23.2 Il campo elettrico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "23.2 Il campo elettrico"

Transcript

1 N.Giglietto A.A. 2005/ Linee di forza del campo elettrico - 1 Cap 23- Campi Se mettiamo una carica in una regione dove c è un altra carica essa risentirà della sua presenza manifestando una forza di Coulomb. Per spiegare questa interazione a distanza ricorriamo al concetto di campo: diremo che una carica genera attorno a se un campo elettrico che permea tutta la regione dello spazio. Se a questo punto introduciamo una seconda carica essa interagirà con il campo elettrico manifestando una forza. In questo modo le due cariche non interagiscono direttamente ma tramite l azione di un campo. Qualunque regione di spazio avente una qualche proprietà definita da una opportuna grandezza è detta avere un campo Il campo elettrico Quando la forza è di tipo elettrico si parlerà di campo elettrico (o elettrostatico) Come facciamo ad evidenziare il campo? Assumiamo avere a disposizione una carica positiva di test e la collochiamo nello spazio a piacimento. In ogni 1

2 N.Giglietto A.A. 2005/ Linee di forza del campo elettrico - 2 punto dello spazio se c è un campo troveremo una forza elettrica. Definiamo come campo elettrico il vettore F E = q 0 e di conseguenza noto il campo elettrico, la forza su una particella carica sarà data da F = q 0E direzione e verso del campo sono quelli della forza agente sulla carica di prova (positiva). Il campo comunque esiste indipendentemente dalla carica di prova Linee di forza del campo elettrico Il concetto delle linee di forza ha utilità simile a quella delle linee di corrente nei fluidi: 1. in ogni punto la direzione di una linea di campo o la direzione della tangente alla linea di campo in un dato punto rappresenta la direzione ed il verso del campo stesso 2. le linee di campo sono tracciate in modo da visualizzare dove il campo è più 2

3 N.Giglietto A.A. 2005/ Campo elettrico carica puntiforme - 3 intenso (più densità di linee più intenso il campo) Proprietà delle linee di forza del campo elettrico è che le linee di forza escono dalle cariche positive ed entrano in quelle negative 23.4-Campo elettrico carica puntiforme Dalla legge di Coulomb se una carica q puntiforme è in punto dello spazio allora mettendo la carica q 0 di test ad una certa distanza r troviamo che la forza di Coulomb è F = 1 qq 0 4πɛ 0 r da 2 3

4 N.Giglietto A.A. 2005/ Campo elettrico carica puntiforme - 4 cui il campo elettrico è E = F q 0 = 1 4πɛ 0 q r 2 ûr La direzione ed il verso sono radiali a partire dalla carica puntiforme verso il punto nel quale è messa la carica di test, inoltre il verso è entrante se la q < 0 oppure uscente se q > 0 4

5 N.Giglietto A.A. 2005/ Campo del dipolo elettrico Campo del dipolo elettrico Un dipolo elettrico è costituito da due cariche di uguale intensità q ma segno opposto e collocate ad una certa distanza d tra loro. Possiamo calcolare il campo del dipolo (nei punti sull asse del dipolo) sommando (vettorialmente) ciascuno dei y P E+ E - +q d x -q campi delle due cariche. Il campo risultante in un generico punto P dell asse (y) è E = E + E avendo indicato in tal modo i campi generati dalla carica (+) o (-). Si ottiene E = 1 q 1 q 4πɛ 0 4πɛ 0 r 2 + r 2 con r + = z d 2 5 e r = z + d 2

6 N.Giglietto A.A. 2005/06- Campo elettrico del dipolo sull asse-x - 6 di conseguenza 2qd 4πɛ 0 z 3 = E = 1 4πɛ 0 q (z d 1 2 )2 4πɛ 0 q (z + d 2 )2 = q 4πɛ 0 z 2 [(1 d 2z ) 2 (1 + d 2z ) 2 ] q 4πɛ 0 z 2 [(1 + d z + ) (1 d z + )] p 2πɛ 0 z 3 (campo dipolo elettrico) (lungo l asse y) Campo elettrico del dipolo sull asse-x + θ P - Indichiamo ancora E ed E + i due campi dovuti alle cari- 6

7 N.Giglietto A.A. 2005/06- Campo elettrico del dipolo sull asse-x - 7 che pos. e neg. che avendo le stesse distanze avranno modulo uguale. Sugli assi avremo E x = E + sin θ E sin θ = 0 E y = +E + cos θ E cos θ = 2E cos θ Pertanto il campo complessivo è diretto lungo la direzione y ed inoltre poichè r cos θ = d 2 2q 4πɛ 0 r 2 cos θ = d 2r si ha E tot = 2r = (notare il fattore 2 rispetto al campo sull asse y). d p 4πɛ 0 r 3 7

