggi della trazione integrale possono essere riassunti come segue: ripartendo le forze di trazione sulle quattro ruote, si hanno le migliori caratteristiche di motricità, soprattutto nelle situazioni con fondo stradale particolarmente scivoloso. Infatti, nel caso di trazione su un solo asse su, le ruote motrici potrebbero non avere sufficiente trazione per vincere la resistenza delle ruote folli, rendendo impossibile l avviamento del veicolo (es. ruote folli affondate nel fango/sabbia); più ruote che scaricano potenza a terra significa maggior aderenza e soprattutto migliore guidabilità. Si approfondiscono di seguito i principi fisici che giustificano la migliore motricità e la migliore aderenza degli autoveicoli a trazione integrale. Fig.10:veicolo a trazione anteriore Nell ipotesi che la forza peso di un veicolo si distribuisca uniformemente sulle quattro ruote, su un autovettura con trazione su un solo assale la massima forza tangenziale che le ruote di un asse possono scambiare con il terreno è: F=f*G/2 essendo f il coefficiente d attrito e G la forza peso. Fig.11: veicolo a trazione integrale Nelle stesse condizioni un autovettura a trazione integrale, poiché esercita la forza sul terreno attraverso quattro ruote, potrà scambiare una forza complessiva pari a: F=f*G 95 / Fiat Group S.p.A. - Tutti i diritti sono riservati
96 Longitudinale O N G I T u MECCANICA DI BASE DELLE Fiat Group S.p.A Il fatto che le quattro ruote motrici garantiscano una migliore aderenza può essere spiegato come segue: avere 4 ruote motrici anziché 2 permette di ridurre di circa il 50% la forza longitudinale traente sulla singola ruota (a seconda della ripartizione di coppia ricercata); il modello del pneumatico prevede un ellisse limite di aderenza oltre il quale il pneumatico slitta. L ellisse rappresenta l aderenza del pneumatico ed è giustificato dal fatto che l aderenza longitudinale massima è superiore rispetto a quella trasversale. Trasversale a)2 ruote motrici b)4 ruote motrici Come si può intuire dai due grafici sopra riportati, riducendo la componente longitudinale, il limite di aderenza (bordo ellisse) viene raggiunto applicando una forza trasversale superiore (freccia nera): ciò permette di avere una maggiore disponibilità del pneumatico in curva. Sostanzialmente, poi, i veicoli a trazione integrale presentano tutti i vantaggi, ma anche tutti gli inconvenienti delle trazioni anteriori e di quelle posteriori; si aggiunge il fatto che un'auto a trazione integrale consuma di più di una con trazione su un solo asse, soprattutto per il maggior attrito derivante da più masse meccaniche in movimento. Trazione integrale inseribile e permanente Come già accennato in precedenza, la trazione integrale può essere del tipo inseribile o permanente. Nel primo caso si ha una soluzione di tipo utilitario, adatta ad operare in condizioni di bassa aderenza e su strade accidentate, mantenendo il comportamento della vettura a trazione anteriore (o posteriore) da cui deriva. L inserimento della trazione integrale è affidata al conducente. Il vantaggio principale di questa soluzione risiede nella semplicità e, di conseguenza, nel costo poiché non vi è la necessità del differenziale centrale e, non richiedendo prestazioni spinte, si adotta un ponte posteriore rigido. Si osserva che, a causa dell assenza del differenziale centrale, l innesto della trazione integrale in condizioni di marcia su strada, anche bagnata, comporta vibrazioni, sollecitazioni, slittamenti e instabilità in frenata. La soluzione permanente consente di ottenere le migliori caratteristiche di handling e di sfruttare al meglio potenze elevate. In questo caso si ha una maggiore complessità della trasmissione con relativi costi aggiuntivi: infatti il differenziale posteriore è sospeso alla scocca tramite telaio e la sospensione posteriore segue criteri di impostazione tipici delle trazioni posteriori. 96 / Fiat Group S.p.A. - Tutti i diritti sono riservati
97 Fiat Group Automobiles S.p.A. DIFFERENZIALI APERTI In questo capitolo vengono illustrate le funzioni svolte dal differenziale e il suo funzionamento nelle varie condizioni di marcia. Differenziale aperto (open) Il primo differenziale fu realizzato dal francese Pecquer oltre un secolo e mezzo fa. E un dispositivo meccanico che consente di svolgere due compiti fondamentali per la marcia del veicolo: Ripartire equamente la coppia motrice, proveniente dalla trasmissione attraverso una presa di moto, tra i due alberi in uscita dal differenziale, i quali possono essere o i due semiassi solidali alle ruote oppure gli assi per la trasmissione del moto verso l avantreno/retrotreno nel caso in cui il differenziale sia posizionato centralmente; Consentire alle ruote di uno stesso assale oppure alle ruote di due assali diversi di assumere un regime di rotazione differente. Quest ultimo aspetto è particolarmente importante: in curva, infatti, le ruote di un asse sono costrette a percorrere traiettorie diverse; in particolar modo quella seguita dalla ruota esterna ha un raggio più ampio rispetto a quella interna. Fig.12: sterzatura del veicolo rispetto al centro di curvatura C 97 / Fiat Group S.p.A. - Tutti i diritti sono riservati
98 Fiat Group Automobiles S.p.A. La velocità periferica assunta dalla ruota esterna è pertanto superiore, essendo direttamente proporzionale al raggio di curvatura (r 2 >r 1 ). Poiché l espressione di questa velocità dal punto di vista della ruota è V = * r r con r = raggio ruota = velocità angolare ruota v ed essendo direttamente proporzionale al numero di giri della singola ruota, allora la ruota esterna dovrà girare più rapidamente per avere una v maggiore, essendo ovviamente uguale tra le due ruote il raggio r. Il discorso è analogo quando col differenziale si collegano i due assi di una trazione integrale, in quanto le ruote posteriori tendono a tagliare la curva. Il differenziale classico è costituito dai seguenti elementi: presa di moto, ottenuta con pignone (1) e corona conica (2) dentati, per ricevere la coppia proveniente dall albero di uscita del cambio; incastellatura (6) vincolata nel moto alla corona; planetari (5) solidali ai due semiassi ruota; satelliti (3), vincolati nel moto all incastellatura attraverso il perno portasatelliti (4) e ingranati con i planetari. 98 / Fiat Group S.p.A. - Tutti i diritti sono riservati
99 Fiat Group Automobiles S.p.A pignone conico corona conica satelliti perno portasatelliti planetari scatola semiasse destro semiasse sinistro Fig.13: sezione di un differenziale aperto 99 / Fiat Group S.p.A. - Tutti i diritti sono riservati
100 Fiat Group Automobiles S.p.A. Per descriverne il funzionamento verranno ora analizzate differenti condizioni di marcia. Marcia rettilinea con uguali condizioni di aderenza In marcia rettilinea e con eguali condizioni di aderenza per le ruote motrici la coppia viene equamente ripartita (50%-50%) tra i due semiassi nel seguente modo: la coppia giunge alla presa di moto, la corona la trasmette all incastellatura, solidale al perno portasatelliti, costringendo così ad un moto di rivoluzione i satelliti stessi; questi ultimi perciò ruotano non intorno al proprio asse ma intorno all asse ruota, trascinando i planetari che trasmettono infine la coppia ai semiassi e quindi alle ruote, le quali (in queste particolari condizioni di marcia) compiono lo stesso numero di giri. C, n C s, n s C d, n d Fig.14: marcia rettilinea con uguali condizioni di aderenza con C s = C d n s = n d C = 2 * C s = 2 * C d n = 2 * n s = 2 * n d dove C = coppia motrice sulla scatola n = numero di giri scatola C s = coppia sulla ruota sinistra n s = numero di giri ruota sinistra C d = coppia sulla ruota destra n d = numero di giri ruota destra 100 / Fiat Group S.p.A. - Tutti i diritti sono riservati
101 Fiat Group Automobiles S.p.A. IN CURVA CON UGUALI CONDIZIONI DI ADERENZA In curva la distribuzione della coppia non cambia, tuttavia il differenziale deve consentire alle ruote collegate di ruotare diversamente. Questa funzione viene svolta attraverso l azione dei satelliti: i due planetari (collegati alle ruote), per i motivi già visti, ruotano a velocità differenti; i satelliti, oltre al moto di rivoluzione fornito attraverso la scatola, sono soggetti ad una rotazione intorno al proprio asse per effetto della differenza di velocità tra i due planetari. E proprio questo moto dei satelliti a consentire alla ruota esterna di accelerare e all interna di rallentare. C, n n d C s n s C d Fig.15: in curva con uguali condizioni di aderenza con n s > n e n d < n C s = C d = C/2 101 / Fiat Group S.p.A. - Tutti i diritti sono riservati
102 Fiat Group Automobiles S.p.A. DIFFERENTI CONDIZIONI DI ADERENZA Il differenziale aperto ha un grosso limite: la sua azione non consente di avviare il veicolo se anche solo una delle ruote motrici si trova in condizione di scarsa aderenza o sia sollevata da terra. In questo caso infatti, sulla ruota in questione non è applicata coppia resistente, quindi la potenza che le arriva si trasforma tutta in velocità di rotazione: P = C x Dall espressione della potenza è chiaro che se la coppia è molto bassa, deve necessariamente crescere per mantenere la potenza costante. La ruota senza aderenza slitta quindi a velocità elevata, mentre l altra resta ferma in quanto non gli arriva coppia sufficiente ad avviare la marcia del veicolo. Per come costruito infatti, il differenziale ripartisce equamente la coppia: se da un lato non ne arriva allora non ne arriva neanche dall altra parte. C, n C s n d C d con Fig.16: ruota destra su fondo a scarsa aderenza n s = 0 (non visualizzato in figura) n d = 2 * n C d 0 C s = C d La ruota sinistra quindi resta ferma, di conseguenza anche il suo planetario; i satelliti invece, già soggetti al moto di rivoluzione impresso dalla scatola, ruotano su se stessi consentendo alla destra di accelerare liberamente fino alla velocità massima consentitale dal differenziale, che è doppia rispetto alla scatola. In formule: n = (n s + n d ) / 2 n d = 2 * n + n s Da queste espressioni è immediato osservare che il regime della scatola è dato dalla semisomma dei regimi delle due ruote che, come già visto, possono anche non coincidere (es. in curva). Supponendo che sia la ruota destra a slittare e quella sinistra a star ferma, si osserva subito ribaltando l espressione che n s è due volte n (n s = 0). 102 / Fiat Group S.p.A. - Tutti i diritti sono riservati
103 MECCANICA DI BASE DELLE Fiat Group S.p.A UTILIZZO DEI DIFFERENZIALI BLOCCABILI Questo capitolo tratta del bloccaggio del differenziale illustrando il concetto di bloccaggio e il suo scopo. Vengono poi prese in esame tutte le tipologie per ottenere il bloccaggio. Differenziali bloccabili (locked) Questi differenziali sono bloccabili e permettono di superare il limite manifestato da quelli aperti. Quando per una ruota sussistono condizioni di scarsa aderenza, con i locked la coppia viene scaricata sulla ruota che fa presa, consentendo così l avviamento del veicolo. Bloccare il differenziale significa rendere in qualche modo solidali i semiassi collegati alle ruote (e quindi i rispettivi planetari) con la scatola del differenziale. In questo modo il differenziale perde parte della sua funzionalità, non consentendo alle ruote di girare a velocità diverse. Una volta bloccato, il differenziale è come se non esistesse: i due semiassi si comportano come se fossero un elemento unico, su cui è disponibile tutta la coppia motrice, e le due ruote devono girare allo stesso numero di giri. Questa coppia si distribuisce alle ruote automaticamente in funzione delle condizioni di aderenza: la ruota che slitta ha una coppia resistente molto bassa e gira veloce; l altra ruota, essendo ormai rigido il collegamento, gira alla stessa velocità, ma avendo aderenza col terreno richiede una coppia motrice elevata per vincere le resistenze al moto. Quindi tutta la coppia motrice, meno la quota molto piccola che si scarica sulla ruota che slitta, viene indirizzata sulla ruota che ha trazione. C, n C d C s n s n d Fig.17: ruota destra su fondo a scarsa aderenza; comportamento con differenziale bloccabile dove C = coppia motrice sulla scatola n = numero di giri scatola C s = coppia sulla ruota sinistra n s = numero di giri ruota sinistra C d = coppia sulla ruota destra n d = numero di giri ruota destra con n s = n d = n (i due semiassi sono solidali e hanno pari velocità) C s > C d C s + C d = C I differenziali bloccabili sono caratterizzati dalla cosiddetta percentuale di bloccaggio, che rappresenta la percentuale di coppia in più che arriva alla ruota che ha trazione rispetto a quanta ne arriverebbe se avessimo il differenziale sbloccato. Se per esempio avessimo un bloccaggio del 40%, la coppia tenderebbe a distribuirsi come segue: 50% + 0,4 * 50% = 70% sulla ruota con aderenza 103 / Fiat Group S.p.A. - Tutti i diritti sono riservati
104 MECCANICA DI BASE DELLE Fiat Group S.p.A % - 70% = 30% sulla ruota che non ha aderenza Questa espressione è valida solo partendo da una ripartizione equa di coppia tra le due ruote (50%), e si verifica esclusivamente, quando la ruota con minore aderenza ne ha comunque a sufficienza per scaricare a terra una coppia pari al 30% di quella entrante nel differenziale. Idem per l altra ruota. Se l aderenza non è invece sufficiente, sulla ruota che ha trazione arriva una coppia pari a quella della ruota che slitta (quasi nulla) più il 40% di quella entrante nel differenziale. Se la ripartizione iniziale della coppia fosse diversa dal 50%, bisognerebbe impiegare formule dedicate un po più complesse, per tener conto della ripartizione di coppia indotta dal differenziale centrale, anche se per avere un ordine di grandezza l espressione adoperata in precedenza può essere comunque utilizzata, specialmente se la ripartizione iniziale è vicina al 50%. I differenziali bloccabili possono essere ad azionamento manuale o automatico, presentando molteplici soluzioni per il bloccaggio. DIFFERENZIALI BLOCCABILI A BLOCCAGGIO MANUALE AUTOBLOCCANTI 1. con dispositivo meccanico 1. con dischi di frizione 2. elettropneumatico 2. con fluido viscoso 3. a depressione 3. Torsen 104 / Fiat Group S.p.A. - Tutti i diritti sono riservati
105 MECCANICA DI BASE DELLE Fiat Group S.p.A Bloccaggio manuale Il bloccaggio del differenziale è attuato direttamente dal pilota attraverso una leva o un interruttore dall interno della vettura. Il bloccaggio può verificarsi grazie all azione di un manicotto scorrevole che rende solidale un semiasse con la scatola del differenziale L azionamento può essere meccanico o elettropneumatico: nel primo caso si adotta un sistema di leve, nel secondo si agisce attraverso pistoncini pneumatici comandati da un compressore elettrico. Particolare soluzione è quella in cui si utilizza sempre un cilindro pneumatico, azionato però dalla depressione generata dal moto dell asta di guida del manicotto di bloccaggio: in questo modo si ottiene maggiore semplicità costruttiva, riduzione di dimensioni e costi grazie all eliminazione di tubazioni e centraline elettropneumatiche. Questi differenziali portano ad un bloccaggio del 100%, cioè il 100% della forza di trazione può andare sulla ruota nelle migliori condizioni di aderenza. In questo modo viene aumentata la motricità, consentendo al veicolo di disimpegnarsi dalle situazioni in cui una delle due ruote di un asse tenda a slittare a causa della scarsa aderenza del fondo. Il bloccaggio è inoltre applicato frequentemente sul differenziale/ripartitore di coppia centrale nel caso di un veicolo a trazione integrale: la coppia viene rigidamente ripartita ma stavolta tra asse anteriore e posteriore. Il vantaggio di questa soluzione è appunto l aumentata motricità, ma il bloccaggio deve essere effettuato solo, quando effettivamente la situazione lo richieda, per brevi tratti, a bassa velocità e non in curva. La dinamica del veicolo cambia completamente: le due ruote di uno stesso asse e/o le ruote dei due assali sono costrette a girare alla stessa velocità, rendendo pericolosa la guida del veicolo in curva (il differenziale è stato creato apposta per questo motivo!!). Inoltre gli organi della trasmissione vengono fortemente sollecitati. Basti pensare al semiasse della ruota che ha trazione, il quale deve esser dimensionato per sopportare una coppia doppia rispetto a quella di un differenziale aperto, nel caso in cui tutta o quasi tutta la coppia venisse trasferita alla ruota con aderenza. Il bloccaggio manuale è pertanto presente solitamente sulle trazioni integrali più esasperate. 105 / Fiat Group S.p.A. - Tutti i diritti sono riservati
106 MECCANICA DI BASE DELLE Fiat Group S.p.A Fig.18: differenziale a bloccaggio pneumatico (Fiat TEMPRA 4x4) 106 / Fiat Group S.p.A. - Tutti i diritti sono riservati
