Riconoscere e formalizzare le dipendenze funzionali
|
|
|
- Ottaviana Ricciardi
- 9 anni fa
- Visualizzazioni
Transcript
1 Riconoscere e formalizzare le dipendenze funzionali Giorgio Ghelli 25 ottobre Riconoscere e formalizzare le dipendenze funzionali Non sempre è facile indiduare le dipendenze funzionali espresse in linguaggio naturale, perché esistono diversi modi di esprimere la stessa dipendenza, ed esistono espressioni simili tra loro che esprimono dipendenze diverse. In questa nota esploriamo questa varietà di espressioni in modo sistematico, in modo da facilitarne il riconoscimento e la traduzione nella dipendenza corrispondente. Affrontiamo per prima cosa le dipendenze in cui il determinante è un solo attributo, per poi passare al caso più generale delle dipendenze con più attributi nel determinante, ed al caso particolare dei vincoli di superchiave. 1.1 Dipendenze funzionali A B Una dipendenza X Y su di una relazione R rappresenta il seguente vincolo: r istanza valida di R, t 1, t 2 r. t 1[X] = t 2[X] t 1[Y ] = t 2[Y ] Quindi, tale dipendenza rappresenta un implicazione di uguaglianze, che noi indicheremo sinteticamente come: X = Y = Ad esempio, si consideri una relazione che rappresenta l allocazione settimanale delle aule di una struttura didattica a dei corsi, con schema: Allocazioni(Aula, Giorno, Ora, Corso, Docente) Il vincolo: Corso Docente 1
2 significa che ogni volta che due allocazioni riguardano lo stesso corso, esse riguardano anche lo stesso docente, ovvero che per ogni corso c è un unico docente, ovvero l implicazione Corso = Docente =. La stessa sentenza può essere espressa in almeno altri due modi con opportune manipolazioni logiche sfruttando le seguenti equivalenze della logica proposizionale (dove lega più di ): A B (A implica B: implicazione di uguaglianze o implicazione diretta) A B False (A e non B è impossibile: impossibilità o per assurdo) B A (non B implica non A: implicazione di disuguaglianze o implicazione contrapposta) In altre parole, una proposizione si può spostare da un lato all altro dell implicazione, purché ne venga cambiato il segno. Per essere precisi, in una formula A 1... A n 1 A n True B 1... B m False è possibile spostare a destra, negandolo, ciascun fattore A i e spostare a sinistra, negandolo, ciascun addendo B j. Se indichiamo con A la negazione di A =, abbiamo quindi tre modi diversi di esprimere una dipendenza funzionale Corso Docente: 1. Corso = Docente = (implicazione diretta): se in due allocazioni il corso è uguale, allora in docente è uguale. 2. Corso = Docente False (impossibilità): non possono esserci due allocazioni con lo stesso corso e docente diverso. 3. Docente Corso (implicazione contrapposta): se in due allocazioni il docente è diverso, allora in corso è diverso. Sulla base di questa osservazione, proponiamo il seguente metodo per riconoscere le dipendenze funzionali di questo tipo: 1. riconoscere se l affermazione da formalizzare è un implicazione diretta, un espressione di impossibilità, o un implicazione contrapposta, e formalizzarla usando la notazione indicata in predecenza; 2. nel caso non si tratti di un implicazione diretta, spostare le disuguaglianze Attributo nella parte opposta dell implicazione, in modo da arrivare ad un implicazione diretta. Esercizio 1 Date le seguenti sentenze, (a) stabilite in che forma di trovano, (b) rappresentatele in forma A B oppure A B False oppure B A, (c) portatele nella forma A B, ed infine (d) scrivete la dipendenza funzionale corrispondente. 2
3 1. Non ci sono mai due corsi diversi con lo stesso docente. 2. In una tabella Esami(Voto, Matricola, Cognome), se la Matricola è diversa, allora anche il Cognome è diverso. 3. In una tabella Esami(Voto, Matricola, Cognome), ad ogni Matricola corrisponde un unico Cognome. 1.2 Dipendenze funzionali X B Nel caso di dipendenze con più attributi nel determinante, le manipolazioni logiche si generalizzano come segue: A 1... A n 1 A n B (implicazione diretta) A 1... A n 1 A n B False (impossibilità) A 1... A n 1 B A (implicazione contrapposta) Quindi, l espressione di una dipendenza di questo tipo in modo diretto o tramite impossibilità non cambia rispetto al caso precedente. Tuttavia, per quanto riguarda l implicazione contrapposta, osserviamo come, tra le tante uguaglianze a sinistra della dipendenza, solo una è negata e va quindi spostata. Facciamo un esempio. Il vincolo Aula, Giorno, Ora Corso significa che se due righe coincidono su Aula, Giorno, Ora devono coincidere anche su Corso (Aula = Giorno = Ora = Corso =). Anche questo vincolo si può esprimere nei tre stili indicati. 1. Implicazione diretta ( se in due allocazioni aula, giorno ed ora coincidono, il corso è uguale oppure aula, giorno ed ora determinano il corso ): Aula = Giorno = Ora = Corso = 2. Impossibilità ( non possono esserci due corsi diversi contemporaneamente nella stessa aula ): Aula = Giorno = Ora = Corso False 3. Implicazione contrapposta (a) ( in ogni giorno ed ora, due corsi diversi stanno in due aule diverse ): Giorno = Ora = Corso Aula 3