8 N.Giglietto A.A. 2005/06- Campo anello carico sull asse z Campo di distribuzioni continue Se le distribuzioni di carica sono continue ovvero uniformemente distribuite su di un corpo, allora di introduce la densità di carica del corpo (densità lineare, superficiale o volumetrica secondo i casi) e si somma vettorialmente il contributo di un elemento infinitesimo del corpo. Esempio: Campo anello carico sull asse z la λ = Q/2πR è la densità di carica dell anello di raggio R e con carica totale Q. Consideriamo un elemento dell anello ds. Esso avrà una carica (infinitesima 8

9 N.Giglietto A.A. 2005/06- Campo anello carico sull asse z - 9 quindi puntiforme) dq = λds e della carica infinitesima sappiamo che il campo (infinitesimo) de = 1 dq 4πɛ 0 r = 1 λds 2 4πɛ 0 (z 2 +R 2 ) diretta come in figura. Osserviamo che solo la componente lungo l asse si somma coerentemente per ogni elemento infinitesimo (la componente perpendicolare si elide). Quindi basterà integrare le componenti z per avere il risultato. Dalla figura abbiamo che cos θ = z/r = e de z (R 2 +z 2 ) 1/2 z = de cos θ = 1 λdsz 4πɛ 0 (z 2 +R 2 ) 3/2 Questa componente è la stessa per ogni ds E z = de z = 1 4πɛ 0 ovvero E z = 1 4πɛ 0 λz (z 2 +R 2 ) 3/2 ds = 1 4πɛ 0 λ2πrz (z 2 +R 2 ) 3/2 Qz (z 2 +R 2 ) 3/2 Quindi il campo è diretto secondo l asse z con questa espressione e quando z (z R) il campo tende all espressione della carica puntiforme 9

10 N.Giglietto A.A. 2005/ Campo generato dal disco carico Campo generato dal disco carico Possiamo dedurre il campo di un disco carico partendo dal risultato dell anello e considerando che un disco si può pensare costituito da anelli infinitesimi di carica dq = σda = σ(2πr)dr. σ è in questo caso la densità superficiale di carica definita come Q πr 2 σ = Pertanto l anello infinitesimo in figura di raggio r (0 r R) produrrà il campo sull asse z: d E = z dq 4πɛ 0 (z 2 + r 2 ) 3 2 il campo totale si ottiene integrando su r in modo 10 û z

11 N.Giglietto A.A. 2005/ Dipolo in campo elettrico esterno - 11 da ricoprire il disco con gli anelli: R E tot = de z σ2πrdr = û 4πɛ 0 (z 2 + r 2 ) 3 z = 2 σ z 2ɛ 0 R 0 (z 2 + r 2 ) 3 2 dr = σ z 2ɛ (z 2 + r 2 ) R 0 = σ z [(z 2 ) 1 2 (z 2 + R 2 ) 1 σ z/ 1 2 ] = 2ɛ 0 2ɛ 0 z/ (1 1 ) 1 + ( Rz )2 Da notare che facendo lim E = R Dalla definizione di campo F = qe quindi per una carica di massa nota, quando il campo è uniforme la carica risente di una forza costante ed è quindi accelerata. Se la carica è positiva la forza ed il campo hanno lo stesso verso (altrimenti è opposto). σ 2ɛ 0 che rappresenta il campo elettrico di un piano carico infinito Carica in campo elettrico esterno 11

12 N.Giglietto A.A. 2005/ Dipolo in campo elettrico esterno Dipolo in campo elettrico esterno Dalla definizione di dipolo e dalla precedente osservazione discende che un dipolo in un campo elettrico uniforme esterno risente di 2 forze uguali e opposte, ma come si vede dalla figura esse producono un momento di forze agenti (una coppia). Il momento risultante è τ = F d/2 sin θ + F d/2 sin θ = F d sin θ = (qe)d sin θ = pe sin θ formalmente questa si può indicare in modo vettoriale: τ = p E che rappresenta il momento torcente sul dipolo elettrico immerso in un campo (elettrico) esterno ad esso. Il dipolo tende quindi ad allinearsi al cam- 12

13 N.Giglietto A.A. 2005/ Dipolo in campo elettrico esterno - 13 po elettrico. Possiamo anche vedere l energia potenziale (calcolando il lavoro vedi definizioni nei cap11-12) e con simili passaggi si trova che E p = p E 13

CAPITOLO 1 ELETTROSTATICA

CAPITOLO 1 ELETTROSTATICA CAPITOLO 1 1.1 Introduzione Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della natura (dopo quella gravitazionale che abbiamo visto

Dettagli

1.2-struttura elettrica della materia e induzione elettrostatica

1.2-struttura elettrica della materia e induzione elettrostatica 2 1.1-CONDUTTORI E ISOLANTI 1 Cap 1- Elettrostatica Cap 1-vol2-Elettrostatica Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della

Dettagli

1.2-struttura elettrica della materia e induzione elettrostatica

1.2-struttura elettrica della materia e induzione elettrostatica 2 1.1-CONDUTTORI E ISOLANTI 1 Cap 1- Elettrostatica Cap 1-vol2-Elettrostatica Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della

Dettagli

3 1.2-struttura elettrica della materia e induzione elettrostatica

3 1.2-struttura elettrica della materia e induzione elettrostatica Nicola3 GigliettoA.A. 1.-STRUTTURA 017/18 ELETTRICA DELLA MATERIA E INDUZIONE ELETTROSTATICA 1 Cap 1- Elettrostatica Cap 1-vol-Elettrostatica Nell elettromagnetismo studieremo fenomeni elettrici e magnetici

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici e fenomeni

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici

Dettagli

Lezione 12 - Azione a distanza

Lezione 12 - Azione a distanza Lezione 12 - Azione a distanza Immaginiamo di disporre di un corpo puntiforme con carica q 1 e di mettere nelle sue vicinanze un secondo corpo con carica q 2 In base alla legge di Coulomb possiamo affermare

Dettagli

Appunti sul campo elettrico

Appunti sul campo elettrico Appunti sul campo elettrico E. Modica erasmo@galois.it Istituto Provinciale di Cultura e Lingue Ninni Cassarà A.S. 2010/2011 Si dice che una regione di spazio è sede di un campo elettrico se una carica

Dettagli

IL CAMPO ELETTROSTATICO. G. Pugliese 1

IL CAMPO ELETTROSTATICO. G. Pugliese 1 IL CAMPO LTTROSTATICO G. Pugliese 1 Concetto di campo F G mm r 2 ur (ntrambi forze centrali) F qq 4πε o r 2 ur L azione che si esercita tra due corpi carichi (o tra due masse) si manifesta direttamente

Dettagli

CAPITOLO 3 TEOREMA DI GAUSS

CAPITOLO 3 TEOREMA DI GAUSS CAPITOLO 3 3.1 Il concetto di flusso Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria nella

Dettagli

Elettricità e Magnetismo. M. Cobal, Università di Udine

Elettricità e Magnetismo. M. Cobal, Università di Udine Elettricità e Magnetismo M. Cobal, Università di Udine Forza di Coulomb Principio di Sovrapposizione Lineare Campo Ele8rico Linee di campo Flusso, teorema di Gauss e applicazioni Condu8ori Energia potenziale

Dettagli

Il potenziale elettrico

Il potenziale elettrico Il elettrico Ingegneria Energetica Docente: Angelo Carbone Energia del elettrico e differenza di Relazione tra il elettrico e il Il elettrico dovuto a cariche puntiformi Il elettrico dovuto a una generica

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

IL CAMPO ELETTRICO. Test

IL CAMPO ELETTRICO. Test Test 1 Quali delle seguenti affermazioni sul concetto di campo elettrico è corretta? A Il campo elettrico in un punto dello spazio ha sempre la stessa direzione e lo stesso verso della forza elettrica

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

CAPITOLO 2 POTENZIALE ELETTROSTATICO

CAPITOLO 2 POTENZIALE ELETTROSTATICO CAPITOLO 2 POTENZIALE ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Lavoro, tensione e f.e.m. Consideriamo gli aspetti di LAVORO ed ENERGIA connessi ai campi elettrici. In

Dettagli

Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche.

Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche. Campo elettrico E Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche. Il concetto di campo elettrico venne introdotto da Michael

Dettagli

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013)

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013) Esercizi di Fisica II svolti in aula Federico Di Paolo (22/02/203) Esercizio L elettrone e il protone hanno rispettivamente una massa di 9. 0 3 kg e, 67 0 27 kg. La loro carica elettrica è pari a.6 0 9

Dettagli

Potenziale Elettrico

Potenziale Elettrico Potenziale Elettrico Il campo elettrostatico è conservativo; possiamo allora definire una funzione della posizione (coordinate spaziali) che chiameremo Potenziale Elettrico: Il Potenziale Elettrico in

Dettagli

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II ELETTROLOGIA Cap II Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica 1 Anello di raggio R uniformemente carco con carica Q. Anello di dimensioni trasversali trascurabili rispetto al

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Premessa TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Il campo elettrico T R AT TO DA:

Il campo elettrico T R AT TO DA: Il campo elettrico Michael Faraday T R AT TO DA: I P R O B L E M I D E L L A F I S I C A - C u t n e l l, J o h n s o n, Yo u n g, S t a n d l e r Z a n i c h e l l i e d i t o r e I n t e g ra z i o n

Dettagli

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti N.Giglietto A.A. 2002/03-31.2 Due esperimenti - 1 Cap 31 - Induzione e induttanza Sappiamo che una spira percorsa da corrente e immersa in un campo magnetico è soggetta ad un momento torcente. Proviamo

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

ESERCIZI DI FISICA. Giovanni Organtini Sapienza, Università di Roma & INFN Sez. di Roma

ESERCIZI DI FISICA. Giovanni Organtini Sapienza, Università di Roma & INFN Sez. di Roma ESERCIZI DI FISICA Giovanni Organtini Sapienza, Università di Roma & INFN Sez. di Roma 2 Indice 1 Campi elettrici e forze elettriche 5 3 4 INDICE Capitolo 1 Campi elettrici e forze elettriche Esercizio

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I FISICA GENERALE I - Sede di Spezia Prova A del 11/01/2016 ME 1 Un ragno di massa m R = 5.0 g usa il proprio filo come una liana (lunghezza L =10 cm). Partendo da fermo con il filo inclinato di un angolo

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 14.10.2015 Applicazioni della legge di Gauss Anno Accademico 2015/2016 Campo di un guscio sferico cavo Abbiamo già

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 12 Elettricità: forza e campo elettrico

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 12 Elettricità: forza e campo elettrico Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 12 Elettricità: forza e campo elettrico 2 La carica elettrica La carica elettrica è una proprietà della materia. si è stabilito

Dettagli

Elementi di Fisica L interazione Elettrostatica

Elementi di Fisica L interazione Elettrostatica Prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni Elementi di Fisica L interazione Elettrostatica Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI

Dettagli

Applicazioni del Teorema di Gauss

Applicazioni del Teorema di Gauss Applicazioni del Teorema di Gauss Simone Alghisi Liceo Scientifico Luzzago Ottobre 2011 Simone Alghisi Liceo Scientifico Luzzago Applicazioni del Teorema di Gauss Ottobre 2011 1 / 8 Definizione Dato un

Dettagli

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione Mentre era su una piattaforma panoramica questa ragazza si accorse che i suoi capelli le si rizzavano in testa. Suo fratello, divertito, le scattò questa foto. Cinque minuti dopo un fulmine

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Data una carica puntiforme Q

Data una carica puntiforme Q Data una carica puntiforme Q Come posso descrivere in modo sintetico il possibile effetto che Q esercita su una qualsiasi carica posta nello spazio circostante? Uso la carica q - - Estendendo il procedimento

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

CARICA ELETTRICA E LEGGE DI COULOMB

CARICA ELETTRICA E LEGGE DI COULOMB QUESITI 1 CARICA ELETTRICA E LEGGE DI COULOMB 1. (Da Medicina e Odontoiatria 2015) Due particelle cariche e isolate sono poste, nel vuoto, a una certa distanza. La forza elettrostatica tra le due particelle

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II NGEGNERA GESTONALE corso di Fisica Generale Prof. E. Puddu nterazioni di tipo magnetico 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica chiamata

Dettagli

1 DISTRIBUZIONE CONTINUA DI CARICHE

1 DISTRIBUZIONE CONTINUA DI CARICHE 1 DISTRIBUIONE CONTINUA DI CARICHE In molti casi reali il numero di cariche puntiformi contenute in un certo volume può essere grandissimo: un corpo carico si presenta con buona approssimazione come una

Dettagli

Il campo elettrico. Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore

Il campo elettrico. Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore Il campo elettrico Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore Legge di Coulomb I primi studi sulle forze agenti tra corpi elettrizzati si devono a COULOB il quale, verso la fine del

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss Prof. A.Guarrera Liceo Scientifico Galilei - Catania Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme (filo carico) di densità lineare di carica.

Dettagli

Unità 2. Il campo elettrico e il potenziale

Unità 2. Il campo elettrico e il potenziale Unità 2 Il campo elettrico e il potenziale 1. Il vettore campo elettrico La forza tra due corpi carichi, come quella gravitazionale, è una forza a distanza: agisce senza contatto. Una carica Q 1 in un

Dettagli

1 Cap 3- Legge di Gauss Concetto di flusso Flusso del campo elettrico

1 Cap 3- Legge di Gauss Concetto di flusso Flusso del campo elettrico 3 3.1- FLUSSO DEL CAMPO ELETTRICO 1 Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

CAPITOLO 7 TEOREMA DI AMPERE

CAPITOLO 7 TEOREMA DI AMPERE CAPITOLO 7 DI 7.1 Prima legge elementare di Laplace Le correnti generano i campi magnetici. Per calcolare il campo magnetico prodotto da un filo percorso da corrente dobbiamo usare una procedura simile

Dettagli

Dario D Amore Corso di Elettrotecnica (AA 08 09)

Dario D Amore Corso di Elettrotecnica (AA 08 09) Dario D Amore Corso di Elettrotecnica (AA 08 09) Si dice campo scalare uno scalare funzione del punto, per es. la temperatura in una stanza, la densità della materia in una regione dello spazio Un campo

Dettagli

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss Cap 3- Legge di Gauss Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria

Dettagli

Lezione 5: Elettrostatica. Seminario didattico

Lezione 5: Elettrostatica. Seminario didattico Lezione 5: Elettrostatica Seminario didattico Esercizio n 1 Ai vertici di un quadrato di lato 2 l sono poste 4 cariche uguali Q. Determinare : a) Il campo elettrico in un punto P dell'asse; b) il campo

Dettagli

1 IL CONCETTO DI POTENZIALE

1 IL CONCETTO DI POTENZIALE 1 IL CONCETTO DI POTENZILE rgomento di questo capitolo è il concetto di lavoro in elettrostatica. Conviene ricordare alcune delle considerazioni svolte sul concetto di lavoro in meccanica. bbiamo imparato

Dettagli

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Elettromagnetismo Fenomeni osservati fino dall antichità sull ambra (electron) e su materiali provenienti da una cava vicinio alla città di Magnesia Studia le forze che tengono insieme gli atomi Protoni

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Prima prova d esonero del corso di Elettromagnetismo - a.a. 2011/12-13/4/2012 proff. F. Lacava, F. Ricci, D. Trevese

Prima prova d esonero del corso di Elettromagnetismo - a.a. 2011/12-13/4/2012 proff. F. Lacava, F. Ricci, D. Trevese Prima prova d esonero del corso di Elettromagnetismo - a.a. 2/2-3/4/22 proff. F. Lacava, F. Ricci, D. Trevese ESERCIZIO Le cariche +q e -q sono uniformemente distribuite su due bacchette di materiale isolante,

Dettagli

CAPITOLO 6 CAMPI MAGNETICI

CAPITOLO 6 CAMPI MAGNETICI CAPITOLO 6 6.1 Introduzione Come una bacchetta elettrizzata produce attorno a se un campo elettrico E così possiamo dire che un magnete produce un campo vettoriale che chiamiamo campo magnetico B. Le osservazioni

Dettagli

I prova di esonero del corso di Elettromagnetismo (a.a. 2009/2010) (Proff. F. Lacava, F. Ricci, D. Trevese) 23 aprile 2010

I prova di esonero del corso di Elettromagnetismo (a.a. 2009/2010) (Proff. F. Lacava, F. Ricci, D. Trevese) 23 aprile 2010 I prova di esonero del corso di Elettromagnetismo a.a. 2009/2010 Proff. F. Lacava, F. Ricci, D. Trevese 23 aprile 2010 Esercizio 1 Un dischetto sottile di raggio R, costituito da materiale isolante a densità

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2017/18, S. Giagu/F. Lacava/F. Piacentini)

Prova Scritta Elettromagnetismo (a.a. 2017/18, S. Giagu/F. Lacava/F. Piacentini) Prova Scritta Elettromagnetismo - 2.6.208 (a.a. 207/8, S. Giagu/F. Lacava/F. Piacentini) recupero primo esonero: risolvere l esercizio : tempo massimo.5 ore. recupero secondo esonero: risolvere l esercizio

Dettagli

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico LROSAICA Problemi di isica lettrostatica La Legge di Coulomb e il Campo elettrico LROSAICA ata la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta

Dettagli

Fisica Generale LB. Prof. Mauro Villa. Esercizi di elettrostatica nel vuoto

Fisica Generale LB. Prof. Mauro Villa. Esercizi di elettrostatica nel vuoto Fisica Generale LB Prof. Mauro Villa Esercizi di elettrostatica nel vuoto A - Forza di Coulomb, campi elettrici 1. Calcolare la forza elettrostatica esercitata su di una carica Q 3, posta in mezzo ad altre

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

1) ELETTROSTATICA NEL VUOTO

1) ELETTROSTATICA NEL VUOTO ) ELETTROSTATICA NEL VUOTO la lezione precedente forza elettrostatica fra cariche puntiformi ferme nel vuoto: legge di Coulomb la carica è uantizzata e la materia è macroscopicamente neutra si può trasferire

Dettagli

Ottavio Serra. Campo elettrico di un anello e di un disco

Ottavio Serra. Campo elettrico di un anello e di un disco Ottavio Serra Campo elettrico di un anello e di un disco In questo articolo mi propongo di calcolare il potenziale e il campo generati da un anello e poi da un disco elettrizzati in modo uniforme nel generico

Dettagli

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0.

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0. Esercizio 1 All interno di una sfera di raggio posta nel vuoto esiste una densità di carica ρ = ρ r 2 distanza dal centro della sfera e ρ. Determinare: 1. La carica totale della sfera 2. Il campo elettrico

Dettagli

b. Per il teorema di Gauss, il flusso attraverso una superficie chiusa dipende solo dalle cariche in essa contenute, in questo caso q.

b. Per il teorema di Gauss, il flusso attraverso una superficie chiusa dipende solo dalle cariche in essa contenute, in questo caso q. QUESITI 1 Quesito Lo schema A è impossibile perché per ogni punto dello spazio passa una sola linea di forza. Lo schema C è impossibile perché una linea di forza dev essere orientata come il campo elettrico

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

PROPRIETÀ DEL CAMPO ELETTROSTATICO. G. Pugliese 1

PROPRIETÀ DEL CAMPO ELETTROSTATICO. G. Pugliese 1 PROPRIETÀ DEL CAMPO ELETTROTATICO G. Pugliese 1 Flusso di un vettore Il flusso di un liuido o d aria (la portata), è la uantità di liuido che passa in un determinato tempo attraverso una sezione del tubo.

Dettagli

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento IL CAMPO ELETTRICO Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio Questo simbolo significa che l esperimento si può realizzare anche

Dettagli

Elettrostatica Forza di Coulomb Campo elettrostatico Flusso del campo elettrico attraverso una supeficie Legge di Gauss...

Elettrostatica Forza di Coulomb Campo elettrostatico Flusso del campo elettrico attraverso una supeficie Legge di Gauss... Elettrostatica...2 1 Forza di Coulomb...2 2 Campo elettrostatico...4 3 Flusso del campo elettrico attraverso una supeficie...6 4 Legge di Gauss...6 5 Lavoro ed energia potenziale...7 6 Potenziale elettrostatico...8

Dettagli

Il campo elettrico. Facciamo esplicitamente notare che, in questo contesto, non ha alcuna importanza sapere quale sia la sorgente del campo elettrico.

Il campo elettrico. Facciamo esplicitamente notare che, in questo contesto, non ha alcuna importanza sapere quale sia la sorgente del campo elettrico. Il campo elettrico 1. Il campo elettrico Diciamo che in una regione R c è un campo elettrico se, posta una carica puntiforme q in R, su tale carica agisce una forza F di natura elettrica. La carica q,

Dettagli

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete:

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: Il campo magnetico Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: correnti elettrici creano campo magnetici magneti permanenti (calamiti) ogni

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Fisica Generale II con Laboratorio. Lezione - 2

Fisica Generale II con Laboratorio. Lezione - 2 Fisica Generale II con Laboratorio Lezione - Il campo gravitazionale - I Punto di vista newtoniano: Ognuna delle due masse, M ed m, sull altra esercita una forza a distanza Punto di vista moderno: La massa

Dettagli

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Elettromagnetismo È lo studio deli fenomeni collegati alle cariche elettriche in quiete o in movimento Alcuni fenomeni sono stati osservati fin dall antichità sull ambra (electron) e su materiali provenienti

Dettagli

si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano Elettrostatica Alcune sostanze (ambra, vetro, materie plastiche, ) si elettrizzano per strofinio, cioè strofinate con un panno acuistano la capacità di attrarre corpi leggeri. Due oggetti elettrizzati

Dettagli

FISICA APPLICATA 2 ELEMENTI DI ELETTROMAGNETISMO

FISICA APPLICATA 2 ELEMENTI DI ELETTROMAGNETISMO FISICA APPLICATA 2 ELEMENTI DI ELETTROMAGNETISMO DOWNLOAD Il pdf di questa lezione (ele1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 04/04/2011 CARICA ELETTRICA Esistono due tipi di

Dettagli

ELETTROSTATICA parte I a

ELETTROSTATICA parte I a Richiami di ELETTROSTATICA parte I a - CARICA ELETTRICA E FORZA DI COULOMB - CAMPO ELETTROSTATICO - ENERGIA POTENZIALE ELETTROSTATICA - POTENZIALE ELETTRICO CARICA ELETTRICA e FORZA di COULOMB 4 a grandezza

Dettagli

L ELETTROSTATICA FINO A COULOMB Giuseppe Frangiamore con la collaborazione di Vittorio Territo

L ELETTROSTATICA FINO A COULOMB Giuseppe Frangiamore con la collaborazione di Vittorio Territo L ELETTROSTATICA FINO A COULOMB Giuseppe Frangiamore con la collaborazione di Vittorio Territo La parte della fisica che studia i fenomeni dovuti alle cariche elettriche in quiete si chiama: elettrostatica.

Dettagli

Elettrostatica. Tutorato #8

Elettrostatica. Tutorato #8 Tutorato #8 Elettrostatica La Carica Elettrica Tutta la materia a noi nota è costituita da atomi. Un atomo è costituito da un nucleo molto denso in massa, e con carica positiva, e circondato da una nube

Dettagli

CLASSE 5^ C LICEO SCIENTIFICO 14 Settembre 2018 Elettrostatica

CLASSE 5^ C LICEO SCIENTIFICO 14 Settembre 2018 Elettrostatica CLASSE 5 C LICEO SCIENTIFICO 4 Settembre 0 Elettrostatica. Siano date due cariche poste sul semiasse positivo delle x: la carica,60 0 nell origine e la carica,0 0 a una distanza 0,000 dalla prima. A. Calcola

Dettagli

La legge di Gauss. Il flusso elettrico

La legge di Gauss. Il flusso elettrico La legge di Gauss La legge di Gauss mette in relazione il flusso elettrico Φ attraverso una superficie chiusa e la carica q %& dentro: Se più linee di flusso escono di quante ne entrano, contiene una carica

Dettagli

Prima prova d esonero del corso di Elettromagnetismo - a.a. 2012/13-12/4/2013 proff. F. Lacava, F. Ricci, D. Trevese

Prima prova d esonero del corso di Elettromagnetismo - a.a. 2012/13-12/4/2013 proff. F. Lacava, F. Ricci, D. Trevese Prima prova d esonero del corso di Elettromagnetismo - a.a. 212/13-12/4/213 proff. F. Lacava, F. Ricci, D. Trevese ESERCIZIO 1 Ad un sottile guscio sferico isolante di raggio R 1 cm è stata rimossa una

Dettagli

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A Facoltà di Ingegneria a prova in itinere di Fisica II 5-Aprile-3 - Compito A Esercizio n. Un filo isolante di lunghezza è piegato ad arco di circonferenza di raggio (vedi figura). Su di esso è depositata

Dettagli

(4 π 2 /kt) m t / r 2 = (4 π 2 /ks) m s / r 2

(4 π 2 /kt) m t / r 2 = (4 π 2 /ks) m s / r 2 Le leggi di Keplero Lo studio del moto dei pianeti, tramite accurate misure, permise a Keplero tra il 1600 ed il 1620 di formulare le sue tre leggi: I legge: I pianeti percorrono orbite ellittiche intorno

Dettagli

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino Esercitazione 1 Matteo Luca Ruggiero 1 1 Dipartimento di Fisica del Politecnico di Torino Anno Accademico 2010/2011 ML Ruggiero (DIFIS) Esercitazione 1: Elettrostatica E1.2010/2011 1 / 29 Sommario 1 Riferimenti

Dettagli

Alcune applicazioni del teorema di Gauss

Alcune applicazioni del teorema di Gauss Alcune applicazioni del teorema di Gauss Diamo innanzitutto la definizione di flusso del vettore v attraverso la superficie S. Per cominciare col caso più semplice, consideriamo un fluido (per esempio,

Dettagli

Seminario didattico. Lezione 8: Campo Magnetico Forze magnetiche

Seminario didattico. Lezione 8: Campo Magnetico Forze magnetiche Seminario didattico Lezione 8: Campo Magnetico Forze magnetiche Esercizio n 1 Nel circuito in figura scorre una corrente I = 10 A. I raggi delle semicirconferenze sono r 1 = 8 cm ed r 2 = 12 cm. Determinare