107 MECCANICA DI BASE DELLE Fiat Group S.p.A Autobloccanti Il bloccaggio del differenziale avviene automaticamente, senza cioè che sia legato all azionamento del conducente. L obiettivo è sempre lo stesso, consentire la ripartizione della coppia verso l asse o la ruota aventi maggiore aderenza, favorendo così il miglioramento della motricità anche nelle più impegnative condizioni di marcia. La coppia motrice viene ripartita sulla base della differenza di velocità (speed sensing) o di coppia (torque sensing) tra le ruote/assi connessi al differenziale, differenza rilevata automaticamente dal differenziale stesso. Nel primo caso il differenziale si blocca quando rileva una differenza di velocità tra gli alberi di ingresso/uscita; nel secondo caso invece quando viene rilevata una differenza di coppia resistente. Il discorso è analogo, in quanto la differenza di velocità si manifesta, quando c è una differenza di coppia resistente e quindi di aderenza, ma il differenziale si accorge dell uno o dell altro in base alle proprie caratteristiche costruttive. Le differenze rispetto al bloccaggio manuale sono notevoli. Il vantaggio principale offerto da un autobloccante è il seguente: è sempre attivo, non solo quando lo decide il conducente, migliorando quindi la motricità del veicolo grazie ad un opportuna distribuzione di coppia in qualsiasi istante, soprattutto quando gli slittamenti e le perdite di aderenza sono limitate e sarebbe eccessivo il bloccaggio manuale. Tuttavia presenta anche dei limiti, legati proprio al fatto che è sempre attivo: poiché agisce sempre, non è possibile raggiungere percentuali di bloccaggio molto elevate (di norma tra il 25% e il 40%). Se così fosse il comportamento del veicolo diventerebbe imprevedibile. Con percentuali di bloccaggio elevate si possono presentare queste condizioni: DIFFERENZIALE AUTOBLOCCANTE MONTATO SU UN ASSE le ruote girerebbero alla stessa velocità in tutte le curve, anche in quelle percorse più veicolo tenderebbe ad andare dritto. velocemente, e il DIFFERENZIALE AUTOBLOCCANTE IN POSIZIONE CENTRALE il veicolo manifesta comportamenti a tratti sottosterzanti e a tratti sovrasterzanti: la coppia, distribuita dal differenziale verso l asse a maggiore aderenza, potrebbe andare prevalentemente al retrotreno (sovrasterzante) piuttosto che all avantreno (sottosterzante), modificando nettamente e improvvisamente il comportamento del veicolo, cogliendo impreparati i piloti meno esperti. Un autobloccante provoca sempre questi salti di coppia da un asse all altro, anche per bloccaggi limitati, ma più la percentuale di bloccaggio è elevata più questo aspetto diventa ingestibile. E opportuno osservare che oltre alle condizioni del terreno, è sufficiente il trasferimento di carico in curva o in accelerazione/decelerazione, o ancora più semplicemente un pneumatico sgonfio, per modificare le condizioni di aderenza di assali/ruote, facendo così entrare in azione l autobloccante. E per questi motivi che è necessario limitare la percentuale di bloccaggio, in maniera tale che oltre certi limiti l azione di bloccaggio si esaurisca, permettendo al differenziale di svolgere la sua funzione primaria, cioè di consentire alle ruote di girare a regimi differenti. Questo è ovviamente fondamentale in curva, dove il bloccaggio automatico facilita l inserimento della vettura, mentre quando le forze in gioco superano i limiti previsti, il differenziale si sblocca e agisce come un aperto. 107 / Fiat Group S.p.A. - Tutti i diritti sono riservati
108 MECCANICA DI BASE DELLE Fiat Group S.p.A Autobloccante con dischi di frizione Con questa soluzione, vengono introdotti dei dischi di frizione solidali alla scatola e posti a contatto con i planetari: quando una ruota slitta, il planetario ruoterebbe più veloce della scatola, ma (entro certi limiti) viene rallentato proprio dall azione di questi dischi, che portano quindi le due ruote ad avere la stessa velocità di rotazione. Di nuovo, come per il bloccaggio manuale, il differenziale perde la propria funzione, e collega rigidamente le due ruote. La coppia viene ripartita in base alle condizioni di aderenza dei pneumatici. scatola risalti interni spingidisco disco frizione perno satelliti satelliti planetari disco frizione molla a tazza Fig.19: Esploso di un autobloccante, in cui è possibile notare la presenza dei dischetti di frizione 108 / Fiat Group S.p.A. - Tutti i diritti sono riservati
109 MECCANICA DI BASE DELLE Fiat Group S.p.A Ferguson come differenziale centrale In questo caso il giunto viene utilizzato come organo di collegamento tra gli assi anteriori/posteriori, senza l aggiunta di altri differenziali o riduttori. Al massimo è possibile l introduzione di un riduttore epicicloidale tra giunto e ponte posteriore, non con funzione di ripartitore ma esclusivamente di amplificatore della differenza di velocità tra ingresso e uscita del giunto, al fine di rendere più rapido e sensibile il suo intervento. Con questa configurazione è possibile realizzare una trazione integrale non proprio permanente, ma inseribile automaticamente. In condizioni ideali, in cui asse anteriore e posteriore si trovino nelle stesse condizioni di aderenza, la trazione è al 100% su un solo asse, ad esempio quello anteriore. Nel momento in cui si genera una minima differenza di velocità tra i due assi interviene automaticamente il giunto, ripartendo parte della coppia sull asse posteriore. In questo modo la trazione è integrale solo quando effettivamente necessario, e la coppia viene distribuita in percentuali opportune tra i due assi proprio in funzione delle reali condizioni di aderenza, rilevate attraverso la differenza di velocità tra gli alberi. In realtà, anche in condizioni di marcia ideali parte della coppia va a finire sull asse posteriore, seppur in percentuali molto piccole (circa 2-3%). Questo perché a freddo il fluido del giunto possiede comunque un minimo valore di viscosità tale da trasferire coppia. Vista la semplicità applicativa, la flessibilità d impiego e i costi decisamente ridotti rispetto a differenziali locked di altro tipo, il giunto viscoso è un dispositivo particolarmente diffuso sia come dispositivo di bloccaggio che come differenziale centrale per una trazione integrale inseribile automaticamente. Naturalmente presenta anche dei limiti, che sono intrinsecamente legati al suo principio di funzionamento. Per poter intervenire è necessario raggiungere le condizioni di slittamento, perciò agisce solo dopo che è stata persa aderenza. Inoltre deve trascorrere il tempo sufficiente a riscaldare il fluido. Naturalmente questo tempo è limitato, ma rende comunque lenta la risposta del giunto, soprattutto in relazione ai dispositivi meccanici di bloccaggio dei differenziali, che invece agiscono in tempo reale. Inoltre un uso prolungato del veicolo nella guida off-road, con continui interventi del giunto, rende difficile il raffreddamento dell olio, con una conseguente riduzione di sensibilità e precisione della risposta. 109 / Fiat Group S.p.A. - Tutti i diritti sono riservati
110 MECCANICA DI BASE DELLE Fiat Group S.p.A DIFFERENZIALI TORSEN In questo capitolo si illustrano le varie tipologie di differenziali Torsen analizzandone il funzionamento nelle diverse condizioni di marcia ed evidenziandone i vantaggi e gli svantaggi reciproci. Differenziali torsen Il Torsen è un differenziale autobloccante sensibile alle differenze di coppia (Tor = torque ; sen = sensing) che utilizza una complessa geometria degli ingranaggi al fine di: differenziare la velocità delle ruote o dei due assi in curva, a seconda che sia montato rispettivamente su un asse oppure in posizione centrale; evitare lo slittamento di una ruota o entrambe (in caso di Torsen centrale) in condizioni di scarsa aderenza, forzando la coppia ad andare verso la ruota o l asse a maggiore aderenza. Esistono tre diverse tipologie di Torsen, classificati come A, B o C. Differiscono l uno dall altro per la diversa geometria degli ingranaggi, ma il principio di funzionamento per ottenere il bloccaggio è lo stesso nelle tre configurazioni. 110 / Fiat Group S.p.A. - Tutti i diritti sono riservati
111 MECCANICA DI BASE DELLE Fiat Group S.p.A Torsen A Il principio di funzionamento del Torsen A è legato alla geometria degli ingranaggi, e in particolar modo all accoppiamento vite senza fine/ruota a dentatura elicoidale. Questo accoppiamento, in particolari condizioni, consente il moto in una sola direzione: la vite senza fine può far ruotare l ingranaggio elicoidale, ma non può avvenire il contrario. La ruota a denti elicoidali, che nel Torsen è rappresentata dai satelliti, non può quindi mai trasmettere il moto, attraverso la sua rotazione, alla vite senza fine, rappresentata dai planetari. La condizione di irreversibilità si realizza solo per il moto di rotazione dei satelliti intorno al proprio asse; nel moto di rivoluzione invece, ovvero quando i satelliti ruotano intorno all asse dei planetari, i satelliti possono portare in rotazione i planetari. E proprio attraverso questa irreversibilità del moto, ottenibile con determinate condizioni di attrito interno e angolo d inclinazione dell elica dei denti, che si realizza il bloccaggio automatico del differenziale. Facendo riferimento alla figura sottostante, gli elementi che costituiscono il Torsen A sono: una scatola esterna (1), che riceve il moto dalla trasmissione attraverso una corona conica (non presente in figura ma solidale alla scatola) due planetari (5), montati coassiali e affacciati frontalmente, costituiti da due viti senza fine, solidali ai semiassi ruota (2) oppure, nel caso di Torsen centrale, solidali agli alberi per trasmettere il moto ad avantreno/retrotreno tre coppie di satelliti (3), costituiti da ingranaggi elicoidali, imperniati alla scatola da cui vengono trascinati nel moto di rivoluzione, ingranati coi planetari (accoppiamento vite senza fine/ingranaggio elicoidale) e ingranati tra di loro attraverso le dentature di concatenamento (4) alle estremità Fig.22: Torsen A 5 1. scatola 2. semiassi 3. satelliti 4. ingranaggi di concatenamento 5. planetari E necessario analizzare il funzionamento del differenziale nelle differenti condizioni di marcia. 111 / Fiat Group S.p.A. - Tutti i diritti sono riservati
112 MECCANICA DI BASE DELLE Fiat Group S.p.A Marcia rettilinea con aderenza uguale sulle ruote La coppia motrice proveniente dalla trasmissione viene trasmessa alla scatola attraverso la corona conica. La scatola costringe le tre coppie di satelliti a ruotare intorno ai planetari (moto di rivoluzione), senza ruotare su se stessi. I satelliti trascinano quindi i planetari con i quali sono ingranati, portandoli in rotazione. In queste condizioni di marcia, le ruote hanno lo stesso numero di giri e la coppia motrice viene equamente ripartita: il Torsen si comporta come un normale differenziale aperto. I satelliti, non ruotando su se stessi, agiscono come chiavette rendendo rigido il collegamento. Questo avviene perché, anche se i satelliti tendessero a ruotare su se stessi, il moto sarebbe automaticamente impedito dalla geometria dell accoppiamento: per costruzione, i satelliti dovrebbero ruotare nello stesso verso, ma essendo tra loro connessi attraverso gli ingranaggi di concatenamento, restano bloccati. Come noto infatti due ruote dentate per poter ingranare tra loro devono avere versi di rotazione differenti. Fig.23: ingranaggi di concatenamento dei satelliti I satelliti agiscono da chiavette perché, come visualizzato in figura, tenderebbero a ruotare nello stesso verso quindi, essendo ingranati attraverso gli ingranaggi di concatenamento, restano bloccati. 112 / Fiat Group S.p.A. - Tutti i diritti sono riservati
113 MECCANICA DI BASE DELLE Fiat Group S.p.A Fig.24: marcia rettilinea con uguali condizioni di aderenza con differenziale Torsen con C s = C d n s = n d C = 2 * C s = 2 * C d n = 2 * n s = 2 * n d dove C = coppia motrice sulla scatola n = numero di giri scatola C s = coppia sulla ruota sinistra n s = numero di giri ruota sinistra C d = coppia sulla ruota destra n d = numero di giri ruota destra In curva con uguali condizioni di aderenza La coppia motrice arriva alla scatola, da qui ai satelliti e infine ai planetari. A differenza di prima ora la traiettoria curvilinea impone alle ruote, quindi ai planetari, di ruotare a velocità diverse. Questo è consentito dalla presenza dei satelliti. In marcia rettilinea essi sono bloccati perché ruoterebbero nello stesso verso e alla stessa velocità. Qui invece si verifica questa situazione: il planetario che accelera (ruota esterna) ruota più velocemente della scatola; conseguentemente il satellite corrispondente è costretto a ruotare su se stesso per compensare la differenza di velocità e consentire al planetario di accelerare. All altra estremità il planetario rallenta rispetto alla scatola (ruota interna); il satellite corrispondente compensa la differenza di velocità girando su se stesso, ma questa volta in senso contrario rispetto all altro perché deve consentire al planetario di rallentare e non di accelerare. Rispetto alla marcia rettilinea, ora i due satelliti possono ruotare su se stessi, perché possiedono uguale velocità ma versi di rotazione opposti. Di nuovo il Torsen si comporta come un differenziale aperto. 113 / Fiat Group S.p.A. - Tutti i diritti sono riservati
114 MECCANICA DI BASE DELLE Fiat Group S.p.A Fig.25: ingranaggi di concatenamento dei satelliti Fig.26: in curva con uguali condizioni di aderenza con differenziale Torsen con n s > n e n d < n C s = C d = C/2 114 / Fiat Group S.p.A. - Tutti i diritti sono riservati
115 MECCANICA DI BASE DELLE Fiat Group S.p.A Differenti condizioni di aderenza Le proprietà di questo differenziale sono messe in luce quando una ruota si trova su un terreno a scarsa aderenza, condizione per cui con un open la ruota slitterebbe senza consentire l avviamento del veicolo. Nel Torsen questo non si verifica, grazie all irreversibilità del moto dovuta alle condizioni di accoppiamento planetario/satellite. La coppia motrice arriva alla scatola, da qui ai satelliti e infine ai planetari. Uno dei due planetari, quello solidale alla ruota dotata di scarsa aderenza, tenderebbe ad accelerare rispetto alla scatola (la ruota slitta). Il satellite ingranato col planetario dovrebbe allora ruotare su se stesso per consentire alla ruota di slittare, ma essendo ingranato con l altro satellite, questa rotazione non può verificarsi. Infatti quest ultimo dovrebbe, essendo ingranati, ruotare alla stessa velocità ma in verso opposto; ma per ruotare in questo modo, dovrebbe forzare la rotazione del planetario corrispondente. Essendo però il moto irreversibile, questo satellite non può portare in rotazione il suo planetario, quindi si blocca. Di nuovo, come nella marcia rettilinea, i satelliti sono bloccati rendendo rigido il collegamento: le ruote sono costrette a girare alla stessa velocità e la coppia viene distribuita in proporzioni differenti in funzione delle effettive condizioni di aderenza al contatto strada-pneumatico. Fig.27: ingranaggi di concatenamento dei satelliti In figura si osserva che, supponendo che sia la ruota di sinistra a perdere aderenza, il satellite di destra dovrebbe mettersi in rotazione alla stessa velocità, spinto dal satellite adiacente. Per ruotare, il satellite destro dovrebbe far girare il suo planetario che invece è fermo o comunque più lento, ma questo non è possibile per la condizione di irreversibilità del moto. Il Torsen si blocca. Fig.28: ruota destra su fondo a scarsa aderenza; comportamento con differenziale Torsen 115 / Fiat Group S.p.A. - Tutti i diritti sono riservati
116 MECCANICA DI BASE DELLE Fiat Group S.p.A Torsen B scatola 2. semiassi 3. satelliti ad assi paralleli 4. planetari Fig.29: Torsen B Il principio di funzionamento è analogo a quello del Torsen A. La differenza sostanziale è rappresentata dalla geometria dei satelliti, che non sono più costituiti da coppie di ingranaggi elicoidali concatenati tra loro, ma sono realizzati in un unico elemento sviluppato assialmente: gli assi dei due satelliti sono quindi coincidenti. Questa soluzione permette di limitare le forze scambiate tra gli ingranaggi, aumentando la durata del differenziale, limitando le vibrazioni e garantendo un funzionamento più dolce. Inoltre la maggior lunghezza degli ingranaggi dovuta allo sviluppo longitudinale dei satelliti assicura una maggiore flessibilità d impiego, consentendone l applicazione anche sull asse anteriore, cosa non possibile con il Torsen A. 116 / Fiat Group S.p.A. - Tutti i diritti sono riservati
117 MECCANICA DI BASE DELLE Fiat Group S.p.A Torsen C Scatola Planetari Satelliti Anelli di frizione Fig.30: esploso di un Torsen C 117 / Fiat Group S.p.A. - Tutti i diritti sono riservati
118 MECCANICA DI BASE DELLE Fiat Group S.p.A Fig.31: sezione di un Torsen C Il Torsen C è un differenziale i cui ingranaggi presentano una configurazione epicicloidale. I principali elementi che costituiscono il differenziale sono: planetario connesso all albero in ingresso attraverso profilo scanalato, costituito da una corona dentata esternamente con denti elicoidali (2); planetario connesso all albero in uscita attraverso profilo scanalato, costituito da una corona dentata internamente con denti elicoidali (2); satelliti (3), costituiti da viti senza fine e imperniati sulla scatola, da cui ricevono il moto di rivoluzione; elementi di frizione (4), costituiti da dischetti metallici con superfici ad alto coefficiente d attrito; scatola esterna (1) che riceve il moto attraverso corona dentata. Per costruzione il Torsen C non può ripartire la coppia equamente sui due alberi, in quanto le corone dei due planetari hanno diametro diverso essendo concentriche e per poter ingranare le dimensioni dei denti devono coincidere; quindi i due planetari dovranno necessariamente possedere un diverso numero di denti, realizzando così un riduttore/moltiplicatore epicicloidale. Per questo motivo il Torsen C trova applicazione esclusivamente come ripartitore centrale di coppia. Di nuovo si analizza il funzionamento nelle diverse condizioni di marcia. 118 / Fiat Group S.p.A. - Tutti i diritti sono riservati