4 (b) ( in ogni giorno ed in ogni aula, due corsi diversi devono fare lezione in due ore diverse ): Aula = Giorno = Corso Ora (c) ( in ogni ora ed in ogni aula, due corsi diversi devono fare lezione in due giorni diversi ): (d) ecc. Aula = Ora = Corso Giorno La forma (2) è probabilmente la più comune per esprimere dipendenze complesse come queste. Anche per queste dipendenze si consiglia il metodo indicato in precedenza: riconoscerne la forma, formalizzarle, spostare le disuguaglianze sul lato opposto dell implicazione. Esercizio 2 Date le seguenti sentenze, (a) stabilite in che forma di trovano, (b) rappresentatele in forma A 1... A n 1 A n B oppure A 1... A n 1 A n B False oppure A 1... A n 1 B A (c) portatele nella forma A 1... A n B, ed infine (d) scrivete la dipendenza funzionale corrispondente. 1. Lo stesso docente non può essere in due aule contemporaneamente. 2. In una tabella Esami(Voto, Materia, Matricola), se in due esami c è la stessa Matricola ma il voto è diverso, allora anche la Materia è diversa. 3. In una tabella Esami(Voto, Materia, Matricola), non posso trovare due esami diversi che hanno la stessa Materia e Matricola. 1.3 Dipendenze funzionali X T, ovvero vincoli di superchiave Si consideri l affermazione: Aula, giorno ed ora non possono coincidere tutte e tre. Si potrebbe essere tentati di formalizzarla come segue: Aula = Giorno = Ora = False Però questa implicazione non ha nessuna delle forme che noi vogliamo, e non ci porta a nessuna dipendenza funzionale (inoltre, questa implicazione è falsa: se consideriamo due volte la stessa riga, abbiamo due righe che soddisfano l ipotesi ma non la tesi). La soluzione più semplice è osservare che questa affermazione esprime in realtà un vincolo di superchiave, e quindi si può immediatamente formalizzare come: Aula, Giorno, Ora tutti gli altri attributi 4
5 La discussione potrebbe fermarsi qui. Se però vogliamo trattare anche questo caso come gli altri, dobbiamo per prima cosa rendere esplicito il fatto che stiamo parlando di righe diverse, e dobbiamo riscrivere l affermazione come segue: Aula, giorno ed ora non possono coincidere tutte e tre in due righe diverse Infatti, se consideriamo due volte la stessa riga, l affermazione originaria era falsa. Questa affermazione corretta si formalizza come segue: Aula = Giorno = Ora = (Aula = Giorno = Ora = Docente =) False Oppure (equivalentemente): Aula = Giorno = Ora = (Corso = Docente =) False Passando dalla forma (2) alla forma (1), ovvero portando a destra la sottoformula negata, otteniamo: Aula = Giorno = Ora = (Aula = Giorno = Ora = Docente =) Oppure: Aula = Giorno = Ora = (Corso = Docente =) A cui corrispondono le dipendenze equivalenti: Aula, Giorno, Ora Aula, Giorno, Ora, Corso, Docente Aula, Giorno, Ora Corso, Docente L osservazione di fondo è che quando usiamo la forma (2) per descrivere un vincolo, in genere esprimiamo esplicitamente un attributo che deve essere diverso (il Docente o il Corso negli esempi dei Capitoli 1.1 e 1.2). Nei vincoli di superchiave basta che sia diverso un attributo qualunque, e questa condizione viene spesso espressa in modo ambiguo ( due righe non possono coincidere su X Y Z : la diversità su almeno un attributo è espressa dal numerale due) o addirittura non viene espressa per nulla ( X Y e Z non possono mai coincidere tutti e tre ). Per usare il nostro metodo, questa ipotesi di diversità deve diventare esplicita. 2 Soluzione agli esercizi Esercizio 1 Date le seguenti sentenze, (a) stabilite in che forma di trovano, (b) rappresentatele in forma A B oppure A B False oppure B A, (c) portatele nella forma A B, ed infine (d) scrivete la dipendenza funzionale corrispondente. 5