Dettagli

IL CAMPO ELETTRICO ED IL POTENZIALE

IL CAMPO ELETTRICO ED IL POTENZIALE IL CAMPO ELETTRICO ED IL POTENZIALE 1 V CLASSICO PROF.SSA DELFINO M. G. UNITÀ 2 - IL CAMPO ELETTRICO ED IL POTENZIALE 1. Il campo elettrico 2. La differenza di potenziale 3. I condensatori 2 LEZIONE 1

Dettagli

Lezione 6 Campo elettrico Potenziale elettrico Corrente elettrica Campo magnetico

Lezione 6 Campo elettrico Potenziale elettrico Corrente elettrica Campo magnetico Dr. Andrea Malizia Prof. Maria Guerrisi 1 Lezione 6 Campo elettrico Potenziale elettrico Corrente elettrica Campo magnetico Fisica malizia@ing.uniroma2.it Lezione 6 Campo elettrico 2 Campo elettrico 3

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Verifiche sperimentali legge di Coulomb. c a p i t o l o

Verifiche sperimentali legge di Coulomb. c a p i t o l o Verifiche sperimentali legge di Coulomb c a p i t o l o 3 Fino a che punto si può aver fiducia nella legge di Coulomb? Era noto che: Una buccia sferica omogenea di materia dà, al suo interno, un contributo

Dettagli

COME FUNZIONA L ESAME

COME FUNZIONA L ESAME COME UNZIONA L ESAME COME UNZIONA L ESAME n Le prove d esame L Esame di Stato si articola in due prove disciplinari (la prima e la seconda prova scritta) e in due prove di carattere pluridisciplinare (la

Dettagli

LICEO SCIENTIFICO Statale L. DA VINCI Reggio Calabria FISICA: ELETTROMAGNETISMO

LICEO SCIENTIFICO Statale L. DA VINCI Reggio Calabria FISICA: ELETTROMAGNETISMO LICEO SCIENTIFICO Statale L. DA VINCI Reggio Calabria FISICA: ELETTROMAGNETISMO Studente GAETANO FILOCAMO CLASSE 5^ SEZ. H A.s. 2004-2005 Sono chiamati fenomeni elettrostatici tutti quei fenomeni elettrici

Dettagli

Fondamenti di Fisica necessari per i corsi di informatica ed elettronica

Fondamenti di Fisica necessari per i corsi di informatica ed elettronica Fondamenti di Fisica necessari per i corsi di informatica ed elettronica Ricordiamo che: La velocità è data dal percorso fatto nel tempo. Esempio: una velocità di 30Km/ora indica che in un ora si percorrono

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Lezione 5 Campo elettrico Potenziale elettrico Corrente elettrica Campo magnetico

Lezione 5 Campo elettrico Potenziale elettrico Corrente elettrica Campo magnetico Dr. Andrea Malizia Prof. Maria Guerrisi 1 Lezione 5 Campo elettrico Potenziale elettrico Corrente elettrica Campo magnetico Campo elettrico 2 Campo elettrico 3 Campo elettrico 4 Campo elettrico LINEE DI

Dettagli

Verifiche sperimentali legge di Coulomb. capitolo 3

Verifiche sperimentali legge di Coulomb. capitolo 3 Verifiche sperimentali legge di Coulomb capitolo 3 Fino a che punto si può aver fiducia nella legge di Coulomb? Era noto che: Una buccia sferica omogenea di materia dà, al suo interno, un contributo nullo

Dettagli

Elettrostatica si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

Elettrostatica si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano Elettrostatica Alcune sostanze (ambra, vetro, materie plastiche, ) si elettrizzano per strofinio, cioè strofinate con un panno acuistano la capacità di attrarre corpi leggeri. Due oggetti elettrizzati

Dettagli

Esercizio 1 a) La carica totale Q è ricavabile calcolando in coordinate sferiche l integrale di volume di ρ esteso a tutto lo spazio.

Esercizio 1 a) La carica totale Q è ricavabile calcolando in coordinate sferiche l integrale di volume di ρ esteso a tutto lo spazio. Compito d esonero del corso di ELETTROMAGNETISMO n. 1-15/4/11 - a.a. 1/11 proff. S. Giagu, F. Lacava, F. Ricci ESERCIZIO 1 Una distribuzione di carica a simmetria sferica si estende in tutto spazio con

Dettagli