119 MECCANICA DI BASE DELLE Fiat Group S.p.A Marcia rettilinea con uguali condizioni di aderenza Le ruote dell asse anteriore e posteriore viaggiano alla stessa velocità e con uguali condizioni di aderenza, quindi senza slittamenti relativi. La coppia motrice giunge alla scatola, che ruotando costringe i satelliti ad un moto di rivoluzione intorno all asse longitudinale del differenziale. I satelliti non ruotano su se stessi, in quanto non esiste differenza di velocità tra asse posteriore e anteriore. Attraverso il moto di rivoluzione, i satelliti trascinano i due planetari, e la coppia viene ripartita tra i due assi in base al rapporto tra i numeri di denti degli stessi planetari. In curva con uguali condizioni di aderenza In curva le ruote dei due assi percorrono traiettorie differenti: in particolar modo quelle posteriori seguono una traiettoria più stretta, quindi girano a velocità inferiore di quelle anteriori. Il Torsen C deve consentire ai due assi di differenziare le velocità. Questa funzione è raggiunta attraverso l azione dei satelliti che, oltre a mantenere il moto di rivoluzione per trasmettere la coppia ai planetari, ruotano su se stessi compensando la differenza di velocità tra i due planetari. La coppia, se le condizioni di aderenza restano uguali sui due assi, viene ripartita come nella marcia rettilinea. Differenti condizioni di aderenza I due assi si trovano in differenti condizioni di aderenza: il differenziale è progettato per fare in modo che la coppia venga ripartita in modo da fluire prevalentemente verso le ruote che fanno presa sul terreno, in quantità proporzionale alle condizioni stesse di aderenza. Questo è possibile grazie agli elementi di frizione presenti all interno del differenziale. Quando le ruote di un asse perdono aderenza la coppia scapperebbe in quella direzione, facendole accelerare, e facendo accelerare il corrispondente planetario rispetto alla scatola. Per poter accelerare, il planetario dovrebbe portare in rotazione anche i satelliti, per compensare la differenza di velocità rispetto alla scatola. Ma non appena i denti del planetario spingono quelli dei satelliti, per effetto dell angolo di inclinazione dell elica dei denti, si genera una forza assiale, che spinge per reazione lo stesso planetario contro le superfici d attrito. In questo modo il planetario viene frenato e costretto a ruotare alla stessa velocità della scatola. Il differenziale si blocca, i due assi sono costretti a ruotare alla stessa velocità e la coppia quindi si indirizza verso l asse con maggior coppia resistente, ovvero dove c è la maggiore aderenza. Essendo sempre attivo, il Torsen C deve, come tutti gli autobloccanti, avere una percentuale di bloccaggio limitata e ben lontana dal 100%, per i motivi già osservati. Oltre certi valori di differenza di velocità ben definiti, le superfici d attrito non sono più in grado di mantenere bloccato il differenziale: il differenziale si apre consentendo agli assi di ruotare a velocità differenti. Nonostante il differenziale si apra, la coppia viene comunque ancora ripartita verso l asse a maggiore aderenza, in quanto è vero che ora lo slittamento del planetario è consentito perché l attrito degli elementi di frizione non è sufficiente a bloccarlo completamente, ma è anche vero che comunque il planetario viene frenato per quanto possibile dall elemento di attrito. Quindi la coppia viene ancora distribuita, per effetto degli elevati attriti interni, come se fosse bloccato con le proporzioni corrispondenti alla massima percentuale di bloccaggio raggiungibile dal differenziale, pur consentendo agli assi di avere velocità diverse: questa condizione è voluta per migliorare la dinamica del veicolo in curva, in quanto il differenziale si blocca inizialmente, garantendo la corretta distribuzione di coppia se le condizioni di aderenza sono differenti, ma si sblocca quando, percorrendo la curva, le sollecitazioni diventano elevate, permettendo la differenziazione corretta delle velocità dei due assi. Inoltre il Torsen C può manifestare un differente comportamento in tiro (accelerazione) e in rilascio (decelerazione): nelle due condizioni infatti le forze assiali sono orientate in maniera opposta, provocando un diverso impacchettamento degli elementi di frizione, disposti volutamente in modo asimmetrico rispetto al piano di simmetria del differenziale. E così possibile per esempio ottenere un bloccaggio più alto nel caso in cui, in rilascio, la coppia frenante del 119 / Fiat Group S.p.A. - Tutti i diritti sono riservati
120 MECCANICA DI BASE DELLE Fiat Group S.p.A propulsore debba essere trasferita all asse anteriore, essendo questo l asse a maggiore aderenza, migliorando così il comportamento in frenata del veicolo. Indipendentemente dalla configurazione (A, B o C), i Torsen sono confrontabili tra loro attraverso il cosiddetto TBR (Torque Bias Ratio = rapporto di sbilanciamento di coppia), che indica il rapporto tra la coppia che arriva alla ruota che ha aderenza rispetto alla coppia che arriva all altra. Per esempio: TBR 1 : 3 ¾ della coppia motrice disponibile andranno sulla ruota che ha aderenza e ¼ sull altra A titolo di esempio, sono qui esposti alcuni valori di TBR per Torsen A e B prodotti dalla Toyoda, in relazione all applicazione su assi anteriori/posteriori o in posizione centrale: TBR Torsen A TBR Torsen B 120 / Fiat Group S.p.A. - Tutti i diritti sono riservati
121 MECCANICA DI BASE DELLE Fiat Group S.p.A Il TBR è ovviamente dipendente dalle caratteristiche costruttive del differenziale, ed è direttamente legato alla percentuale di bloccaggio massima. La relazione che li lega è: %bloccaggio = (TBR 1) / (TBR + 1) I differenziali Torsen presentano le stesse opportunità e limiti offerti dai comuni autobloccanti. Il sistema di bloccaggio di tipo meccanico offre maggiori vantaggi in termini di sensibilità, tempismo e precisione nell intervento rispetto agli altri dispositivi di bloccaggio. La differenza è particolarmente evidente se si confronta il Torsen con un giunto Ferguson: il Torsen è attivo, intervenendo addirittura in anticipo rispetto al raggiungimento delle condizioni di slittamento, essendo il funzionamento esclusivamente di tipo meccanico. Ciò non avviene nel Ferguson, il cui funzionamento è legato proprio al manifestarsi delle condizioni di slittamento, con conseguente perdita di coppia e motricità. Il Torsen ha tuttavia costi superiori: per questi motivi è facile trovare i Ferguson applicati su vetture senza troppe pretese in termini di prestazioni off-road. In sintesi, dal confronto tra i Torsen A, B e C, risulta che: VANTAGGI SVANTAGGI Torsen A Tempestività d intervento Ingombro Costo Torsen B Tempestività d intervento Costo Compattezza Minori sforzi sugli ingranaggi Torsen C Tempestività d intervento Applicazione limitata alla Compattezza posizione centrale Possibilità di differenziare comportamento in tiro e rilascio 121 / Fiat Group S.p.A. - Tutti i diritti sono riservati
122 Fiat Group Automobiles S.p.A. APPLICAZIONE DELL ELETTRONICA In questo capitolo si illustrano le nuove soluzioni di trazione integrale rese possibili dall avvento dell elettronica cercando di coglierne i relativi vantaggi e svantaggi. Il capitolo si chiude con una breve analisi della frizione Haldex, controllata elettronicamente, largamente diffusa sui veicoli della concorrenza. Applicazione dell elettronica L elettronica ha consentito l introduzione di nuove soluzioni per l ottenimento di veicoli a trazione integrale. Non a caso oggi si parla di AWD (All Wheel Drive), sigla con cui si identificano i nuovi sistemi di trazione integrale a gestione elettronica applicati su una gamma sempre più vasta di modelli. La gestione elettronica ha reso possibile un miglioramento delle vetture quattro ruote motrici, rendendole più facili da guidare e conseguentemente più sicure. Fin dall inizio si è pensato di unire l azione dell ABS (Antilock Braking System) a quella dei normali differenziali: attraverso l ASR (Anti Slip Regulation), che costituisce una funzione dell ABS, è possibile frenare ogni singola ruota, limitando lo slittamento di quella che perde aderenza consentendo così, attraverso un semplice differenziale aperto, di trasferire coppia sull altro lato. Infatti, frenando una ruota, le viene data coppia resistente: l ASR agisce in modo analogo ad un sistema di bloccaggio di un locked, consentono l impiego di più semplici ed economici differenziali aperti. Inoltre i sensori dell ASR permettono di rilevare le condizioni di slittamento e di correggerle attraverso i freni in tempi estremamente ridotti, quasi prevedendole, intervenendo più rapidamente di qualsiasi altro dispositivo di bloccaggio e ripartendo istante per istante la coppia in base alle condizioni di aderenza. L affinamento dell elettronica negli ultimi anni ha permesso l introduzione di schemi del seguente tipo: tre differenziali aperti con gestione totalmente elettronica della trazione (es. BMW X5) differenziale centrale bloccabile e controllo elettronico della trazione sugli assi (es. Land Rover Defender) differenziale centrale autobloccante e controllo elettronico sugli assi (es. Range Rover dal 94 in poi) La gestione elettronica offre i seguenti vantaggi: guida del veicolo più semplice e sicura, con interventi rapidi e precisi del sistema per il controllo della trazione sulle quattro ruote; costi inferiori rispetto a complessi dispositivi di bloccaggio di tipo meccanico. 122 / Fiat Group S.p.A. - Tutti i diritti sono riservati
123 Fiat Group Automobiles S.p.A. I limiti invece sono: il malfunzionamento di un sensore o il surriscaldamento di qualche componente elettronico è sufficiente per escludere automaticamente il sistema, lasciando magari la vettura in panne; i continui interventi correttivi esercitati sui freni ne accelerano molto l usura, provocando continue perdite di coppia motrice (problema evidente specialmente nella guida off-road particolarmente esasperata). Frizioni Haldex L elettronica ha infine permesso l introduzione di dispositivi innovativi per il passaggio da trazione semplice a trazione integrale, come le frizioni di tipo Haldex (trazione integrale elettroidraulica). Questa frizione sostituisce il differenziale centrale ed è costituita da una serie di dischi a bagno d olio compattati, con regolazione elettronica, in base a velocità motore, posizione del pedale dell acceleratore, dati provenienti dai sensori ABS, ASR e ESP. L Haldex consente di mantenere scollegati avantreno e retrotreno quando le condizioni di aderenza sono uguali sui due assi (trazione su un solo asse, es. anteriore). Quando invece un asse ha più aderenza di un altro, la frizione li rende solidali, consentendo alla coppia di ripartirsi in funzione delle condizioni aderenza. L Haldex può arrivare anche al bloccaggio totale, consentendo un trasferimento di coppia del 100% su un asse. Agisce insomma in maniera simile ad un Ferguson, ma con una rapidità e precisione decisamente superiori (es. 4motion della Volkswagen). La percentuale di bloccaggio della frizione è legata all azione di un pistoncino regolato elettronicamente attraverso elettrovalvole: più è elevata la pressione esercitata, più vengono compattati i dischi e cresce la coppia trasmessa. Oltre alle frizioni elettroidrauliche, esistono anche frizioni elettromagnetiche (es. trazione integrale Honda), le quali risultano essere ancora più rapide. Il funzionamento è analogo, cambia solo la modalità di azionamento. 123 / Fiat Group S.p.A. - Tutti i diritti sono riservati
124 MECCANICA DI BASE DELLE Fiat Group S.p.A SCHEMI DI TRAZIONI INTEGRALI In questo capitolo si illustrano i vari schemi di trazione integrale sviluppati dal gruppo Fiat per tutte le principali auto prodotte in serie. Il capitolo si chiude con un breve accenno sugli schemi di trazione integrale che trovano applicazione attualmente sulle vetture della concorrenza. Schemi di trazioni integrali Si procede adesso ad una rapida analisi degli schemi di trasmissione adottati dalle vetture a trazione integrale prodotte dal gruppo Fiat. Fiat Campagnola La Fiat Campagnola era a trazione posteriore con l integrale inseribile: lo schema prevedeva l utilizzo di due differenziali, uno per ogni asse. Fiat Campagnola La Fiat Campagnola riprendeva dunque il modello della Jeep Willys. 124 / Fiat Group S.p.A. - Tutti i diritti sono riservati
125 MECCANICA DI BASE DELLE Fiat Group S.p.A Alfa Romeo Matta L Alfa Romeo Matta aveva uno schema con motore anteriore longitudinale, e due differenziali con ripartitore centrale. La trazione era permanente sul posteriore e inseribile anteriormente. Alfa Romeo Matta 125 / Fiat Group S.p.A. - Tutti i diritti sono riservati
126 MECCANICA DI BASE DELLE Fiat Group S.p.A Fiat Panda 4x4 La Fiat Panda presentava una trazione integrale inseribile meccanicamente, permanente sull anteriore: anche in questo caso vi erano solo due differenziali, uno all anteriore e uno al posteriore. Fiat Panda Su alcune versioni, nella marcia con trazione integrale disinserita, vi era la possibilità di scollegare le ruote posteriori dal gruppo differenziale, evitando di trascinare gli elementi della trasmissione: ciò permetteva consumi ridotti e minori vibrazioni. Lancia Y10 4WD La Y10 4WD adottava lo stesso schema della Fiat Panda con l unica differenza che l inserimento manuale della trazione integrale era affidato ad un dispositivo elettro-pneumatico. 126 / Fiat Group S.p.A. - Tutti i diritti sono riservati
127 MECCANICA DI BASE DELLE Fiat Group S.p.A Alfa Romeo 33 4WD Lo schema adottato sull Alfa Romeo 33 prevedeva l'inserimento della trazione alle ruote posteriori tramite una leva in abitacolo; un differenziale centrale provvedeva a contenere eventuali slittamenti tra i due assi. Sulla gamma del 1991 il differenziale centrale era costituito da un giunto viscoso gestito elettronicamente. Alfa Romeo 33 Grazie anche alla maggiore altezza da terra rispetto alla versione a trazione anteriore, la 33 4x4 era in grado di disimpegnarsi in molte situazioni critiche, passando agevolmente dai fondi innevati a percorsi sterrati. 127 / Fiat Group S.p.A. - Tutti i diritti sono riservati
128 MECCANICA DI BASE DELLE Fiat Group S.p.A Lancia Delta S4 La Lancia Delta S4 aveva una trazione integrale permanente con tre differenziali con ripartizione di coppia 30-70% anteriore/posteriore. 128 / Fiat Group S.p.A. - Tutti i diritti sono riservati
129 MECCANICA DI BASE DELLE Fiat Group S.p.A Lancia Prisma 4WD La Lancia Prisma 4WD era una trazione integrale del tipo permanente e presentava dunque uno schema con tre differenziali: l anteriore (2) era del tipo aperto e il posteriore bloccabile manualmente con dispositivo pneumatico. Il differenziale centrale (1), del tipo epicicloidale, ripartiva la coppia motrice in modo asimmetrico: 56% all anteriore e 44% al posteriore. Al differenziale centrale era abbinato un giunto Ferguson (A) con funzione di bloccaggio, al fine di modificare la precedente ripartizione in funzione delle condizioni di aderenza dei due assi. 2 A A Giunto viscoso 1 Differenziale epicicloidale 2 Differenziale aperto 3 Coppia conica moltiplicatrice 4 Albero di trasmissione 5 Coppia conica riduttrice. Lancia Prisma: schema di trasmissione 129 / Fiat Group S.p.A. - Tutti i diritti sono riservati
130 MECCANICA DI BASE DELLE Fiat Group S.p.A Lancia Delta HF 4WD La Lancia Delta HF 4WD era una trazione integrale del tipo permanente con tre differenziali: l anteriore (2) era del tipo aperto e il posteriore (6) era un differenziale Torsen A. Al differenziale centrale (1), del tipo epicicloidale, era abbinato un giunto Ferguson (5) con funzione di bloccaggio, al fine di modificare la precedente ripartizione in funzione delle condizioni di aderenza dei due assi. Sulla gamma del 1991 è stata cambiata la ripartizione di coppia ripartendola al 47% all anteriore e al 53% al posteriore Differenziale epicicloidale 2 Differenziale aperto 3 Coppia conica moltiplicatrice 4 Albero di trasmissione 5 Giunto viscoso 6 Differenziale Torsen A. Lancia Delta 4WD L unica differenza rispetto allo schema della Lancia Prisma 4WD era rappresentata dall adozione di un differenziale posteriore del tipo Torsen A. 130 / Fiat Group S.p.A. - Tutti i diritti sono riservati
131 MECCANICA DI BASE DELLE Fiat Group S.p.A Fiat Tempra 4WD La Fiat Tempra 4WD era una trazione integrale del tipo permanente con tre differenziali: l anteriore (3) era del tipo aperto e il posteriore (8) bloccabile manualmente con dispositivo pneumatico. Il differenziale centrale (2), del tipo epicicloidale, ripartiva la coppia motrice in modo asimmetrico: 56% all anteriore e 44% al posteriore. Al differenziale centrale era abbinato un giunto Ferguson (5) con funzione di bloccaggio, al fine di modificare la precedente ripartizione in funzione delle condizioni di aderenza dei due assi.. Fiat Tempra A. Corona del sistema epicicloidale H. Corona conica B. Albero della corona I. Pignone comando C e D. 1 e 2 satellite albero di trasmissione E. Pignone solare L. Differenziale F.Treno portasatelliti anteriore.fiat Tempra: gruppo con differenziale, ripartitore e giunto G. viscoso Albero cavo posizionati treno portasatelliti anteriormente M. Pignone per cambio motivi d ingombro. 131 / Fiat Group S.p.A. - Tutti i diritti sono riservati
132 MECCANICA DI BASE DELLE Fiat Group S.p.A Alfa Romeo 155 Q4 L Alfa Romeo 155 Q4 adottava tre differenziali: uno anteriore (3) aperto; uno centrale epicicloidale (2) con un giunto viscoso Ferguson (5); uno posteriore (8) di tipo Torsen A. In condizioni di normalità, la coppia motrice veniva ripartita dal differenziale centrale nella misura del 47% sull'assale anteriore e del 53% sull'assale posteriore. Alfa Romeo 155 Alfa Romeo 155: schema di trasmissione Questo schema di trasmissione si sposava con un impianto ABS particolarmente raffinato. 132 / Fiat Group S.p.A. - Tutti i diritti sono riservati
133 MECCANICA DI BASE DELLE Fiat Group S.p.A Alfa Romeo 164 Q4 Il cuore del sistema era il giunto viscoso centrale Viscomatic, gestito da una centralina elettronica che rilevava ed elaborava dati relativi a coppia motrice richiesta, velocità, angolo di sterzo e differenza di scorrimento tra gli assi. Istante per istante il sistema provvedeva a ripartire la coppia tra i due assi, garantendo le migliori condizioni di motricità in qualsiasi situazione. Per modulare l azione del giunto veniva impiegato un pistoncino comandato elettronicamente. Compattando di più o di meno i dischi interni al giunto se ne modificava il comportamento e la capacità di bloccaggio. Da notare che tra giunto e differenziale posteriore (di tipo Torsen A) era stato inserito un gruppo epicicloidale avente la funzione di amplificare la differenza di velocità tra ingresso e uscita del giunto, sia al fine di rendere più rapido il suo intervento sia al fine di ridurre la coppia gestita dal giunto stesso. Viscomatic adottato per l Alfa Romeo 164 Q4 La 164 Q4 è stata, prima della 156 Crosswagon, l ultima realizzazione di vettura a trazione integrale targata Alfa Romeo. Lo schema di trasmissione adottato rappresentava una netta evoluzione rispetto alle precedenti soluzioni soprattutto per il largo impiego dell elettronica. 133 / Fiat Group S.p.A. - Tutti i diritti sono riservati
134 MECCANICA DI BASE DELLE Fiat Group S.p.A NUOVA PANDA 4X4 Generalita La trasmissione della Panda 4x4 si avvale di due differenziali e un giunto viscoso. E una trazione integrale permanente, non richiede alcuna manovra di inserimento da parte del conducente ma consente una distribuzione di coppia motrice ottimale tra asse anteriore e asse posteriore secondo le condizioni di aderenza del fondo stradale. Su un percorso con aderenza normale (asfalto asciutto ecc.) la coppia motrice è indirizzata al 98% alle ruote anteriori consentendo un comportamento della vettura assimilabile ad una trazione anteriore ed evitando, inoltre, consumi eccessivi dei pneumatici e di carburante dovuti a lievi differenze di velocità di rotazione tra ruote anteriori e posteriori. Su un percorso con bassa aderenza (strada innevata, ghiacciata, fangosa ecc.) le ruote motrici anteriori tendono a pattinare ma il giunto viscoso corregge immediatamente questa tendenza irrigidendosi e trasmettendo progressivamente al retrotreno una percentuale di coppia motrice crescente (nella percentuale necessaria) annullando il pattinamento e distribuendo in modo ottimale la trazione sulle quattro ruote. Tale trasferimento di coppia non è avvertibile dal conducente se non come eccellente capacità di disimpegno della vettura. Legenda: 1 - Cambio C514R M.T. 2 - Differenziale anteriore 3 - Presa di forza 4 - Albero di trasmissione (in due pezzi) 5 - Giunto viscoso 6 - Differenziale posteriore 134 / Fiat Group S.p.A. - Tutti i diritti sono riservati
135 MECCANICA DI BASE DELLE Fiat Group S.p.A Coppia motrice ed aderenza Sulle ruote motrici di un veicolo (figura A) agiscono una coppia di forze, riconducibili alle S (forza di trazione o propulsione) e St (forza tangenziale di trazione), di pari entità, il cui valore è determinato dal rapporto tra la coppia motrice Mt, applicata alle ruote motrici, ed il raggio r delle ruote stesse: S = St = Mt / r Figura A Affinché un veicolo si sposti (figura B) (spunto da fermo) o acceleri, occorre che la forza di trazione S sia superiore alla resistenza totale dell'avanzamento R, ed inferiore all'aderenza. Più precisamente che la forza tangenziale St, di intensità uguale alla forza di trazione S, sia inferiore al valore dell'aderenza disponibile A. 135 / Fiat Group S.p.A. - Tutti i diritti sono riservati
136 MECCANICA DI BASE DELLE Fiat Group S.p.A Figura B In condizioni di equilibrio, l'avanzamento del veicolo a velocità uniforme è assicurato quando la forza S è uguale alla resistenza R. Il valore della resistenza totale all'avanzamento R è determinato dalla somma delle resistenze dovute al rotolamento, alla penetrazione dell'aria, all'inerzia del mezzo ed alle pendenze. Il valore dell'aderenza disponibile A, è determinato dal prodotto del coefficiente d'attrito (o di aderenza) "μ" in atto fra i corpi a contatto (in questo caso pneumatico e suolo) per il peso "P" del veicolo agente sulla ruota: A = μ x P L'aderenza è disponibile in tutte le direzioni, come si è detto, quindi sia sull'asse longitudinale del pneumatico, sul quale agiscono la forza di trazione S e quella tangenziale St, sia sull'asse trasversale sul quale agiscono le forze perturbatrici esterne Fe (vento laterale) e/o quelle centrifughe Fc (veicolo in curva). Quando una forza esterna (motrice o perturbatrice) con la sua intensità raggiunge il valore dell'aderenza A, questa non è più disponibile in alcun'altra direzione. Indicando con μx il coefficiente di attrito (o di aderenza) longitudinale e con μy il coefficiente di attrito (o di aderenza) trasversale, si può ritenere che tra la forza di aderenza longitudinale X e la forza di aderenza trasversale Y esiste la relazione rappresentata dal diagramma seguente: 136 / Fiat Group S.p.A. - Tutti i diritti sono riservati
137 MECCANICA DI BASE DELLE Fiat Group S.p.A dove: X= μx x P Y= μy x P e Xo e Yo sono rispettivamente i valori massimi delle forze longitudinali e trasversali sviluppabili tra pneumatico e suolo pari a: Xo = μxmax x P (μxmax: coefficiente di aderenza longitudinale massimo) Yo = μymax x P (μymax: coefficiente di aderenza trasversale massimo) Quando la forza di trazione tangenziale St applicata risulta superiore all'aderenza disponibile A (neve, ghiaccio, fango) le ruote motrici tendono a slittare e il veicolo nel caso di partenza da fermo non si sposta (figura D). Figura D A parità di coppia motrice erogata dal motore, una ripartizione della stessa su quattro ruote anziché su due (S1 e S2) riduce il valore delle forze tangenziali di trazione St1 e St2 applicate ad ogni ruota motrice (figura E). 137 / Fiat Group S.p.A. - Tutti i diritti sono riservati
138 MECCANICA DI BASE DELLE Fiat Group S.p.A Figura E Per ciascuna di queste, essendo diminuito il valore della coppia motrice, aumenta di conseguenza la frazione di aderenza disponibile A prima che si verifichi lo slittamento della ruota. Trazione integrale significa disporre di quattro ruote motrici su di un veicolo con il vantaggio di ripartire la coppia motrice su quattro ruote invece che su due. Trova naturalmente applicazione in tutte le situazioni in cui occorre disporre di una maggiore coppia motrice per superare dislivelli notevoli, terreni sconnessi; oppure quando l'aderenza disponibile è insufficiente e due sole ruote motrici possono rivelarsi inidonee a far avanzare il veicolo: neve, ghiaccio, fango, sabbia, ecc. La trazione integrale La trazione integrale, oltre ai vantaggi in termini di motricità (pieno utilizzo della coppia disponibile) presenta ulteriori fondamentali vantaggi in termini di sicurezza, stabilità e comportamento neutro del veicolo. La sicurezza è migliorata poiché un'eventuale mancanza di aderenza su di una ruota motrice dovuta ad irregolarità della strada (acqua planing, zone ghiacciate, macchie d'olio) è equilibrata dalle altre tre ruote motrici. La stabilità aumenta poiché si ha una maggior riserva di direzionalità dovuta ad un minor impegno di motricità. Su un veicolo a due ruote motrici, che sta percorrendo una curva (figura F) per semplicità rappresentativa consideriamo la forza S anziché la St di pari intensità. La forza di trazione S impegna totalmente il campo di aderenza disponibile; con l aggiunta della forza centrifuga Fc si genera una risultante T che non può più essere bilanciata dall aderenza sviluppabile dal pneumatico e il veicolo perde la sua direzionalità e quindi la sua stabilità. 138 / Fiat Group S.p.A. - Tutti i diritti sono riservati
139 MECCANICA DI BASE DELLE Fiat Group S.p.A Figura F Le ruote posteriori risultano poco sfruttate poiché la Fc agente lascia aderenza disponibile utilizzabile per la motricità. Su un veicolo a quattro ruote motrici a parità di coppia motrice erogata dal motore (figura G), la forza sulle ruote S risulta dimezzata; la risultante T, rimanendo all'interno del limiti di aderenza disponibile, assicura una buona stabilità ed un margine di riserva. In questa situazione è possibile trasmettere a terra coppie motrici maggiori utilizzando anche le ruote posteriori. Figura G 139 / Fiat Group S.p.A. - Tutti i diritti sono riservati
140 MECCANICA DI BASE DELLE Fiat Group S.p.A Trazione integrale permanente Un veicolo con trazione integrale permanente dispone di quattro ruote motrici in permanenza. Una soluzione di trazione integrale permanente è realizzata mediante una presa di forza, applicata alla corona del differenziale anteriore, un rinvio, un giunto viscoso posto sull albero di trasmissione con il compito di modulare permanentemente la motricità delle ruote anteriori e posteriori, un differenziale posteriore. Trazione integrale inseribile La trazione integrale inseribile consente all'utente di comandare direttamente l'innesto della trazione integrale, secondo necessità (bassa aderenza, salite ripide) su veicoli che viaggiano normalmente con due ruote motrici. Tali veicoli sono dotati in genere di una presa di forza dal cambio o dal differenziale, di un albero di trasmissione, che normalmente gira in folle, da un differenziale posteriore e da un meccanismo per l'innesto della trazione. Tale meccanismo può essere una frizione, un manicotto scanalato o un innesto a denti frontali, inseribile manualmente o automaticamente. L'utilizzo della trazione integrale inseribile è da prevedersi solo in presenza di bassa aderenza (neve, ghiaccio) o ripide salite; offre pertanto, rispetto a una trazione a due ruote motrici, vantaggi in termini di funzionalità quali motricità e disimpegno. Trasmissione del moto Nell'attuale versione della Panda 4x4 il moto proveniente dall'albero secondario (1) del cambio, mantenendo invariati i rapporti, attraverso la corona (2) del differenziale anteriore (3), perviene alle ruote anteriori. Nello stesso tempo, per mezzo della presa di forza (4), del gruppo rinvio (5), dell'albero di trasmissione (6), del giunto viscoso (7), il moto giunge attraverso il gruppo differenziale posteriore (8) ed i semiassi oscillanti (9) alle ruote posteriori. Legenda: 1 - Albero secondario 2 - Corona 3 - Differenziale anteriore 4 - Presa di forza 5 - Gruppo di rinvio 6 - Albero di trasmissione (in due pezzi) 7 - Giunto viscoso 8 - Differenziale posteriore 9 - Semiassi 140 / Fiat Group S.p.A. - Tutti i diritti sono riservati
141 MECCANICA DI BASE DELLE Fiat Group S.p.A Presa di forza e gruppo di rinvio La presa di forza è costituita da un pignone (1) ingranante con la corona (2) del differenziale anteriore. Il gruppo di rinvio è composto da una coppia di ingranaggi conici (3) collegati rispettivamente alla presa di forza (1) ed all'albero di trasmissione tramite un collegamento a flangia (4). La presa di forza e ii gruppo di rinvio sono alloggiati in una nuova semiscatola differenziale accoppiata alla scatola cambio originale. Qualsiasi anomalia ad uno dei componenti del carter (campana, corpo centrale, semiscatola con presa di forza e gruppo di rinvio), richiede la sostituzione della scatola cambio completa. La lubrificazione della presa di forza e del gruppo di rinvio è assicurata dallo stesso olio del cambio. NOTA: Nel caso di sostituzione della corona differenziale, utilizzare esclusivamente il particolare di ricambio specifico per la versione 4x4. Legenda 1 - Pignone 2 - Corona 3 - Ingranaggi conici 4 - Flangia 141 / Fiat Group S.p.A. - Tutti i diritti sono riservati
142 MECCANICA DI BASE DELLE Fiat Group S.p.A Albero di trasmissione L'albero di trasmissione è suddiviso in due tronchi. Il tronco anteriore (1) è collegato da un lato al gruppo rinvio, dall'altro al tronco posteriore (6) tramite giunti cardanici (2) ed è supportato da un cuscinetto (3) protetto da un supporto elastico (4) e fissato alla scocca tramite una staffa (5). Il tronco posteriore (6) è collegato da un lato al tronco anteriore tramite giunti cardanici, dall'altro al giunto viscoso. Legenda 1 - Tronco anteriore 2 - Giunti cardanici 3 - Cuscinetto 4 - Supporto elastico 5 - Staffa 6 - Tronco posteriore Giunto viscoso Il giunto viscoso collega l albero di trasmissione all albero del differenziale posteriore lasciandoli liberi di avere piccoli slittamenti relativi, in modo che possano ruotare a velocità leggermente differenti. Il giunto viscoso, detto anche Ferguson, è costituito da una scatola riempita con uno speciale liquido siliconico che ha la proprietà di diventare sempre più denso man mano che la sua temperatura aumenta. Questa caratteristica è utilizzata per limitare, fino a impedire del tutto, lo slittamento reciproco fra due serie di dischi metallici che si fronteggiano a brevissima distanza e che sono collegati uno all albero di trasmissione e uno all albero del differenziale posteriore. Quando lo slittamento termina, la temperatura del liquido siliconico diminuisce e si riduce la sua densità ritornando alle condizioni normali e consentendo nuovamente piccoli movimenti relativi fra gli alberi. 142 / Fiat Group S.p.A. - Tutti i diritti sono riservati
143 MECCANICA DI BASE DELLE Fiat Group S.p.A Legenda: 1 - Giunto viscoso 2 - Differenziale posteriore Funzionamento Il giunto viscoso lavora ogni qualvolta si crea una differenza di velocità tra le due parti principali (tra le due serie di dischi metallici) di cui è composto; la parte più veloce trascina la più lenta fino a quando si ristabilisce la condizione di equilibro in cui le due parti girano alla stessa velocità.- La coppia di trascinamento varia al variare della differenza di velocità relativa tra le parti. Maggiore è la differenza di giri, maggiore la coppia trasmessa (figura H). Durante la marcia su strada di una normale vettura a due ruote motrici le ruote posteriori sono trascinate da quelle anteriori e costrette a ruotare ad una velocità che dipende dal loro raggio di rotolamento.- Durante la guida su strada di Panda 4x4 il trascinamento delle ruote posteriori e la differente rapportatura del ponte posteriore fa girare la parte interna del giunto viscoso ad una velocità più elevata rispetto alla parte esterna messa in rotazione dal motore attraverso il rapporto alla PTU. Questo fa sì che si crei la differenza di giri necessaria affinchè ci sia ripartizione di coppia. Possiamo quindi affermare che Panda 4x4 è un sistema di trasmissione permanente. La coppia che è trasferita alle ruote posteriori dipende da tutti i vari fattori che possono influenzare la velocità di rotazione reciproca tra ruote anteriori e posteriori (consumo dei pneumatici, variazione di carico tra anteriore e posteriore, percorso stradale in salita o discesa, pattinamento dell avantreno per neve o ghiaccio).attenzione: Rimorchiare la vettura sollevata solamente sulle ruote anteriori non libere di girare può portare al danneggiamento del giunto e/o al consumo dei pneumatici.- La coppia trasmissibile dal giunto viscoso varia fino ad un massimo di 850 Nm circa. Considerando la vettura su strada piana, da un calcolo teorico il valore di coppia trasmesso al posteriore si aggira intorno allo 0,3%. n i = n o : nessuna coppia è trasferita al posteriore n i > n o : si trasferisce coppia al posteriore n i >> n o : molta coppia trasferita al posteriore 143 / Fiat Group S.p.A. - Tutti i diritti sono riservati
144 MECCANICA DI BASE DELLE Fiat Group S.p.A Figura H Legenda n i : numero di giri in ingresso al giunto viscoso n o : numero di giri in uscita dal giunto viscoso Lo slittamento delle ruote anteriori produce l aumento della velocità di rotazione dell albero di trasmissione e di conseguenza della scatola esterna del giunto viscoso. La differenza di rotazione tra la scatola esterna e il pignone del differenziale posteriore (e le due serie di dischi metallici) crea un innalzamento della temperatura e della viscosità del liquido siliconico all interno del giunto viscoso. Ciò determina l annullamento della rotazione relativa tra i dischi metallici e la conseguente trasmissione del moto al differenziale posteriore, ottenendo una ripartizione della trazione tra le ruote anteriori e quelle posteriori. Legenda: 1 - Scatola esterna del giunto viscoso (flangiata all albero di trasmissione) 2 - Albero scanalato (per il collegamento pignone del differenziale posteriore) 3 - Serie di dischi metallici 144 / Fiat Group S.p.A. - Tutti i diritti sono riservati
145 MECCANICA DI BASE DELLE Fiat Group S.p.A Quando cessa lo slittamento delle ruote anteriori e la velocità dell albero di trasmissione si riduce, si ha un abbassamento della temperatura del liquido siliconico, la diminuzione della sua viscosità e la conseguente riduzione della trasmissione del moto al differenziale posteriore. Differenziale posteriore Il complessivo differenziale posteriore è costituito da un pignone (1) ingranante con la corona (2) fissata alla gruppo differenziale (3). Sul perno (4), solidale al gruppo differenziale, sono fissati i satelliti (5) che ingranano con i planetari (6) a loro volta solidali con i giunti (7). NOTA: Il pignone (1) riceve dal giunto viscoso (8) la coppia motrice trasmessa dall albero di trasmissione. La coppia motrice è ripartita ugualmente su ciascuna ruota; se una ruota viene a trovarsi su una superficie scivolosa, la scarsa aderenza farà sì che la reazione da essa opposta alla trazione sia minima; in queste condizioni, il differenziale provoca lo slittamento della ruota che prende a girare velocemente e contemporaneamente riduce la coppia trasmessa all'altra. In condizione limite se una ruota ha aderenza nulla, il differenziale trasmetterà coppia nulla all'altra ruota che rimarrà quindi ferma pregiudicando l'avanzamento del veicolo. Legenda: 1 - Pignone 2 - Corona 3 - Gruppo differenziale 4 - Perno 5 - Satelliti 6 - Planetari 7 - Giunti 8 - Giunto viscoso 145 / Fiat Group S.p.A. - Tutti i diritti sono riservati
146 MECCANICA DI BASE DELLE Fiat Group S.p.A Sistema antibloccaggio in decelerazione (MSR) La Panda 4x4 è dotata di un sistema antislittamento in decelerazione che sfrutta le potenzialità del sistema ABS (sensori giri ruote) e del controllo elettronico motore per impedire che, in condizioni di bassa aderenza in discesa o in curva, la coppia frenante motore e la presenza del giunto viscoso causino il bloccaggio del retrotreno durante le decelerazioni improvvise. Tale sistema, unitamente alla trazione integrale garantisce una elevata sicurezza di guida sui fondi a bassa e bassissima aderenza. Complessivo trazione integrale panda 4x4 Descrizione Trazione integrale ad inserimento automatico A - Cambio di velocità B - Gruppo differenziale asse anteriore di tipo aperto ad ingranaggi conici e coppia conica per rinvio del moto all albero di trasmissione (PTU)Power Transmission Unit/ Unità di trasmissione della potenza. C - Albero di trasmissione D - Complessivo giunto viscoso, coppia conica e differenziale asse posteriore di tipo aperto ad ingranaggi conici (RDA) Rear Differential Axel/Differenziale asse posteriore. Sulla Panda 4x4 la trazione integrale si inserisce automaticamente (senza nessun comando da parte del guidatore) grazie al giunto viscoso che svolge anche la funzione di differenziale tra l asse anteriore e l asse posteriore. La soluzione con giunto viscoso consente una certa semplicità costruttiva e permette una relativa immediatezza automaticità di inserimento ed una distribuzione di coppia motrice ottimale tra asse anteriore e asse posteriore a seconda del fondo stradale e quindi delle necessità di disimpegno della vettura. Su strade con aderenza normale (asfalto etc.) la coppia motrice viene indirizzata al 98% alle ruote anteriori consentendo un comportamento della vettura assimilabile ad una trazione anteriore con un piacevole handling di guida. Si evitano inoltre così consumi eccessivi dei pneumatici e di carburante dovuti a piccole differenze di velocità di rotazione tra ruote anteriori e posteriori. Se il fondo stradale diventa scivoloso (ovvero si riduce l aderenza) le ruote motrici anteriori tendono a pattinare ma il giunto viscoso corregge immediatamente questa tendenza irrigidendosi e trasmettendo 146 / Fiat Group S.p.A. - Tutti i diritti sono riservati
147 MECCANICA DI BASE DELLE Fiat Group S.p.A progressivamente al retrotreno una percentuale di coppia motrice crescente (nella percentuale necessaria) annullando il pattinamento. Tale trasferimento di coppia non è avvertibile dal conducente se non come eccellente capacità di disimpegno della vettura (per esempio su fondi innevati, ghiacciati o fangosi). Complessivo differenziale anteriore e coppia conica ( PTU) A - Cambio C 514 B - Differenziale anteriore C - Corona differenziale C1 Corona coppia cilindrica PTU D - Pignone cilindrico E - Ruota conica F - Pignone conico 147 / Fiat Group S.p.A. - Tutti i diritti sono riservati