6 1. Non ci sono mai due corsi diversi con lo stesso docente. (a) forma (2) (impossibilità), (b) Corso Docente = False (c) Docente = Corso = (d) Docente Corso 2. In una tabella Esami(Voto, Matricola, Cognome), se la Matricola è diversa, allora anche il Cognome è diverso. (a) forma (3) (implicazione contrapposta), (b) Matricola Cognome (c) Cognome = Matricola = (d) Cognome Matricola 3. In una tabella Esami(Voto, Matricola, Cognome), ad ogni Matricola corrisponde un unico Cognome. (a) forma (1) (implicazione diretta), (b) Matricola = Cognome = (c) Matricola = Cognome = (d) Matricola Cognome Esercizio 2 Date le seguenti sentenze, (a) stabilite in che forma di trovano, (b) rappresentatele in forma A 1... A n 1 A n B oppure A 1... A n 1 A n B False oppure A 1... A n 1 B A (c) portatele nella forma A 1... A n B, ed infine (d) scrivete la dipendenza funzionale corrispondente. 1. Lo stesso docente non può essere in due aule contemporaneamente. (a) forma (2) (impossibilità), (b) Aula Giorno = Ora = Docente = False (c) Giorno = Ora = Docente = Aula = (d) Giorno, Ora, Docente Aula 6
7 2. In una tabella Esami(Voto, Materia, Matricola), se in due esami c è la stessa Matricola ma il voto è diverso, allora anche la Materia è diversa. (a) forma (3) (implicazione contrapposta), (b) Matricola = Voto Materia (c) Matricola = Materia = Voto = (d) Matricola, Materia Voto 3. In una tabella Esami(Voto, Materia, Matricola), non posso trovare due esami diversi che hanno la stessa Materia e Matricola. (a) forma (2) (impossibilità), (b) Matricola = Materia = Voto False (c) Matricola = Materia = Voto = (d) Matricola, Materia Voto 7
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente
NOZIONI DI LOGICA PROPOSIZIONI.
NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale
1. (A1) Quali tra le seguenti uguaglianze sono vere? = vera. 2. (A1) Una sola delle seguenti affermazioni è vera. Quale?
M Commenti generali I test sono divisi in cinque gruppi (A) Aritmetica (A2) Aritmetica 2 (C) Calcolo (O) Ordinamenti (D) Divisioni Osservazione (/2/20): Sono stati sperimentati sugli studenti aggiungendo
1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):
. equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale
Equazioni di primo grado
Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
Logica: materiale didattico
Logica: materiale didattico M. Cialdea Mayer. Logica (dispense): http://cialdea.dia.uniroma3.it/teaching/logica/materiale/dispense-logica.pdf Logica dei Predicati (Logica per l Informatica) 01: Logica
NOZIONI DI LOGICA. Premessa
NOZIONI DI LOGICA Premessa Il compito principale della logica è quello di studiare il nesso di conseguenza logica tra proposizioni, predisponendo delle tecniche per determinare quando la verità di una
ESERCITAZIONE 4 : INSIEMI E LOGICA
ESERCITAZIONE 4 : INSIEMI E LOGICA e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 30 Ottobre 2012 Esercizio 1 I due
Le disequazioni di primo grado. Prof. Walter Pugliese
Le disequazioni di primo grado Prof. Walter Pugliese Concetto di disequazione Consideriamo la seguente disuguaglianza: 2x 3 < 5 + x Procedendo per tentativi, attribuiamo alla lettera x alcuni valori e
Logica proposizionale
Logica proposizionale Linguaggio comune Nel linguaggio comune si utilizzano spesso frasi imprecise o ambigue Esempio Un americano muore di melanoma ogni ora! Assurdo: significa che c è un americano (sfortunato)
METODI MATEMATICI PER L INFORMATICA
METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 5 05/05/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Dimostrazioni e prove Esercizio 7 pagina 91 Utilizzare una
EQUAZIONI DI PRIMO GRADO
Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono
Le disequazioni di primo grado
Le disequazioni di primo grado Cos è una disequazione? Una disequazione è una disuguaglianza tra due espressioni algebriche (una delle quali deve contenere un incognita) che può essere vera o falsa a seconda
NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE
NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile
METODI MATEMATICI PER L INFORMATICA
METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una
Fondamenti teorici e programmazione
Fondamenti teorici e programmazione FTP(A) - modb Lezione 8 F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 1 Ragionamento formale Comprendere le basi del ragionamento
Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni
Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.