148 MECCANICA DI BASE DELLE Fiat Group S.p.A FIAT SEDICI La trasmissione utilizzata da FIAT SEDICI si avvale di due differenziali, un gruppo di rinvio e un giunto elettromagnetico posizionato nel gruppo differenziale posteriore, é una trazione integrale, gestita da una centralina con funzioni inseribili da parte del conducente tramite un pulsante posizionato nel tunnel centrale. Le possibilità di inserimento sono: 2WD,4WD-AUTO,4WD-LOCK. La coppia erogata dal motore entra nel cambio avente rapporti specifici per ottimizzare lo sfruttamento della potenza e della coppia del motore e massimizzare l efficienza al sistema di trasmissione integrale. All uscita del cambio mediante una coppia cilindrica di riduzione a denti elicoidali la coppia arriva al gruppo di rinvio che provvede ad inviare la coppia tramite l albero di trasmissione all asse posteriore; la coppia distribuita all asse anteriore entra nel differenziale anteriore di tipo aperto per essere ripartita tra le due ruote dell asse anteriore. La coppia distribuita all asse posteriore in uscita dalla presa di forza, tramite l albero di trasmissione, viene inviata nel giunto elettromagnetico per poi entrare nel differenziale posteriore anch esso di tipo aperto, dove avviene la distribuzione della coppia tra le due ruote dell asse posteriore. 148 / Fiat Group S.p.A. - Tutti i diritti sono riservati
149 MECCANICA DI BASE DELLE Fiat Group S.p.A Cambio CARATTERISTICHE: cambio a 5 marce manuale le cui caratteristiche sono descritte di seguito. La struttura del cambio adottata è costituita: da una scatola ruotismi che contiene e supporta l''albero primario e secondario, da aste e forcelle di innesto marce ed il dispositivo di selezione ed innesto; coperchio posteriore che contiene gli ingranaggi della 5a velocità e la piastra di ritegno cuscinetti posteriori degli alberi primario e secondario; da una scatola campana di unione cambio al motore che contiene la frizione, il cuscinetto reggispinta integrato all attuatore di comando idraulico frizione; un differenziale per la trasmissione del moto agli assi anteriori; una presa di forza per la trasmissione del moto agli assi posteriori. Gruppo di rinvio 149 / Fiat Group S.p.A. - Tutti i diritti sono riservati
150 MECCANICA DI BASE DELLE Fiat Group S.p.A CARATTERISTICHE:la forza motrice viene trasmessa dal gruppo cambio differenziale alle ruote posteriori tramite il gruppo di rinvio e quindi all albero di trasmissione.la scatola del gruppo di rinvio contiene una coppia di ingranaggi di riduzione con dentatura ad evolvente ed una coppia di ingranaggi ipoidi, con la funzione di rinviare la direzione della coppia motrice di 90 gradi. Per la lubrificazione del gruppo di rinvio è presente un tappo di riempimento/livello. Albero di trasmissione CARATTERISTICHE: l albero di trasmissione è suddiviso in due, il tronco anteriore è collegato da un lato al gruppo di rinvio, dall altra al tronco posteriore tramite giunti cardanici, è supportato da un cuscinetto protetto da un supporto elastico ed è fissato alla scocca tramite una staffa. Il tronco posteriore è collegato da un lato al tronco anteriore tramite giunti cardanici, dall altro al giunto elettromagnetico. Giunto elettromagnetico FUNZIONE: il giunto elettromagnetico, posto nella scatola differenziale posteriore, riceve la coppia dall albero di trasmissione e la trasmette al pignone differenziale posteriore. Gli elementi evidenziati in colore scuro sono posti in rotazione dalla forza trasmessa dall asse anteriore, collegato alla scatola. Gli elementi evidenziati in colore chiaro ruotano trascinati dall asse posteriore. L accoppiamento tra i due elementi viene attuato mediante l intervento di due gruppi frizione: frizione di controllo e frizione principale. L accoppiamento, tra gli elementi di ingresso e di uscita dal dispositivo, è attuato e modulato dalla centralina di controllo trazione che alimenta opportunamente la bobina interna. Inoltre è presente un sensore che informa la centralina 4WD della temperatura all interno della scatola del differenziale; con temperature elevate il sistema di trazione viene commutato se in 4WD in 2WD per preservare l integrità del giunto. 150 / Fiat Group S.p.A. - Tutti i diritti sono riservati
151 MECCANICA DI BASE DELLE Fiat Group S.p.A Con l interruttore posto sul tunnel centrale il conducente può scegliere fra tre opzioni di trazione: 2WD; 4WD-Auto; 4WD-Lock. La funzione 4WD-Lock è inseribile solo con velocità inferiori a 60 Km/h, e se inserita si disinserisce al superamento di 60 Km/h. Differenziale posteriore CARATTERISTICHE: il complessivo differenziale posteriore è costituito da un pignone ingranante con la corona fissata al gruppo differenziale. Sul perno solidale al gruppo differenziale, sono fissatii satelliti che ingranano con i planetari a loro volta solidali con i giunti dei semiassi. Il pignome riceve dal giunto elettromagnetico pilotato dalla centralina che governa il sistema, la coppia trasmessa dall albero di trasmissione. La coppia motrice è ripartita ugualmente su ciascuna ruota dell assale posteriore. Se una ruota viene a trovarsi su una superficie scivolosa, la scarsa aderenza farà si che la reazione da essa opposta alla trazione sia minima; in queste condizioni il differenziale provoca lo slittamento della ruota che prende a girare velocemente e contemporaneamente riduce la coppia trasmessa all altra. In condizioni limite se una ruota ha aderenza nulla, il differenziale ( aperto) trasmetterà coppia nulla all altra ruota che rimarrà quindi ferma pregiudicando l avanzamento del veicolo con opzione 2 WD. Dinamica della vettura Marcia in rettilineo con 4WD inserito In marcia rettilinea se le condizioni di aderenza sono uniformi, il veicolo viaggia con una ripartizione di coppia tra gli assi che si attesta attorno 100% all anteriore; piccole variazioni rispetto alla ripartizione nominale sono dovute a variazioni della circonferenza di rotolamento tra i pneumatici dei due assi; quando le condizioni di aderenza tra i due assi non sono più le stesse come si nota in figura, la coppia viene spostata dalla centralina tramite il giunto elettromagnetico dall asse anteriore, avente minor aderenza a quello posteriore con più aderenza fino a un massimo di 50% per contrastare il pattinamento dell asse anteriore che si trova con aderenza più bassa. Con funzione 4WD-Lock inserito la ripartizione di coppia è di 50% anteriore e 50% posteriore, se selezionato superati i 60 km/h passa automaticamente in 4WD. 151 / Fiat Group S.p.A. - Tutti i diritti sono riservati
152 MECCANICA DI BASE DELLE Fiat Group S.p.A FIAT SEDICI GESTIONE ELETTRONICA 4WD Descrizione generale 1, Nodo Controllo Motore. 2, Gruppo trasmissione e differenziale anteriore. 3, Gruppo di rinvio. 4. Motore. 5. Nodo Freni (Gruppo ABS). 6. Gruppo EMCD (dispositivo elettromagnetico di controllo). 7. Gruppo differenziale posteriore. 8. Nodo Controllo 4WD. 9. Gruppo interruttori. 10. Modalità di trazione 4WD-auto. 11. Modalità di trazione 4WD-lock. La centralina 4WD (8), in funzione delle informazioni ricevute sulla rete C-CAN, modifica la distribuzione della forza di trazione delle ruote anteriori e posteriori comandando la corrente applicata al giunto elettromagnetico (6)(EMCD Electro Magnetic Control Device (dispositivo elettromagnetico di controllo). Registrato dalla ditta Diamond Active 4WD). montato di fronte al differenziale posteriore. La centralina di gestione 4WD riceve e trasmette i messaggi informativi sulla rete C-CAN, quindi è il Nodo 4WD. Il sensore di temperatura dell aria all interno del giunto è montato sulla scatola del giunto stesso. In funzione della selezione, fatta dall utente, sul gruppo interruttori (9) posto sulla rivestimento del tunnel. Il sistema di controllo 4WD offre tre modalità di trazione 2WD, 4WD-auto e 4WD-lock. 152 / Fiat Group S.p.A. - Tutti i diritti sono riservati
153 MECCANICA DI BASE DELLE Fiat Group S.p.A COMPONENTI DEL SISTEMA 1, Spia indicatore 4WD LOCK su NQS. 2, Spia indicatore 4WD AUTO su NQS. 3, Centralina 4WD 4, Gruppo interruttori 2WD/4WD 5, Sensore temperatura aria del giunto 6, Gruppo EMCD. 153 / Fiat Group S.p.A. - Tutti i diritti sono riservati
154 MECCANICA DI BASE DELLE Fiat Group S.p.A Schema del circuito 1. Giunto elettromagnetico (EMCD). 2. Sensore temperatura aria giunto. 3. Nodo Quadro Strumenti. 4. Nodo Body Computer. 5. Nodo Centralina ABS. 6. Nodo Controllo Motore. 7. Nodo Controllo 4WD. 8. Interruttore2WD/4WD. 9. Interruttore 4WD AUTO. 10. Interruttore 4WD LOCK. 11. Connettore EOBD. 12. Fusibile chiave su marcia (+30). 13. Fusibile di alimentazione 4WD (+15). 14. Scatola fusibili principale. 154 / Fiat Group S.p.A. - Tutti i diritti sono riservati
155 MECCANICA DI BASE DELLE Fiat Group S.p.A Connettore della centralina elettronica del Nodo 4WD Descrizione del connettore d interfaccia del modulo di comando, del Nodo 4WD. Connettore G60 (visto dal lato cablaggi). Controllo / verifica sul connettore del modulo di controllo. È possibile controllare la tensione di ciascun morsetto, collegando un multimetro, nella funzione voltometro tra terminale e massa veicolo. I valori di seguito descritti vanno interpretati come indicativi e con batteria carica. Pin N. Circuito Valore Condizione Bobina (alimentazione) Circa 5 V Motore in rotazione a 2000 giri con selettore di modalità sulla posizione 2WD. 3 Bobina (Massa) Circa 5 V Motore in rotazione a 2000 giri con selettore di modalità sulla posizione 2WD Massa 0 1 V - 11 Alimentazione (+15) per memoria interna V - 12 Alimentazione (+30) V Chiave su Marcia. 13 Interruttore 4WD AUTO 14 Interruttore 4WD LOCK 0 1 V V V V Chiave su Marcia. Con selettore di modalità mantenuto premuto nella posizione 4WD auto o 4WD lock. Chiave su Marcia. Con selettore di modalità nella posizione 2WD. Chiave su Marcia. Con selettore di modalità mantenuto premuto nella posizione 4WD lock. Chiave su Marcia. Con selettore di modalità mantenuto premuto nella posizione 2WD o 4WD auto Connettore EOBD V Chiave su Marcia. 155 / Fiat Group S.p.A. - Tutti i diritti sono riservati
156 MECCANICA DI BASE DELLE Fiat Group S.p.A C-Can (Alta) 2,5 3,6 V Chiave su Marcia. 23 C-Can (Bassa) 1,6-2,5 V Chiave su Marcia. 24 Sensore temperatura aria giunto (Massa) Circa 2,5 V Chiave su Marcia. 25 Sensore temperatura aria giunto Circa 2,5 V Chiave su Marcia. (alimentazione) 26 - Accesso al deviatore (interruttore) di comando Dopo aver scollegato il cavo negativo dalla batteria, rimuovere (estraendo) la mostrina supporto interruttore (2) dai fissaggi sul ponte e scollegare il connettore dell interruttore (1). Controllo funzionamento verifica Interruttore 2WD/4WD Con un multimetro nella funzione Ohm, e interruttore di comando smontato controllare, se è presente continuità fra i terminali corrispondenti a ciascuna posizione dell interruttore. Come descritto nella tabella sottostante. A. Numero del terminale (il N non corrisponde a quanto pressofuso sull interruttore). B. Posizione interruttore. 2W, AUTO, LOCK Posizioni del selettore Nella tabella, i morsetti 1 e 2 sono relativi alle lampade di segnalazione della funzione richiesta. Controllo funzionamento del sensore temperatura interna del giunto Con sensore smontato Con il sensore temperatura giunto smontato (3), ed un multimetro nella funzione Ohm, misurare il valore della resistenza tra i morsetti (terminali) del sensore stesso. Mentre si soffia aria calda riscaldandoli gradualmente sulla parte (2) sensibile del sensore utilizzando essiccatori ad aria calda (4). Controllare se la resistenza rilevata corrisponde a quella indicata nel grafico sottostante. 156 / Fiat Group S.p.A. - Tutti i diritti sono riservati
157 MECCANICA DI BASE DELLE Fiat Group S.p.A A: Tolleranza sotto al limite inferiore B: Normale C: Tolleranza sopra al limite superiore. ATTENZIONE: Un collegamento errato possono danneggiare il sensore in modo irreparabile. Per non danneggiare il componente, evitare di scaldare il sensore di temperatura del giunto oltre 100 C (212 F). Con sensore montato nella sua posizione di lavoro Con il sensore temperatura giunto montato misurare la resistenza tra il morsetto a e b del connettore alla bobina del giunto (1). Il valore resistivo misurato deve essere (come descritto nel grafico precedente) di circa 2 3 ohm. Funzionamento dell interruttore 2WD/4WD Se le ruote pattinano, il messaggio di intervento dell ABS potrebbe essere inviato alla centralina Nodo 4WD anche in assenza di pressione del pedale del freno a causa di una mancata corrispondenza tra la velocità reale del veicolo e quella stimata, calcolata dai sensori sulle ruote. In questo caso, il segnale intervento ABS viene ignorato in quanto, togliendo coppia alle ruote posteriori mentre queste pattinano senza poter frenare, si comprometterebbe la stabilità del veicolo. Se l ABS sta intervenendo con pedale freno premuto, a suo sostegno, viene selezionata in automatico la modalità 2WD. Modalità Priorità Coppia posteriore Corrente (A) Gruppo interruttori 2WD/4WD 4WD AUTO 2WD OFF 4WD LOCK 4WD AUTO 3 Da 0 a MAX Da 0 a 2 ON Attivato 4WD LOCK 4 MAX 2 ON dal pulsante 157 / Fiat Group S.p.A. - Tutti i diritti sono riservati
158 MECCANICA DI BASE DELLE Fiat Group S.p.A ABS in funzione ON/OFF Nota: Il segnale intervento ABS viene ignorato se non viene premuto il pedale del freno Modalità di trazione Modalità 2WD Idonea per la guida su strade asciutte pavimentate. La distribuzione della coppia è di circa 100% (anteriore) e dello 0% (posteriore). Modalità 4WD AUTO Comando tradizionale Comando a farfalla In caso di differenza di velocità tra le ruote anteriori e posteriori, la coppia ottimale viene trasmessa alle ruote posteriori In caso di frenata in curva a gomito a bassi regimi, la coppia alle ruote posteriori viene ridotta La coppia alle ruote posteriori viene ridotta quasi del tutto (modalità 2WD) sulle strade asciutte pavimentate al fine di ridurre il consumo di carburante. Anche in assenza di differenza di velocità tra ruote anteriori e posteriori, in caso di partenza veloce, la coppia ottimale viene distribuita alle ruote posteriori Per migliorare la stabilità del veicolo e l accelerazione sul rettilineo, in caso di accelerazione rapida, viene aumentata la coppia alle ruote posteriori La coppia alle ruote posteriori aumenta quando vengono soddisfatte le due seguenti condizioni: posizione farfalla maggiore del 10% velocità veicolo inferiore a 10 km/h Modalità 4WD LOCK La coppia alle ruote posteriori è fissata sul valore massimo. Idonea per la guida su strade dissestate Funzionamento dell indicatore AUTO/LOCK Quando si ruota la chiave su marcia le spie, sul quadro strumenti, si accendono brevemente per consentire di controllare il regolare funzionamento. La spia AUTO (1) si accenderà a luce fissa quando il selettore si trova nella modalità 4WD AUTO La spia AUTO lampeggia (6) quando la centralina 4WD, riscontra una temperatura elevata dei componenti del sistema. Contemporaneamente la centralina 4WD passerà automaticamente alla modalità 2WD (2) (trazione semplice) per evitare di danneggiare i componenti del sistema. La spia LOCK (3) si accende quando il selettore passa dalla modalità 4WD AUTO a quella 4WD LOCK. All aumentare della velocità del veicolo, automaticamente si passerà dalla modalità LOCK a AUTO (4) e la relativa spia si accenderà a luce fissa. La modalità LOCK si disinserisce, ruotando la chiave di avviamento su stop. Se ambedue le spie rimangono accese o si accendono contemporaneamente con il veicolo in marcia (7), significa che è stato riscontrato un guasto al sistema di trazione. 158 / Fiat Group S.p.A. - Tutti i diritti sono riservati
159 MECCANICA DI BASE DELLE Fiat Group S.p.A , Interruttore AUTO 2, Interruttore 2WD 3, Interruttore LOCK premuto per 3-60 secondi. 4, Interruttore LOCK 5, Interruttore 2WD 6, AUTO lampeggiante: viene selezionato 2WD quale funzione di protezione, durante la modalità 4WD, Auto o Lock 7, Indicatori AUTO o LOCK accesi: controllo iniziale o modalità recovery Funzionamento dell EMCD I componenti in colore scuro (azzurro) ruotano insieme grazie alla forza trasmessa dal gruppo di rinvio anteriore. I componenti in colore chiaro (giallo) ruotano insieme in base al trascinamento delle ruote posteriori. I componenti chiari e grigi vengono innestati totalmente o parzialmente mediante dischi frizione a bagno di olio. Questa forza di innesto è controllata elettronicamente dalla corrente fornita dalla centralina 4WD alla bobina elettromagnetica. 159 / Fiat Group S.p.A. - Tutti i diritti sono riservati
160 MECCANICA DI BASE DELLE Fiat Group S.p.A , Albero del giunto. 2, Dischi frizione di comando (indotto). 3, Dischi frizione principale. 4, Alloggiamento anteriore. 5, Albero dal ponte anteriore. 6, Dischi principali di attrito. 7, Dischi di attrito di comando. 8, Bobina elettromagnetica 9, Albero al ponte posteriore. 10, Comando dalla centralina che in funzione della corrente applicata alla bobina esercita un flusso magnetico. 11, Camma di comando. 12, Sfera. 13, Camma principale. 14, Forza magnetica di attrazione meccanica Il gruppo frizione principale è composta da; nove dischi frizione (3) che sono calettati sullo scanalato dell alloggiamento anteriore (4). E da nove dischi di attrito (6) che sono calettati sullo scanalato dell albero del giunto (1). In modalità 2WD (solo trazione anteriore), il gruppo frizione di comando non viene attivato dalla bobina (8), quindi l albero del giunto (1) può ruotare non impegnando (lasciando fermo) l alloggiamento (4). Ovvero i due alberi, dal ponte anteriore (5), al ponte posteriore (9) saranno svincolati tra loro. Pertanto, nessun moto dal gruppo di rinvio, viene trasmesso al differenziale posteriore. Il gruppo frizione di comando è composta da tre dischi esterni (2) che sono calettati sullo scanalato dell alloggiamento anteriore (4). E due dischi interni (7), che sono calettati sullo scanalato della camma di comando (11). La camma di comando(11) e la camma principale (13) sono uniti reciprocamente mediante la sfera (12). In modalità 4WD AUTO oppure LOCK la centralina attiva la bobina e la forza magnetica generata comprime il gruppo frizione di comando che fa muovere in senso rotatorio la camma di comando (11). La sfera (12) trascinata tra i due piattelli con alloggiamenti a cuneo spinge la camma principale (13) ad impacchettare Il gruppo frizione principale. Quindi l albero del giunto (1) e l alloggiamento (4) girano insieme. Segnali di ingresso e di uscita DESCRIZIONE: La velocità veicolo, proveniente dal NFR (ABS) e altri valori relativi al NCM vengono inviati al Nodo 4WD, mediante la rete C-CAN. 160 / Fiat Group S.p.A. - Tutti i diritti sono riservati
161 MECCANICA DI BASE DELLE Fiat Group S.p.A La velocità veicolo viene calcolata utilizzando la media istantanea dei segnali dei sensori montati sulle ruote anteriori di destra e sinistra. Per calcolare il valore di corrente ottimale (per alimentare la bobina), il Nodo 4WD considera la differenza di velocità tra le ruote anteriori e posteriori. Il segnale del sensore di temperatura interna al giunto, viene utilizzato per la regolazione della corrente massima alla bobina elettromagnetica. Caratteristiche dell EMCD DESCRIZIONE: In funzione delle informazioni provenienti da ciascun sensore, il Nodo 4WD è in grado di valutare le condizioni stradali e di guida. Per ottenere un contenimento dei consumi, corrispondenza con l ABS, Stabilità dello sterzo. Viene quindi trasmessa la copia ottimale alle ruote posteriori, comandando la corrente fornita alla bobina elettromagnetica. La frizione elettromagnetica offre una migliore precisione del comando, rispetto al giunto viscoso. La compattezza e la completezza del gruppo giunto facilita il montaggio. Durante la marcia con 4WD-AUTO inserito, l intervento dell ABS farà commutare la modalità di trazione in 2WD; al termine dell intervento verrà nuovamente commutato in 4WD-AUTO. Funzione di protezione Pneumatico di dimensioni diverse dagli altri genera una differenza di coppia tra ruote anteriori e posteriori. La centralina 4WD compensa questa differenza in automatico. Se la differenza è estremamente ampia, (per proteggere il gruppo rinvio dal surriscaldamento) viene inibito il comando 4WD e la trazione rimane fissa su 2WD. Regolazione della corrente massima A, Corrente alla bobina in Ampere T, Temperatura 161 / Fiat Group S.p.A. - Tutti i diritti sono riservati
162 MECCANICA DI BASE DELLE Fiat Group S.p.A A, Corrente alla bobina in Ampere Nm, Niuton metro. a, Condizione a caldo. b, Condizione a freddo. Ad una temperatura di almeno 20oC e corrente a 2,0 A, la coppia del giunto corrisponde a circa 380Nm. Questo valore è sufficientemente ampio per trasmettere la coppia massima del motore (tra 140 e 150 Nm). La centralina 4WD, quindi, non fornisce corrente maggiore di 2,0 A alla bobina elettromagnetica. La coppia del giunto è la coppia massima trasmessa dall anteriore al posteriore. Ad esempio, quando è pari a 50Nm, la coppia trasmissibile alle ruote posteriore è di soli 50Nm. Quando, invece, è di 200Nm, è possibile trasmettere la coppia massima del motore. La coppia del giunto tende ad incrementare alle basse temperature a causa dell aumento di viscosità dell olio del cambio. Ciò significa che, alle basse temperature, la coppia massima del giunto viene ottenuta con una corrente inferiore. Si spiega, così, il motivo per cui la corrente massima è minore alle basse temperature. Diagnosi strumentale. Il Nodo 4WD esegue una continua autodiagnosi del funzionamento del sistema. In particolare, rileva e memorizza eventuali anomalie, esegue la verifica dei collegamenti con i componenti del sistema e l eventuale tipo di guasto intervenuto, e segnala l insorgere di tali anomalie per mezzo dell accensione della/e spia/e sul Nodo Quadro Strumenti. Ovvero In caso di anomalia, ambedue le spie rimangono accese o si accendono contemporaneamente con il veicolo in marcia. Le anomalie memorizzate nella centralina possono essere visualizzate e/o cancellate, mediante l apparecchiatura di diagnosi. È possibile consultare sull Allegato 1 di questa Traccia didattica quali parametri possono essere visualizzati ed il loro significato, che tipo di errore (DTC) la centralina può catturare nel sistema. Con Examiner non è possibile eseguire, su questo sistema, le diagnosi attive. 162 / Fiat Group S.p.A. - Tutti i diritti sono riservati
163 MECCANICA DI BASE DELLE Fiat Group S.p.A Sulle vetture 156 4x4 è stato adottato un differenziale epicicloidale Torsen tipo C. TRAZIONE INTEGRALE ALFA 156 CROSSWAGON Q4 E ALFA 156 SPORTWAGON Q4 Schema generale 163 / Fiat Group S.p.A. - Tutti i diritti sono riservati
164 MECCANICA DI BASE DELLE Fiat Group S.p.A Descrizione Trazione integrale permanente (non disinseribile) A - Cambio di velocità C 530 B - Differenziale centrale epicicloidale Torsen tipo C ubicato nel cambio di velocità. Tale differenziale ha una ripartizione nominale della trazione tra l asse anteriore e posteriore 42/58 C - Gruppo differenziale asse anteriore di tipo aperto ad ingranaggi conici con rinvio del moto (coppia conica) all albero di trasmissione.(ptu, Power Trasmission Unit) D - Albero di trasmissione E - Torque tube F - Differenziale asse posteriore di tipo aperto ad ingranaggi conici con presa del moto (coppia conica) dal Torque tube al differenziale posteriore (RDA, Rear Differential Axel). Vantaggi Tempi di risposta istantanei del differenziale centrale Torsen tipo C rispetto al giunto passivo o elettronico. Affidabile come trazione perché meccanica Svantaggi Azione sui freni da parte dell ASR indispensabile in casi estremi (ruota o assale alzato da terra oppure su fondo estremamente scivoloso) ENTRATA MOTO USCITA MOTO 164 / Fiat Group S.p.A. - Tutti i diritti sono riservati
165 MECCANICA DI BASE DELLE Fiat Group S.p.A Il differenziale epicicloidale Torsen è posizionato nel cambio di velocità nella stessa posizione che ha il differenziale anteriore sulle versioni con solo due ruote motrici. E D C B C A A - Semiscatola portaplanetari B - Semiscatola C - Planetari ( n 6 ) D - Ingranaggio (solare) invio moto all asse anteriore E - Ingranaggi invio moto all asse posteriore Il moto, dal l albero secondario del cambio, viene trasmesso alla corona la quale essendo avvitata alle due semiscatole A e B fa corpo unico con esse. All interno della semiscatola A sono ricavate n 6 sedi dove sono alloggiati altrettanti planetari C con dentatura elicoidale; essi non sono calettati su dei perni, ma possono ugualmente ruotare su se stessi all interno della loro sede che li contiene sulla parte esterna (dentatura). Questi planetari ingranano contemporaneamente sull ingranaggio solare D che trasmette il moto all asse anteriore e sull ingranaggio E che trasmette il moto all asse posteriore che ha la forma di una C con dentatura interna. 165 / Fiat Group S.p.A. - Tutti i diritti sono riservati
166 MECCANICA DI BASE DELLE Fiat Group S.p.A A - Semiscatola portaplanetari C - Planetari( n 6 ) A - Semiscatola portaplanetari C - Planetari (N 6 ) D - Ingranaggio solare asse anteriore E - Ingranaggio asse posteriore 166 / Fiat Group S.p.A. - Tutti i diritti sono riservati
167 MECCANICA DI BASE DELLE Fiat Group S.p.A Bloccaggio differenziale Il bloccaggio del differenziale avviene automaticamente poiché l ingranaggio dell albero che vorrebbe ruotare più veloce, per effetto dei denti elicoidali dei planetari sui quali ingrana, viene spinto contro i relativi anelli di attrito che gli impediscono di girare più velocemente. Tale spinta permane fino a quando esiste la condizione per la quale uno dei due ingranaggi vorrebbe girare più veloce. 167 / Fiat Group S.p.A. - Tutti i diritti sono riservati
168 MECCANICA DI BASE DELLE Fiat Group S.p.A Percentuale di bloccaggio e ripartizione della coppia asse anteriore / posteriore Asse anteriore Asse posteriore Ripartizione coppia % di bloccaggio Il bloccaggio del differenziale determina il trasferimento di coppia dall asse con meno attrito all asse con più attrito. L entità della coppia trasferita dipende dalla percentuale di bloccaggio,ma non è esattamente lo stesso valore. La percentuale di bloccaggio corrisponde alla percentuale di coppia trasmessa solo se si parte da una ripartizione di base pari a 50/50. Il differenziale Torsen tipo C è un differenziale autobloccante con la seguente percentuale di bloccaggio massima : in tiro del 30% sia quando la coppia viene trasferita verso l asse anteriore che quando viene trasferita verso l asse posteriore in rilascio del 30 % quando la coppia viene trasferita verso l asse posteriore e del 40 % quando la coppia viene trasferita verso l'asse anteriore. Oltre questi valori di bloccaggio il differenziale, pur continuando a trasferire coppia verso l assale con maggiore aderenza, si apre e permette rotazioni diverse tra i due assi. 168 / Fiat Group S.p.A. - Tutti i diritti sono riservati
169 MECCANICA DI BASE DELLE Fiat Group S.p.A Tiro Poiché nel Torsen la coppia va sempre all asse con più attrito, in tiro l asse che vorrebbe girare più veloce è l asse con meno attrito, quindi la coppia viene trasferita verso l asse che gira più piano. 169 / Fiat Group S.p.A. - Tutti i diritti sono riservati
170 MECCANICA DI BASE DELLE Fiat Group S.p.A Rilascio Come si può notare, in rilascio, le spinte assiali sugli ingranaggi sono di verso opposto rispetto alla condizione di tiro perché l inerzia della vettura tende a far ruotare gli ingranaggi in senso opposto rispetto al senso di rotazione della semiscatola portaplanetari. In rilascio l asse che vorrebbe girare più veloce è l asse con più attrito quindi è l asse verso il quale viene trasferita la coppia. 170 / Fiat Group S.p.A. - Tutti i diritti sono riservati
171 MECCANICA DI BASE DELLE Fiat Group S.p.A Funzionamento del differenziale epicicloidale Torsen tipo C Marcia in rettilineo Quando si creano le condizioni per cui un asse vorrebbe ruotare più velocemente rispetto ad un altro ( ad esempio il trasferimento di carico da un asse all altro che fa variare l attrito sulle ruote e comprime maggiormente i pneumatici dell asse più carico) il differenziale Torsen C si blocca,cioè costringe l asse che vorrebbe girare più veloce a girare alla stessa velocità dell altro. Così facendo trasferisce la coppia dall asse che vorrebbe girare più veloce verso l asse che gira più piano e che ha più attrito. Marcia in curva In curva normalmente le ruote dell asse anteriore girano più veloci delle ruote dell asse posteriore ; questo è dovuto al fatto che il raggio di rotazione medio dell asse anteriore è superiore a quello dell asse posteriore. Il Torsen tipo C si apre, permettendo una differenza di giri tra l'asse anteriore più rapido e l'asse posteriore più lento, togliendo comunque coppia dall'asse anteriore per trasferirla all asse posteriore in modo da minimizzare il sottosterzo. In questo caso, diversamente da cosa succede normalmente in rettilineo, il bloccaggio massimo del differenziale Torsen tipo C non è volutamente sufficiente a tenere costante la velocità dei due assi, quindi si apre, permettendo velocità diverse delle ruote. Quando per effetto della maggior coppia l asse posteriore arriva al limite della sua tenuta laterale il Torsen tende a trasferire coppia all asse anteriore per evitare che le ruote posteriori sviluppino un angolo di deriva eccessivo minimizzando il sovrasterzo. Ne consegue un comportamento tendenzialmente neutro della vettura anche se rimane una tendenza leggermente sovrasterzante dovuta alla prevalenza posteriore. 171 / Fiat Group S.p.A. - Tutti i diritti sono riservati
172 MECCANICA DI BASE DELLE Fiat Group S.p.A Il Torsen agisce istantaneamente cioè anticipando una eventuale situazione indesiderabile. Questa caratteristica conferisce una buona precisione dello sterzo ed elevati livelli di grip alle ruote. Gruppo differenziale anteriore e coppia conica (PTU, Power Trasmission Unit) A - Albero cavo scanalato per trasmissione del moto dal Torsen al differenziale anteriore B - Scatola differenziale anteriore C - Albero cavo scanalato per trasmissione del moto dal Torsen al rinvio D - Corona della coppia conica rinvio del moto E - Pignone della coppia conica rinvio del moto 172 / Fiat Group S.p.A. - Tutti i diritti sono riservati
173 MECCANICA DI BASE DELLE Fiat Group S.p.A Revisione del gruppo differenziale anteriore e coppia conica (PTU, Power Trasmission Unit ) Le registrazioni previste su questo complessivo sono le seguenti: Coppia di rotolamento della corona B agendo sugli anelli B1 Posizionamento del pignone conico A agendo sull anello A1.Il controllo del l esatto posizionamento del pignone si esegue verificando le impronte di lavoro sui denti. Coppia di rotolamento del pignone A tramite la chiusura del dado C Prova del gioco tra il pignone A e la corona B. Se il gioco si deve regolare occorre agire sui due anelli B1 dei cuscinetti differenziale,cercando di mettere da una parte lo stesso valore che si toglie dall altra per non variare la coppia di rotolamento del differenziale 173 / Fiat Group S.p.A. - Tutti i diritti sono riservati
174 MECCANICA DI BASE DELLE Fiat Group S.p.A A - Giunti omocinetici : a sfere con possibilità di scorrimento di ±14 mm e di articolazione massima di 3,5 gradi. B - Giunto cardanico con possibilità di articolazione di circa 2 gradi. ANGOLI CARATTERISTICI Questi sono gli angoli che devono essere rispettati al montaggio e sono ottenuti con l interposizione di un apposito spessore tra il supporto centrale e la scocca. L equilibratura dell albero di trasmissione viene eseguita dinamicamente in stabilimento utilizzando rondelle di opportuno spessore interposte sotto le viti di fissaggio dell albero al torque tube. A seguito di uno smontaggio dell albero di trasmissione occorre, al successivo rimontaggio, rispettare l esatta posizione delle suddette rondelle per non squilibrare l albero di trasmissione. 174 / Fiat Group S.p.A. - Tutti i diritti sono riservati
175 MECCANICA DI BASE DELLE Fiat Group S.p.A Torque tube Gruppo coppia conica e differenziale posteriore ( RDA, Rear Differential Axel) A - Pignone coppia conica B - Corona differenziale posteriore C - Scatola differenziale posteriore 175 / Fiat Group S.p.A. - Tutti i diritti sono riservati
176 MECCANICA DI BASE DELLE Fiat Group S.p.A Revisione gruppo coppia conica e differenziale posteriore (RDA, Rear Differential Axel) Le registrazioni previste su questo complessivo sono le seguenti : Coppia di rotolamento del differenziale C agendo sugli anelli C1 Posizionamento del pignone conico A agendo sull anello A1. Il controllo dell esatto posizionamento del pignone si esegue verificando le impronte di lavoro sui denti. Coppia di rotolamento del pignone A tramite la chiusura del dado D. Prova del gioco tra il pignone A e la corona B. Se il gioco si deve regolare occorre agire sui due anelli C1 dei cuscinetti differenziale, cercando di mettere da una parte lo stesso valore che si toglie dall altra per non variare la coppia di rotola mento del differenziale. 176 / Fiat Group S.p.A. - Tutti i diritti sono riservati
177 RUMOROSITA ALLO SPUNTO Al rilascio del pedale della frizione All abbassamento del pedale della frizione MECCANICA DI BASE DELLE Fiat Group S.p.A DIAGNOSI DEGLI INCONVENIENTI FRIZIONE - Cuscinetto reggispinta eccessivamente usurato, danneggiato o scarsamente lubrificato. - Insufficiente corsa a vuoto del pedale frizione - Molla richiamo leva a forcella rotta o sganciata. - Gioco eccessivo tra le scanalature dell albero di presa continua e la sede relativa sul mozzo del disco condotto - Disallineamento tra disco condotto e volano motore. - Molle del disco condotto rotte o con caratteristiche elastiche inferiori ai valori prescritti. - Insufficiente corsa a vuoto del pedale frizione. - Molla di richiamo leva a forcella rotta, debole o sganciata. - Albero della presa continua deformato od usurato. - Viti di fissaggio del volano all albero motore allentate. CAMBIO DI VELOCITA - Boccola o cuscinetto su albero motore, per albero di presa continua, deteriorati o insufficientemente lubrificati. - Eccessivo gioco tra gli ingranaggi a causa della loro usura. - Ingranaggi, cuscinetti, boccole per ingranaggi deteriorati o usurati. - Giochi di montaggio non corrispondenti ai valori prescritti - Boccola di centraggio per albero di trasmissione deteriorata ALBERI DI TRASMISSIONE - Giunto elastico di trasmissione usurato, allentato o deteriorato - Astuccio a ghiera, di ritegno del manicotto scorrevole del codolo dell albero di trasmissione allentato. - Gioco eccessivo tra le scanalature del codolo dell albero di trasmissione e quelle relative sul manicotto scorrevole. - Cuscinetto del supporto elastico centrale deteriorato o con gioco eccessivo. - Tassello elastico del supporto centrale deteriorato. - Viti di fissaggio del supporto elastico centrale allentate. - Bulloni per fissaggio albero di trasmissione anteriore a quello posteriore allentati. - Bulloni per fissaggio della flangia albero di trasmissione posteriore a quella del pignone conico del gruppo differenziale allentati. - Dado di fissaggio del manicotto sul codolo dell albero di trasmissione allentato. - Manicotto scorrevole grippato. - Cuscinetti dei giunti cardanici grippati o eccessivamente usurati. 177 / Fiat Group S.p.A. - Tutti i diritti sono riservati
178 RUMOROSITA SUL TIRO MECCANICA DI BASE DELLE Fiat Group S.p.A DIFFERENZIALE - Gioco di accoppiamento pignone-corona eccessivo. - Allentamento del dado di ritegno del pignone conico SEMIALBERI DEL DIFFERENZIALE - Deterioramento delle scanalature di accoppiamento di semialberi differenziale con gli ingranaggi planetari della scatola interna del differenziale. - Eccessivo gioco dei giunti omocinetici. - Viti di fissaggio manicotti scorrevoli dei semialberi allentati. - Manicotti scorrevoli con eccessivo gioco sui semialberi. - Giunti elastici dei mozzi posteriori con eccessivo gioco. - Molletta di contenimento del gioco assiale dei semialberi rotta. - Viti di fissaggio ruote motrici alle flange di semialberi allentate. FRIZIONE La frizione slitta per: - Insufficiente ritorno del pedale frizione. - Meccanismo di disinnesto danneggiato. - Olio o grasso sulle guarnizioni del disco condotto. - Molla a diaframma inefficiente. - Guarnizione del disco condotto usurate, vetrificate o bruciate - Pompa di comando sovraccarica (per occlusione del foro di compensazione). ALBERI DI TRASMISSIONE - Giunto elastico di trasmissione usurato o deteriorato. - Cuscinetto del supporto elastico centrale deteriorato o con gioco eccessivo. - Particolari dei giunti cardanici dell albero di trasmissione grippati o eccessivamente usurati CAMBIO DI VELOCITA - Ingranaggi, cuscinetti, boccole per ingranaggi, anelli sincronizzatori deteriorati o usurati. - Disallineamento o scentratura tra gli alberi. - Impurità o residui metallici con l olio lubrificante. - Insufficiente livello dell olio lubrificante. - Giochi di montaggio inesatti. DIFFERENZIALE E PONTE - Scatola ponte deformata. - Cuscinetti scatola interna differenziale mal registrati o deteriorati. - Errato contatto dei denti fra pignone e corona. - Cuscinetti del pignone conico deteriorati. - Insufficiente lubrificazione fra le varie parti del differenziale. SEMIALBERI DEL DIFFERENZIALE - Cuscinetti dei semialberi deteriorati o insufficientemente lubrificati. - Giunti omocinetici rumorosi. 178 / Fiat Group S.p.A. - Tutti i diritti sono riservati
179 RUMOROSITA SUL RILASCIO MECCANICA DI BASE DELLE Fiat Group S.p.A FRIZIONE - Molla a diaframma con gioco nel fulcro. - Molle parastrappi del disco condotto con gioco nelle sedi. CAMBIO DI VELOCITA - Gioco di montaggio inesatti. - Eccessivo gioco tra gli ingranaggi a causa della loro usura. - Eccessivo gioco tra le scanalature sull albero di uscita dal cambio e quelle relative sulla flangia attacco a trasmissione. - Inefficiente lubrificazione dei cuscinetti e degli ingranaggi. ALBERI DI TRASMISSIONE - Giunto elastico di trasmissione usurato, allentato o deteriorato. - Astuccio a ghiera di ritegno del manicotto scorrevole sul codolo dell albero di trasmissione allentato. - Gioco eccessivo tra le scanalature del codolo dell albero di trasmissione e quelle relative sul manicotto scorrevole. - Cuscinetto del supporto elastico centrale deteriorato o con gioco eccessivo. - Tassello elastico del supporto centrale deteriorato. - Viti di fissaggio del supporto elastico centrale allentate. - Bulloni per fissaggio albero di trasmissione anteriore a quello posteriore allentati. - Bulloni per fissaggio della flangia albero di trasmissione posteriore a quella del pignone conico del gruppo differenziale allentati. - Dado di fissaggio manicotto sul codolo dell albero di trasmissione allentato. - Manicotto scorrevole grippato. - Cuscinetti dei giunti cardanici grippati o eccessivamente usurati. DIFFERENZIALE /DIFFERENZIALE TORSEN - Inesatto gioco di accoppiamento fra pignone e corona. - Gioco eccessivo dei cuscinetti del pignone per allentamento del dado di fissaggio. - Gioco eccessivo dei cuscinetti del pignone conico per snervamento del distanziale elastico. SEMIALBERI DEL DIFFERENZIALE - Deterioramento delle scanalature di accoppiamento dei semialberi differenziale con gli ingranaggi planetari della scatola interna del differenziale. - Eccessivo gioco dei giunto omocinetici. - Viti di fissaggio dei manicotti scorrevoli dei semialberi allentati. - Manicotti scorrevoli con eccessivo gioco sui semialberi. - Giunti elastici dei mozzi posteriori con eccessivo gioco. - Molletta di contenimento del gioco assiale dei semialberi rotta. - Viti di fissaggio ruote motrici alle flange dei semialberi allentati. 179 / Fiat Group S.p.A. - Tutti i diritti sono riservati
180 DISINNESTO SPONTANEO DELLE MARCE VIBRAZIONI IN MARCIA E ALLO SPUNTO RUMOROSITA IN CURVA RUMOROSITA` SUL TIRO E SUL RILASCIO MECCANICA DI BASE DELLE Fiat Group S.p.A DIFFERENZIALE - Cuscinetti del pignone conico usurati. - Giochi di montaggio inesatti. - Coppia conica usurata. - Lubrificazione insufficiente. DIFFERENZIALE TORSEN - Cuscinetti usurati - Coppia cilindrica usurata - Lubrificazione inefficiente DIFFERENZIALE - Ingranaggi satelliti eccessivamente forzati sul relativo asse portasatelliti. - Superficie dell asse portasatellite non perfettamente levigata o irregolare. - Ingranaggi planetari bloccati sulla scatola interna del differenziale. SEMIALBERI DEL DIFFERENZIALE / MOZZI RUOTA - Cuscinetti dei semialberi usurati - Cuscinetti dei mozzi ruota usurati FRIZIONE La frizione strappa per: - Olio o grasso sul volano, sull anello spingidisco o sulle guarnizioni del disco condotto. - Guarnizioni allentate sul disco condotto per imperfetta tenuta dei ribattini. - Anello spingidisco deformato. - Indurimento del meccanismo di comando frizione. - Guarnizioni di attrito consumate irregolarmente per scentratura del disco condotto. ALBERI DI TRASMISSIONE - Allineamento/montaggio albero di trasmissione non corretto. - Albero di trasmissione deformato. - Albero di trasmissione non equilibrato. - Cuscinetto del supporto elastico centrale usurato. - Giunto elastico di trasmissione deteriorato. CAMBIO DI VELOCITA - Errata manovra dell innesto - Meccanismo esterno di comando innesto e disinnesto marce mal registrato - Errato montaggio o usura delle sfere e molle per scatto in posizione delle aste di comando - Sincronizzatori difettosi o usurati. - Gioco eccessivo a causa dell usura delle forcelle d innesto nelle scanalature sugli ingranaggi e sui manicotti scorrevoli. 180 / Fiat Group S.p.A. - Tutti i diritti sono riservati
181 PERDITE OLIO DIFFICOLTA DI INNESTO DELLE MARCE MECCANICA DI BASE DELLE Fiat Group S.p.A FRIZIONE La frizione non stacca per: - Eccessiva corsa a vuoto del pedale frizione. - Disco condotto scentrato o deformato. - Mozzo del disco condotto eccessivamente forzato sull albero frizione. - Anello spingidisco danneggiato o deformato. - Imperfetta rivettatura delle lamine sul piatto supporto frizione. - Presenza di aria nell impianto idraulico comando disinnesto frizione - Scarsa tenuta della valvola ad anello della pompa o del cilindro maestro. - Perdita di liquido del comando idraulico da raccordi, tubazioni, ecc - Perdita di liquido dal cilindro operatore comando disinnesto frizione. - Mancanza di liquido nel serbatoio della pompa. - Puntalino di comando della pompa rotto, mal registrato, o eccessivamente usurato. - Foro di sfiato nel tappo del serbatoio otturato (provoca una depressione, permettendo all aria di entrare nella pompa stessa). CAMBIO DI VELOCITA - Meccanismo esterno di comando innesto e disinnesto delle marce mal registrato, particolari deformati o eccessivamente usurati. - Difficoltà nello scorrimento delle aste nelle proprie sedi nella scatola cambio. - Manicotti ed ingranaggi con impedimento nello scorrimento sulle proprie sedi. - Qualità inadatta dell olio lubrificante immesso nella scatola cambio. - Comandi della frizione mal registrati che impediscono l interruzione del moto dal motore al cambio. - Vettura in movimento (per marce non sincronizzate). - Errata manovra nell innesto marce. CAMBIO DI VELOCITA` - Eccessivo riempimento di olio lubrificante della scatola cambio. - Allentamento di viti o dadi di fissaggio dei coperchi di tenuta. - Guarnizioni, anelli o cuffie di tenuta usurate o inefficienti. - Sfiatatoio ostruito. - Scatola del cambio fessurata o danneggiata. - Tappi di scarico o introduzione olio allentati. - DIFFERENZIALE PONTE - Anello di tenuta per pignone conico usurato. - Guarnizione del differenziale inefficiente. - Anelli di tenuta per semialberi sulla scatola ponte usurati o inefficienti. - Sfiatatoio sulla scatola ponte ostruito. - Tappi di scarico o introduzione olio allentati. 181 / Fiat Group S.p.A. - Tutti i diritti sono riservati
182 MECCANICA DI BASE DELLE Fiat Group S.p.A PNEUMATICI ED ASSETTO RUOTE LA RUOTA A-A CO BA FI TA SP C S S/C CE B D G L U DI MO asse di rotazione della ruota copertura battistrada fianco tallone spalla corda o larghezza della sezione altezza della sezione rapporto di aspetto cerchione altezza della balconata diametro di calettamento gola base o larghezza di calettamento risalto antidetallonamento disco mozzo FUNZIONE: la ruota ha la funzione di trasformare il moto rotatorio proveniente dal semialbero in moto rettilineo che permette l avanzamento del veicolo, grazie al rotolamento della ruota stessa sul terreno. COMPONENTI: la ruota è costituita principalmente dal mozzo ruota che ha la funzione di vincolare la ruota alla sospensione, trasmettere la coppia motrice al pneumatico (se la ruota è motrice) o comunque di garantire la libera rotazione della stessa (se la ruota è folle) e di trasferire il comando di sterzo al pneumatico stesso; il mozzo ruota si collega al pneumatico attraverso un cerchione la cui funzione è proprio quella di supportare in maniera opportuna il pneumatico; quest ultimo è infine deputato a trasferire a terra la potenza del motore. 182 / Fiat Group S.p.A. - Tutti i diritti sono riservati
183 MECCANICA DI BASE DELLE Fiat Group S.p.A IL PNEUMATICO NECESSITA DEL PNEUMATICO IRREGOLARITA DELLA STRADA: la necessità di interporre un mezzo elastico tra la strada ed il cerchione metallico della ruota risulta evidente, quando si pensi che il piano stradale non è mai perfettamente levigato e la ruota non è mai un cerchio perfetto; all atto pratico si può ritenere che la ruota avanzi su un piano che presenta delle irregolarità. EFFETTI SULLA RUOTA: a causa di queste irregolarità, la ruota è soggetta ad una serie di urti più o meno intensi secondo l entità delle sporgenze e la velocità della ruota stessa. EFFETTI SUL VEICOLO: tutto il veicolo viene perciò assoggettato ad una serie di vibrazioni e scosse che, oltre ad essere fastidiose, possono pregiudicare il corretto funzionamento dei vari organi del veicolo. 183 / Fiat Group S.p.A. - Tutti i diritti sono riservati
184 MECCANICA DI BASE DELLE Fiat Group S.p.A FUNZIONI DEL PNEUMATICO ROTOLARE Garantire la massima stabilità del veicolo alle alte velocità. PORTARE Sopportare il peso proprio del veicolo ed il peso trasportato. GUIDARE Sopportare gli sforzi generati da brusche frenate, da rapide accelerazioni e dalla spinta della forza centrifuga in curva. Assicurare la massima aderenza su qualsiasi fondo stradale. TRASMETTERE Trasmettere alla strada lo sforzo periferico dovuto alla coppia motrice, per far avanzare il veicolo. AMMORTIZZARE Assorbire gli urti derivanti dalle asperità stradali. DURARE Resistere a milioni di cicli, di curve, di frenate e di accelerazioni. 184 / Fiat Group S.p.A. - Tutti i diritti sono riservati
185 MECCANICA DI BASE DELLE Fiat Group S.p.A COSTITUZIONE DEL PNEUMATICO Battistrada Cintura Struttura Rivestimento dei fianchi Tallone Rivestimento interno COSTITUZIONE Il pneumatico è costituito da: Un armatura a cerchi metallici, formata da una treccia di fili in acciaio inserita nel tallone, che permette l ancoraggio in estensibile del pneumatico sul cerchione; La carcassa, realizzata con una serie di tele in materiale sintetico, acciaio, fibra di vetro, rivestite di gomma e disposte in maniera da costituire la parte resistente del pneumatico; Fianchi e battistrada, che rivestono la carcassa e sono composti da mescole speciali di differenti tipi di gomma ed altri materiali. PNEUMATICI TUBELESS: ormai su quasi tutte le vetture sono presenti pneumatici tubeless cioè senza camera d aria, in quanto meno soggetti a forature; ad esempio, se un chiodo, non troppo grosso, si conficca nella copertura, lo strato impermeabile Liner di cui è rivestita all interno sigilla il foro causato dal chiodo anche ove, come è consigliabile, ne venga rimosso; ciò garantisce un a minore necessità di riparazione (dell ordine del 50%) al tubeless il quale, d altra parte richiede che il cerchione dia perfettamente accoppiato ai talloni della copertura in quanto ne integra la funzione di tenuta. 185 / Fiat Group S.p.A. - Tutti i diritti sono riservati
186 MECCANICA DI BASE DELLE Fiat Group S.p.A MARCATURA DEL PNEUMATICO Larghezza pneumatico in mm del Indice di carico Indice di velocità Rapporto di aspetto Pneumatico radiale RAPPORTO DI ASPETTO DEFINIZIONE: rapporto tra l altezza del pneumatico e la sua larghezza; es.:0,80 H/S=0,80; minore è questo numero, più il pneumatico sarà ribassato. EVOLUZIONE: il pneumatico ha conosciuto nel tempo una progressiva diminuzione del rapporto di aspetto (anche noto come rapporto di assetto). Questa tendenza è determinata da molteplici ragioni: l esigenza di lasciare più spazio per i freni, di posizionare correttamente i beveraggi delle sospensioni e di diminuire il più possibile la deformazione laterale del pneumatico. ESIGENZE: per avere un buon comfort si richiede un fianco alto e morbido mentre, per avere precisione di guida è necessario un fianco basso e sufficiente rigido; i moderni pneumatici vanno nella direzione di migliorare la precisione di guida riducendo l altezza del fianco del pneumatico, a discapito del comfort di guida. AQUAPLANING: quando la superficie stradale è ricoperta da un velo d acqua, si può verificare il fenomeno dell aquaplaning, per cui il pneumatico perde completamente aderenza rispetto al terreno; in questo caso l utilizzo di rapporti di aspetto bassi aumenta la sensibilità a tale fenomeno; la cosa viene risolto ottimizzando il profilo del battistrada. 186 / Fiat Group S.p.A. - Tutti i diritti sono riservati
187 MECCANICA DI BASE DELLE Fiat Group S.p.A ESEMPIO MARCATURA PNEUMATICO PER AUTOVETTURA 187 / Fiat Group S.p.A. - Tutti i diritti sono riservati
RUOTE DENTATE ELICOIDALI AD ASSI PARALLELI
RUOTE DENTATE ELICOIDALI AD ASSI PARALLELI Non interessa qui trattare del taglio delle ruote dentate elicoidali, basti ricordare che le superfici dei denti sono delle superfici coniugate a evolvente come
TRASMISSIONE. Prof. Paolo Biondi Dip. GEMINI
TRASMISSIONE Prof. Paolo Biondi Dip. GEMINI Trasmissione Per trasmissione si intende l'insieme degli organi che trasmettono la potenza del motore ai punti di utilizzazione, in particolare per gli autoveicoli
Disegno di Macchine. Lezione n 10 Cuscinetti radenti e volventi. corso per I anno della laurea in ing. meccanica Docente: ing.
Disegno di Macchine corso per I anno della laurea in ing. meccanica Docente: ing. Francesca Campana Lezione n 10 Cuscinetti radenti e volventi Supporti e Cuscinetti I supporti sorreggono gli elementi rotanti
I riduttori di precisione: principi di funzionamento e criteri di scelta
I riduttori di precisione: principi di funzionamento e criteri di scelta Ing. Simone Bassani Team Manager & Engineering WITTENSTEIN SPA Cos è un riduttore meccanico? Il riduttore meccanico è essenzialmente
I riduttori di precisione: principi di funzionamento e criteri di scelta
I riduttori di precisione: principi di funzionamento e criteri di scelta Università di Udine Ing. Emanuele Radice Area Manager & Engineering [email protected] WITTENSTEIN SPA Cos è un riduttore
TRASMISSIONI MEDIANTE RUOTE DENTATE
Le trasmissioni Una trasmissione meccanica è il complesso degli organi che servono per trasmettere potenza in un sistema meccanico La scelta del tipo di trasmissione più adatto per ogni singola applicazione
Laboratorio di Tecnologie Biomediche
Laboratorio di Tecnologie Biomediche Collegamenti meccanici Carmelo De Maria [email protected] Imbiettamenti collegamenti di tipo smontabile che hanno per scopo quello di impedire la rotazione relativa
9kiY_d[jj_ hwz_wb_ W i\[h[ C_YheYkiY_d[jj_ C_YheYkiY_d[jj d febb_y_ 9kiY_d[jj_ Yed Wd[bbe [ij[hde i\[h_ye
cuscinetti volventi I cuscinetti orientabili a sfere possiedono due corone di sfere, che rotolano su di una pista di scorrimento di forma sferica, ricavata nell anello esterno; questa peculiarità conferisce
Esecuzione Componenti Cuscinetti a doppio effetto
Esecuzione... 4 omponenti... 5 uscinetti a doppio effetto... E uscinetti dati generali... 7 Dimensioni... 7 Tolleranze... 7 Disallineamento... Gabbie... arico minimo... arico dinamico equivalente sul cuscinetto...
Trasmissione di potenza
Trasmissione di potenza Differenziale Aperto Perno con i due satelliti in estremità Ruota conica planetaria Disegno di Macchine: materiale di supporto alle Questo assieme è un differenziale di tipo aperto.
CUSCINETTI VOLVENTI. Introduzione
CUSCINETTI VOLVENTI 377 Introduzione Un cuscinetto volvente (o a rotolamento) è un elemento posizionato tra un albero (parte ruotante) ed un supporto (parte fissa). La rotazione relativa tra la parte fissa
Organi meccanici per la trasmissione del moto
Organi meccanici per la trasmissione del moto La trasmissione del moto fra due organi meccanici ha lo scopo di trasportare e/o trasformare il movimento e con esso le forze che lo generano. In una trasmissione
le lavorazioni a freddo asportazione di
le lavorazioni a freddo asportazione di le lavorazioni ad asportazione di truciolo la struttura truciolo delle macchine utensili lo studio del processo di asportazione di truciolo riveste un importanza
I CUSCINETTI VOLVENTI
I CUSCINETTI VOLVENTI Il cuscinetto volvente, detto anche cuscinetto a rotolamento, è un elemento posizionato tra il perno di un albero e il sopporto, nel quale il movimento relativo tra parte rotante
Università del Salento Facoltà di Ingegneria. Costruzione di Macchine
Università del Salento Facoltà di Ingegneria Costruzione di Macchine I giunti meccanici a cura dell ing. Riccardo Nobile 1 I giunti meccanici I giunti sono degli organi meccanici utilizzati per realizzare
Cinghie, funi, catene
Scheda riassuntiva capitoli 3-4 Cinghie, funi, catene Flessibilità Gli organi flessibili sono quelli che oppongono una limitata reazione elastica interna a un momento flettente; la flessibilità può essere
INGRANAGGI PARALLELI
INGRANAGGI PARALLELI Sono composti da ruote ad assi paralleli. Consentono di trasmettere le massime potenze di interesse industriale con velocità periferiche che possono arrivare a 80 m/s ed oltre. Sono
CUSCINETTI ad ATTRITO VOLVENTE
CUSCINETTI ad ATTRITO VOLVENTE tipologie, costruzione, montaggio e calcolo della durata Piero Morelli CUSCINETTI ad ATTRITO VOLVENTE - March 14, 2005 Costruzione di Macchine Lt - a.a. 2004/2005 - p. 1/33
I CUSCINETTI VOLVENTI
I CUSCINETTI VOLVENTI COSA SONO? Organi meccanici interposti tra albero e struttura rigida con lo scopo di: favorire la rotazione regolare dell albero ridurre al minimo l attrito sopportare le forze trasmesse
ELEMENTI ELASTICI MODULARI ROSTA GAMMA DEI PRODOTTI
GAMMA DEI PRODOTTI Tipo DR-S: elementi elastici modulari Rosta in gomma Corpo esterno e tubo interno a sezione quadrata in acciaio. Atti al fissaggio, su uno o entrambi i lati, di leve dotate di un profilato
Laboratorio di Disegno Assistito dal Calcolatore
Laboratorio di Disegno Assistito dal Calcolatore Luca Cortese c/o Dipartimento di Meccanica ed Aeronautica Ufficio n 20, via Eudossiana 18 tel. 06 44 585 236 e-mail: [email protected] Laboratorio
IL TAGLIO ORBITALE DELLE VITI SENZA FINE UNA TECNOLOGIA ECOSOSTENIBILE
IL TAGLIO ORBITALE DELLE VITI SENZA FINE UNA TECNOLOGIA ECOSOSTENIBILE Marco Benincasa (Benincasa Meccanica) Giampaolo Giacomozzi (Varvel SpA) Massimiliano Turci (Studio Tecnico Turci) Riduttori a vite
INDICE 3 INTRODUZIONE 17 CAPITOLO 1
INDICE Pagina INDICE 3 INTRODUZIONE 17 CAPITOLO 1 VM MOTORI E KISSsoft AG: STORIA E PRESENTE DELLE AZIENDE... 19 1.1 VM MOTORI 19 1.1.1 Le tappe fondamentali della storia.....20 1.1.2 La produzione attuale.....22
CALETTATORI DI BLOCCAGGIO PER ATTRITO
PER ATTRITO Il sistema di bloccaggio tramite calettamento per attrito rende solidale all albero uno o più organi che permettono di trasmettere il moto o sopportare una spinta assiale. L accoppiamento per
Fondamenti di Meccanica Esame del
Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.
DAL BARCO ANDREA dic 2016
DAL BARCO ANDREA 6-12 dic 2016 Struttura fondamentale La struttura portante principale del motore è costruita a sandwich. Sono presenti, dall alto verso il basso: - coperchio testata - testata - guarnizione
Componente o organo meccanico di macchina, che trasmette Coppia (Momento torcente, Potenza), col movimento di rotazione.
$/%(5,(02==,- 1a Parte - *** Definizione, Elementi caratteristici, Esempi, Punti di forza, Posizionamento, Mozzo, Immagine di ruote, mozzo albero, ruota dentata a modulo, Tipi di collegamento fra albero
Riepilogo calcolo ruote dentate a dentatura diritta Verifica a rottura per flessione
Riepilogo calcolo ruote dentate a dentatura diritta Verifica a rottura per flessione 2 M corr σ MAX = m 3 X v Z 1 y Problema di progetto MAX ams 3 2 M corr m σ ams X v Z 1 y Dove Xv coefficiente di maggiorazione
Coppia massima Mmax La trasmissione deve avere resistenza adeguata per trasmettere la coppia prevista in ogni condizione di utilizzo. La dimensione de
La dimensione della trasmissione deve essere selezionata in conformità ai requisiti funzionali dell applicazione. La resistenza deve essere adeguata per trasmettere la coppia prevista in ogni condizione
Cuscinetti a strisciamento e a rotolamento
Cuscinetti a strisciamento e a rotolamento La funzione dei cuscinetti a strisciamento e a rotolamento è quella di interporsi tra organi di macchina in rotazione reciproca. Questi elementi possono essere
Indice. Prefazione. Esercizi svolti 56
Prefazione XI 1 Introduzione 1 1.1 La modellazione di un sistema meccanico 2 1.2 Analisi e sintesi di un sistema meccanico 2 1.3 Contenuti e organizzazione del testo 3 2 Cinematica del punto e del corpo
Alberi e perni Accoppiamenti albero e mozzo con linguette, chiavette, alberi scanalati e spine
Istituto Istruzione Superiore G. Boris Giuliano" Via Carducci, 13-94015 Piazza Armerina (En) Corso di Tecnologie Meccaniche e Applicazioni Anno scolastico 2015-2016 Docente: Ing. Filippo Giustra Alberi
Impianti di propulsione navale
Motori diesel 4T Interfacce con il sistema nave Ogni motore installato a bordo ha sostanzialmente quattro tipologie di interfacce con la nave, precisamente: Trasmissione potenza: collegamento meccanico
Facoltà di Ingegneria Esame di Meccanica applicata alle macchine. 10 Gennaio 2019, durata 120 minuti.
Facoltà di Ingegneria Esame di Meccanica applicata alle macchine. 10 Gennaio 2019, durata 120 minuti. Matricola: 1. Si consideri il meccanismo a glifo in Figura 1. L asta (1) schematizza la manovella di
CUSCINETTI. Di seguito sono elencati alcune terminologie utilizzate per i cuscinetti.
CUSCINETTI Il cuscinetto è un organo che si interpone tra un componente mobile e uno e che è in grado di lavorare, se adeguatamente lubrificato, in presenza di elevati carichi e di alte velocità relative
P: potenza in kw, n: numero di giri R: raggio puleggia in metri B = 1,1 b + 10 mm dove: B: larghezza corona l = B dove l : lunghezza mozzo puleggia
ESERCIZIO Si deve provvedere all accoppiamento, con un riduttore a ruote dentate cilindriche a denti diritti, tra un motore asincrono trifase e un albero, rappresentato nello schema, che a sua volta trasmette
RUOTA LIBERA PER ALTERNATORE
OSSERVAZIONI TECNICHE RUOTA LIBERA PER ALTERNATORE Il ciclo di combustione di un motore endotermico accelera e rallenta il movimento rotatorio dell'albero a gomiti. Semplificando, in fase di scoppio abbiamo
DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE anno accademico 2015/16 Registro lezioni del docente DE FALCO DOMENICO
DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE anno accademico 2015/16 Registro lezioni del docente DE FALCO DOMENICO Attività didattica MECCANICA APPLICATA ALLE MACCHINE [A14099] Periodo di
SFU (DIN FORMA B)
Indice 1.1 Tipo di ricircolo pag. 4 1.2 Profilo del filetto pag. 4 2.1 Materiali pag. 5 2.2 Lubrificazione pag. 5 2.3 Protezione del filetto pag. 5 3.1 Classi di precisione pag. 6 3.2 Tolleranze geometriche
I cuscinetti sono componenti rotanti che servono da supporto a componenti meccanici in rotazione come ad esempio gli alberi.
Cuscinetti I cuscinetti sono componenti rotanti che servono da supporto a componenti meccanici in rotazione come ad esempio gli alberi. Si possono suddividere fondamentalmente in due tipi: cuscinetti strisciamento
Cuscinetti a strisciamento e a rotolamento
Cuscinetti a strisciamento e a rotolamento La funzione dei cuscinetti a strisciamento e a rotolamento è quella di interporsi tra organi di macchina in rotazione reciproca. Questi elementi possono essere
Cuscinetti assiali a sfere
0 # $ % 8 Cuscinetti assiali a sfere C 838 Cuscinetti SK assiali a sfere a doppio effetto 839 Cuscinetti dati generali 840 imensioni 840 Tolleranze 840 isallineamento 840 abbie 840 Carico minimo 84 Carico
MECCANISMI PER LA TRASMISSIONE DEL MOTO
Le MACCHINE UTENSILI sono macchine che, usando una fonte di energia, compiono un lavoro, che consiste solitamente nell'asportazione di materiale. Per tramettere il moto dal punto in cui viene generato,
Facoltà di Ingegneria Esame di Meccanica applicata alle macchine. 29 Gennaio 2019, durata 120 minuti.
Facoltà di Ingegneria Esame di Meccanica applicata alle macchine. 29 Gennaio 2019, durata 120 minuti. Matricola: 1. Si consideri il meccanismo biella-manovella in Figura 1. L asta (1) schematizza la manovella
DICHTOMATIK. Istruzioni per la progettazione delle sedi. Tenuta statica
DICHTOMATIK Istruzioni per la progettazione delle sedi Se possibile, le sedi per installazione (cave) degli O-Ring dovrebbero essere con angoli retti. Le dimensioni di pro fon dità e larghezza richieste
ITIS OTHOCA ORISTANO GLI ALBERI DI TRASMISSIONE E LORO PERNI
ITIS OTHOCA ORISTANO GLI ALBERI DI TRASMISSIONE E LORO PERNI L'albero di trasmissione è l'organo rotante di una macchina che ha la funzione di trasmettere o ricevere coppie motrici (o resistenti) tra gli
3 2 L importanza statistica delle proprietà
Prefazione all edizione italiana Ringraziamenti xix Simboli xxi Parte 1 Fondamenti 2 1 Introduzione 3 xvii 1 1 Il progetto 4 1 2 La progettazione meccanica 5 1 3 Iterazione tra le fasi del progetto meccanico
I cuscinetti sono componenti meccanici che servono da supporto per. 1. a strisciamento. 2. a rotolamento
Cuscinetti 1 cuscinetti: generalità I cuscinetti sono componenti meccanici che servono da supporto per componenti rotanti come gli alberi. Sono fondamentalmente di due tipi: 1. a strisciamento 2. a rotolamento
MECCANICA. Laboratorio AUTO DA CORSA. Costruzioni da 1 a 30
4 Laboratorio di MECCANICA AUTO DA CORSA Costruzioni da 1 a 0 1-Sovrapposizione di due barre -Sovrapposizione di barre con due chiodini -Congiunzione di barre 4-Sovrapposizione di tre barre 5-Sovrapposizione
CALETTATORI DI BLOCCAGGIO PER ATTRITO
CALETTATORI DI BLOCCAGGIO PER ATTRITO Il sistema di bloccaggio tramite calettamento per attrito rende solidale all albero uno o più organi che permettono di trasmettere il moto o sopportare una spinta
Meccanica Applicata alle Macchine
Meccanica Applicata alle Macchine Indice da a 1. Macchine e Meccanismi... 1 4 2. Sistemi Piani... 4 10 3. Meccanismo di Manovellismo... 10 12 4. Motore a Combustione Interna... 12 17 5. Cilindro Oleodinamico...
BROCCIATRICI brocciatrici broccia brocce di spinta brocce di trazione.
BROCCIATRICI Le brocciatrici sono macchine utensili destinate alla lavorazione di superfici interne passanti o esterne con profilo qualsiasi, aventi asportazione di truciolo rettilinea, continua e progressiva.
σ R = 360 MPa σ Y = 240 MPa σ La = 190 MPa ESERCIZIO 1
ESERCIZIO 1 La struttura piana rappresentata in figura è formata da tre tronchi di trave (AB, BC e BD) rigidamente connessi tra loro e vincolati al suolo in modo da costituire un sistema isostatico. In
ALBERI DI TRASMISSIONE
DEFINIZIONI ALBERO : Organo meccanico atto alla trasmissione di coppie (motrici o resistenti) ASSE : Organo meccanico atto al mantenimento in posizione degli organi meccanici ad esso collegati È soggetto
Esecuzioni. Cuscinetti di esecuzione base. Cuscinetti obliqui a due corone di sfere
Cuscinetti obliqui a due corone di sfere Esecuzioni I cuscinetti obliqui a due corone di sfere corrispondono a due cuscinetti obliqui a una corona, ma occupano meno spazio in senso assiale. Possono sopportare
MACCHINE UTENSILI. Struttura e trasmissione del moto
MACCHINE UTENSILI Struttura e trasmissione del moto Parti principali delle macchine utensili Bancale o basamento Motore Organi di trasmissione e di trasformazione del moto Il bancale è la parte principale
Concetto di taglio concorde e discorde
Appendice 1: tecnologia di fresatura Concetto di taglio concorde e discorde formato di stampa: A4 Fresatura in discordanza Fresatura in concordanza APP_2T_IT_R3.0.docx 1 di 11 Indice 1 FRESATURA PERIFERICA...
Pompa a pistoni assiali K3VL Serie B
Descrizione generale La pompa a pistoni assiali a piastra oscillante K3VL è stata progettata e costruita per soddisfare le necessità di mercato dei settori: mobile, marino, industriale e dove è richiesta
Copyleft elettrix01. Relazione sui Riduttori
Relazione sui Riduttori Svolgimento Prova La prova consiste nel ricavare il rendimento di due tipi di riduttori: Un riduttore a rotismo ordinario Un riduttore a ruota elicoidale e vite senza fine Il riduttore
McGraw-Hill. Tutti i diritti riservati. Esercizi aggiuntivi capitolo 13
Esercizi aggiuntivi capitolo 13 Analisi 13-4 Un pignone cilindrico a denti dritti di 21 denti ingrana con una ruota da 28 denti. Il passo diametrale è di 3 denti/in e l angolo di pressione è di 20. Realizzare
Fresatura. LIUC - Ingegneria Gestionale 1
Fresatura LIUC - Ingegneria Gestionale 1 Fresatura È un operazione che consente di realizzare in generale: Superfici piane Scanalature e cave di forma semplice e complessa Denti di ruote dentate Per fresare
INDICE. 1
www.asnord.com 1 www.asnord.com 2 INDICE COMPOSIZIONE DI UNA CATENA A RULLI CATENE STANDARD CATENE A PIASTRE PIANE / A PASSO LUNGO CATENE NON UNIFICATE CATENE RINFORZATE CATENE ANTICORROSIONE CATENE SIDE
I CUSCINETTI RADENTI. Prof. Michele Burgarelli. 5 MAS a.s. 18/19
I CUSCINETTI I cuscinetti a strisciamento realizzano un accoppiamento che permette una rotazione relativa fra due componenti tramite l opportuna realizzazione delle superfici a contatto. Queste sono solitamente
Ottimizzazione di un riduttore per convertiplani con inserzione di emergenza
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA DELLE COSTRUZIONI MECCANICHE, NUCLEARI E AREONAUTICHE E DI METALLURGIA Ottimizzazione di
STUDIO E OTTIMIZZAZIONE DI UN RIDUTTORE ELICA PER UTILIZZO AERONAUTICO
Università degli Studi di Forlì Seconda Facoltà di Ingegneria con sede a Cesena Corso di Laurea in Ingegneria Meccanica Disegno assistito dal Calcolatore STUDIO E OTTIMIZZAZIONE DI UN RIDUTTORE ELICA PER
STUDIO E OTTIMIZZAZIONE DI UN RIDUTTORE AD ELICHE CONTROROTANTI PER UN ADDESTRATORE ACROBATICO
Università degli Studi di Bologna FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria Meccanica STUDIO E OTTIMIZZAZIONE DI UN RIDUTTORE AD ELICHE CONTROROTANTI PER UN ADDESTRATORE ACROBATICO Candidato:
Anomalie sulle frizioni
Anomalie sulle frizioni AP SLITTA Sintomi : La frizione una volta innestata non è più in grado di trasmettere la coppia fornita dal motore. L anomalia si manifesta con innalzamento del numero dei giri
DISEGNO TECNICO INDUSTRIALE. I cuscinetti volventi
UNIVERSITÀ DI LECCE Corso di Laurea in Ingegneria Industriale DISEGNO TECNICO INDUSTRIALE I cuscinetti volventi Argomenti della lezione I cuscinetti volventi: generalità I cuscinetti volventi: tipologie
Cuscinetti combinati
Cuscinetti combinati Cuscinetti combinati Cuscinetti combinati I cuscinetti combinati sono costituiti essenzialmente da un cuscinetto radiale a rullini ed un cuscinetto assiale per il supporto rispettivamente
Guida alla fresatura 1/8
LAVORAZIONE CON FRESE A DISCO Guida alla fresatura 1/8 SCELTA DEL TIPO DI FRESA Troncatura ad esecuzione di cave. Larghezza della fresa: Standard: 5, 6, 8 e 10 mm Speciale: 5,0 12,4 mm Questo tipo di fresa
Medesima altezza d ingombro non è necessario utilizzare piastre di base. Non è necessario utilizzare nessuna piastra di base.
Vantaggi KSZ e KGZ Medesima altezza d ingombro non è necessario utilizzare piastre di base Martinetto I rinvii angolari KSZ e KGZ della ZIMM hanno la stessa altezza d ingombro dei martinetti ZIMM. Non
I 2 I 27. Tolleranze anello interno (secondo ISO 492: Classe normale)
cuscinetti volventi Un cuscinetto a rulli conici è composto di un anello interno con due bordini di un anello esterno senza bordini e di una corona di rulli di forma tronco-conica. Questi ultimi sono disposti
MOTORI CON PISTONI A PRISMA ROMBICO SNODATO
MOTORI CON PISTONI A PRISMA ROMBICO SNODATO Brevetto di invenzione industriale depositato il 18/11/2008 N TO 2008 A 000847 Vittorio Scialla, Via Cibrario 114, 10143 Torino [email protected]
Minitork/Meditork coppie da 0,7 a 2,5 Nm
L I M I T A T O R I D I C O P P I A Veko coppie da 3,3-2.200 Nm Minitork/Meditork coppie da 0,7 a 2,5 Nm Huco Vari-Tork coppie da 0,1 a 132 Ncm 1 LIMITATORI DI COPPIA A FRIZIONE INDUR MINITORK E MEDITORK
Ruote di frizione cilindriche
Ruote di frizione Gli organi più semplici per realizzare la trasmissione del moto fra alberi paralleli o concorrenti sono le ruote di frizione: nel primo caso si impiegano ruote cilindriche; nel secondo
iglidur J200: Per scorrimento su alluminio anodizzato Eccellente resistenza all abrasione su perni in alluminio anodizzato
iglidur : Per scorrimento su alluminio anodizzato Eccellente resistenza all abrasione su perni in alluminio anodizzato Bassi coefficienti d attrito Bassa usura anche in ambienti sporchi Per carichi medio-bassi
LE LAVORAZIONI INDUSTRIALI
LE LAVORAZIONI INDUSTRIALI Tornitura Foratura Fresatura Rettifica Altre lavorazioni 1 LAVORAZIONI INDUSTRIALI Nelle lavorazioni industriali per asportazione di truciolo sono sempre presenti: Pezzo Grezzo
Lezione XVIII Ingranaggi INGRANAGGI
INGRANAGGI Poiché r r r 9 = 9 + 9 3 U3 W3 essendo, per definizione P centro d istantanea rotazione del moto relativo, risulta Volendo trasmettere un momento tra due alberi con un certo rapporto di trasmissione
Utensili con codolo ERICKSON
Utensili con codolo Introduzione.............................................................B2 Produttività..............................................................B3 Guide alle selezioni...................................................b4
Passo vite da 5 a 50 mm / rev 5 taglie differenti
Attuatori a vite ET Elettrocilindri Per motion, posizionamento, settaggio ed avviamento precisi, l attuatore a vite ET offre: Corse fino a 2400 mm 44500 N Ripetibilità ± 0.07 mm (fino a ± 0.01 mm) Velocità
268 MECCANICA DEL VEICOLO
LISTA SIMBOLI a accelerazione longitudinale veicolo [ms -2 ]; a distanza tra il baricentro e l avantreno veicolo [m]; a parametro caratterizzante la taratura del giunto viscoso; a fm decelerazione veicolo
ITIS OTHOCA ORISTANO
ITIS OTHOCA ORISTANO ORGANI DI TRASMISSIONE DEL MOTO A DISTANZA parte 1 LE CINGHIE Trasmissione con cinghie piatte La cinghia piatta è un organo meccanico dotato di elevata flessibilità, capace di trasmettere
SCHEMA DELL' INGRANAGGIO
ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE 1977 1^ Sessione Indirizzo: Meccanica CORSO DI ORDINAMENTO Tema di: meccanica applicata alle macchine e macchine a fluido Una coppia di ruote cilindriche
MECCANICA APPLICATA ALLE MACCHINE L
Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico
BRAND RCK CALETTATORI
CAETTATORI BRAND RCK SERIE RCK 11 pag. 6 SERIE RCK 13 pag. 7 SERIE RCK 15 pag. 8 SERIE RCK 16 pag. 9 SERIE RCK 19 pag. 10 SERIE RCK 40 pag. 11 SERIE RCK 45 pag. 12 SERIE RCK 50 pag. 13 SERIE RCK 55 pag.
Rotazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali
Rotazioni ALTAIR http://metropolis.sci.univr.it Argomenti Propietá di base della rotazione Argomenti Argomenti Propietá di base della rotazione Leggi base del moto Inerzia, molle, smorzatori, leve ed ingranaggi
TLY MODULI LINEARI MOTORIZZABILI
TLY MODULI LINEARI MOTORIZZABILI La famiglia di prodotti TLY è stata progettata ricercando elevate prestazioni, qualità e semplicità costruttiva. Vengono utilizzati estrusi in alluminio autoportanti su
Gara nazionale di Meccanica 2014
ISTITUTO TECNICO INDUSTRIALE STATALE ALESSANDRO ROSSI Gara nazionale di Meccanica 2014 Prova di Meccanica L impianto schematizzato in figura serve per riempire d acqua dei serbatoi cilindrici (diametro