Ragionamenti e metodi di dimostrazione. Liceo Scientifico Statale S. Cannizzaro Prof.re E. Modica
Ragionamenti e metodi di dimostrazione Liceo Scientifico Statale S. Cannizzaro Prof.re E. Modica Proposizioni Si definisce proposizione una frase alla quale è possibile attribuire uno e un solo valore
Massimo limite e minimo limite di una funzione
Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.
M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI
M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 4 2016 GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π
EQUAZIONI DI II GRADO
RICHIAMI SULLE EQUAZIONI DI PRIMO E SECONDO GRADO PROF.SSA ROSSELLA PISCOPO Indice 1 EQUAZIONI DI I GRADO --------------------------------------------------------------------------------------------------
CORSO DI FISICA. Docente Maria Margherita Obertino. Indirizzo Tel:
CORSO DI FISICA 25 ore di lezione 4 ore di esercitazione divisi per gruppi nelle varie sedi 1 prova d esame a fine gennaio a NOVARA Correzione delle prove d esame a NOVARA Docente Maria Margherita Obertino
Sistemi di equazioni lineari
Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.
1 Identità ed equazioni
1 Identità ed equazioni Consideriamo l uguaglianza espressa dalla seguente frase: Trova un numero tale che il suo doppio sommato con se stesso sia uguale al suo triplo. x > 2x + x = 3x La relazione: 2x
Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni
Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2017/2018 1 Corsi Introduttivi - a.a. 2017/2018 2 1 Logica matematica Serve
04 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,
Disequazioni - ulteriori esercizi proposti 1
Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi
Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x
Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle
Logica: nozioni di base
Fondamenti di Informatica Sistemi di Elaborazione delle Informazioni Informatica Applicata Logica: nozioni di base Antonella Poggi Anno Accademico 2012-2013 DIPARTIMENTO DI SCIENZE DOCUMENTARIE LINGUISTICO
Esistenza ed unicità per equazioni differenziali
Esistenza ed unicità per equazioni differenziali Per concludere queste lezioni sulle equazioni differenziali vogliamo dimostrare il teorema esistenza ed unicità per il problema di Cauchy. Faremo la dimostrazione
Equazioni di primo grado ad un incognita
Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. 2 = 2 è un identità =3 2 3=2 3
Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni
Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)
UNITÀ DIDATTICA 5 LA RETTA
UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme
BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta
BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta corretto e vero. Un ragionamento è corretto se segue uno
Applicazioni eliminazione di Gauss
Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare
LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a
LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque
Introduzione alla logica proposizionale
Introduzione alla logica proposizionale Mauro Bianco Questa frase è falsa Contents 1 Proposizioni 1 2 Altri operatori 4 Nota : Le parti delimitate da *** sono da considerarsi facoltative. 1 Proposizioni
Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni
Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve
LOGICA MATEMATICA PER INFORMATICA
LOGICA MATEMATICA PER INFORMATICA A.A. 10/11, DISPENSA N. 2 Sommario. Assiomi dell identità, modelli normali. Forma normale negativa, forma normale prenessa, forma normale di Skolem. 1. L identità Esistono
SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3
SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni
02 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016
Logica per la Programmazione
Logica per la Programmazione Lezione 2 Dimostrazione di tautologie Proof System pag. 1 Un Problema di Deduzione Logica [da un test di ingresso] Tre amici, Antonio, Bruno e Corrado, sono incerti se andare
Elementi di informatica
Elementi di informatica Algebra di Boole Algebra di Boole I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Allo
CALCOLO PROPOSIZIONALE
CALCOLO PROPOSIZIONALE UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti se andare al cinema. Si sa che: Se Corrado va al cinema, allora ci va anche
Equazioni di Primo grado
Equazioni di Primo grado Definizioni Si dice equazione di primo grado un uguaglianza tra due espressioni algebriche verificata solo per un determinato valore della variabile x, detta incognita. Si chiama
1 IL LINGUAGGIO MATEMATICO
1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
LeLing12: Ancora sui determinanti.
LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling
