COSTRUIAMO CONTENITORI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COSTRUIAMO CONTENITORI"

Transcript

1 COSTRUIAMO CONTENITORI Obiettivi - Porre problemi e progettare possibili soluzioni. - Riconoscere situazioni problematiche, analizzarle e individuare al loro interno dati noti e non noti e le relazioni esistenti tra essi. - Costruire, leggere e interpretare formule. - Tradurre informazioni dal linguaggio comune a quello delle lettere. - Costruire formule e verificarne l esattezza in riferimento ai casi specifici. - Usare coordinate cartesiane, tabelle per rappresentare relazioni e funzioni. SCATOLE DI CARTONE 1 Metodi e attività Lavorando a gruppi, gli alunni avranno a disposizione fogli di cartoncino da ripiegare o ritagliare per costruire contenitori di varia forma sui quali compiere osservazioni, misure, rilevazioni di dati e giungere ad individuare e rappresentare relazioni. FASE 1 Ogni gruppo costruirà, mediante opportune piegature del foglio di cartoncino rettangolare con le dimensioni di 4 cm e 10 cm, la superficie laterale di una scatola (a base rettangolare) alta 10 cm. 10 cm Si chiederà agli alunni di valutare a occhio come varia il volume al variare delle dimensioni di base e di individuare quale scatola ha volume massimo. Verrà compilata successivamente la tabella per i valori relativi alle scatole costruite. 1 Adattato da E. Castelnuovo La Matematica Figure solide, La Nuova Italia.

2 ATTIVITÀ PER L INTRODUZIONE AL PENSIERO ALGEBRICO (dimensione di base) 1 (altra dimensione) y (volume della scatola) Si potranno riportare in un foglio elettronico i valori (con incremento 0,5), 1-, y. Si rappresenterà in un grafico cartesiano la relazione tra y e. Si potrà poi chiedere agli alunni: per quali valori di la scatola è realizzabile; a quale valore di corrisponde il volume massimo; quale funzione matematica lega y ad, completando: y (.. -..)..; se il cartoncino rettangolare avesse dimensioni 16 cm 10 cm, per quale valore di si otterrebbe la scatola alta 10 cm di volume massimo; se p è il perimetro di base della scatola, come chiamo la dimensione di base della scatola con volume ma; quale tipo di scatola alta 10 cm costruirebbero con un cartoncino volendola riempire del maggior numero possibile di dadi con lo spigolo di 1 cm. 1 Eventuali sviluppi potranno prevedere la possibilità di fare congetture e verificarle con l ausilio del foglio di calcolo: tenendo come altezza la dimensione maggiore del foglio di cartoncino, come varierà il volume della scatola variando come in precedenza le dimensioni di base? il volume ma sarà maggiore o minore di quello determinato nella precedente fase di lavoro e qual è il rapporto tra i due volumi massimi? Si potranno guidare gli alunni (che già conoscono il calcolo letterale) alla generalizzazione 1 a > 0 + a V 1 [( + a) / 4] 3 + a + a 16 + a V 4 ( + a) 3 + a 16 Si noterà che V 1 è sempre maggiore di V.

3 ATTIVITÀ PER L INTRODUZIONE AL PENSIERO ALGEBRICO 3 Si potranno usare le lettere anche per individuare che il rapporto tra i due volumi corrisponde a quello tra le dimensioni del cartoncino cioè: V1 ( + a) V 16 ( + a) 4 Dallo sviluppo e dalla semplificazione si avrà: V1 + a V Altre domande possibili: supponiamo che il foglio di cartoncino da piegare per costruire la superficie laterale della scatola di volume massimo sia quadrato: se chiamo una dimensione, come chiamo l altra? quale sarà allora la relazione matematica che lega il volume y ad? quale tipo di grafico esprime questa relazione? FASE Ogni gruppo ritaglierà, da un foglio di cartoncino quadrato, 4 quadratini di lato agli angoli e ripiegherà verso l alto le strisce in modo da ottenere una scatola senza coperchio. Partendo da cartoncini uguali di 18 cm di lato, un gruppetto taglierà quadratini di lato 1 cm, gli altri di cm, di 3 cm e verranno costruite le relative scatole. Si chiederà ai ragazzi tra quali valori può essere compreso : insieme si valuterà a occhio se le scatole hanno o meno lo stesso volume. Si passerà poi alla verifica sperimentale riempiendo le scatole con volumi prefissati di sabbia, poi si lavorerà per via algebrica dopo aver rappresentato il modello del foglio e delle piegature Ponendo a il lato del foglio e quello del quadratino si arriverà all area del fondo della scatola nei vari modi che metteranno in evidenza l equivalenza delle espressioni letterali ( a ) a + 4 4a Così si potrà esprimere il volume y delle scatole in funzione di. Per vedere la relazione si realizzerà il grafico sulla base dei valori indicati nella tabella costruita in un foglio di calcolo e si noterà la presenza di un volume massimo. a V a

4 ATTIVITÀ PER L INTRODUZIONE AL PENSIERO ALGEBRICO 4 A questo punto si compileranno altre tabelle come la precedente riferite a scatole ottenute da fogli di cartoncino quadrati di lato 1 cm; 4 cm; 36 cm (una per gruppo) e confrontando le varie tabelle si guideranno gli alunni a notare che il volume massimo si ottiene per valori tali per cui è 1/6 il rapporto tra e il lato del foglio di cartoncino. Si potrà lavorare con le lettere per passare da Y ( a ) 3 ad Y a (riferendosi a scatole di volume ma). 7 Si potrà ampliare l attività lavorando su fogli rettangolari dai quali ritagliare ai 4 angoli i quadratini come sopra per individuare ancora interessanti relazioni tra lato del quadratino e y volume della scatola. In questo caso il volume massimo della scatola si ha per un valore di compreso tra a/6 e b/6 (a e b sono le dimensioni del foglio di cartoncino rettangolare). I pacchi postali Metodi e attività Gli alunni dovranno essere in grado di scoprire le condizioni che, nel rispetto di vincoli prefissati, permettono di ottenere il volume massimo di un pacco, considerando i vincoli stabiliti dalle Poste Italiane che fissano per i pacchi ordinari: costo di spedizione di 5,16 peso 0 0 Kg A lunghezza ma 100 cm B lunghezza ma + giro opposto 00 cm Verrà posto il problema generale: Quale forma e quali dimensioni dare al pacco perché il volume sia massimo e rispetti le direttive postali? 1) Gli alunni, individualmente o a piccoli gruppi, saranno invitati inizialmente a considerare scatole a forma di parallelepipedo rettangolo (cubo compreso) e a compilare una tabella con a, b, c come dimensioni assunte a caso, verificando di volta in volta se rispettano i vincoli fissati. Potrebbe essere un buon esercizio di allenamento al fare ipotesi e stime ragionevoli e a verificarle. Si può concordare, anche per le fasi di lavoro successive, di prendere a come dimensione maggiore: a b c ) Si passerà poi alla traduzione di A e B nel linguaggio algebrico mediante le rispettive disequazioni: a < 100 a + (b+c) 00 Si esamineranno le possibili situazioni per vedere come varia il volume al variare delle dimensioni di base b, c. Gli alunni saranno aiutati a costruire la a + (b + c) 00 e quindi: - ricavare il valore di b + c; - fissare il valore di b (incrementi progressivi di 5 in 5);

5 ATTIVITÀ PER L INTRODUZIONE AL PENSIERO ALGEBRICO 5 - calcolare c per differenza dalla a + b; - calcolare il volume corrispondente. Sarà utile costruire una tabella e usare la calcolatrice tascabile oppure utilizzare il foglio di calcolo nel quale inserire dati, impostare e copiare formule. A B C D E F 1 a a + (b+c) b+c b c volume (B-A)/ 5 C-D A*D*E Si noterà insieme che il volume ma corrisponde al pacco di base quadrata; si costruirà il grafico cartesiano che rappresenta la relazione tra Volume e dimensione b e si farà notare l analogia con la parabola che traduce la relazione tra l area di rettangoli isoperimetrici ed una dimensione. (si veda Castelnuovo, opera citata Leggi matematiche, pag. 19) Si costruirà poi la formula della legge parabolica V 100 b (50-b) e di nuovo si farà notare l analogia con la y (p-) dove y indica l area, p il semiperimetro, una dimensione dei rettangoli isoperimetrici. A questo punto verrà posta la domanda: Siamo sicuri che il volume ma determinato sia proprio il più grande di tutti i pacchi possibili secondo le norme delle Poste? Ad ogni gruppetto verrà assegnato un valore di lunghezza del pacco compreso tra 10 e 100 cm e verranno compilate le varie tabelle seguendo la traccia del lavoro precedente. (per B si prenderà il valore massimo, 00 cm) Si chiederà ad ogni gruppetto: qual è la forma della base del vostro pacco con un volume massimo? era prevedibile? Verranno raccolti in una tabella riassuntiva i valori relativi al volume ma individuato da ogni gruppetto: a b c V ma 10 0 Si noterà che il volume massimo per un pacco a forma di parallelepipedo è quello a base quadrata che corrisponde alla lunghezza massima di 70 cm. Gli alunni: saranno guidati a costruire la formula di validità generale: 00 a Vma a 4 che lega il V ma del pacco a quello dei vari prismi a base quadrata e ai rispettivi valori di lunghezza ma; potranno visualizzare la funzione precedente rappresentandola sul piano cartesiano;

6 ATTIVITÀ PER L INTRODUZIONE AL PENSIERO ALGEBRICO 6 V ma a potranno anche rappresentare su uno stesso piamo cartesiano le rette (di equazione b + c k) che passano per i vertici dei vari insiemi di rettangoli di base. NOTE: il problema può essere esteso a pacchi di forma diversa (cilindro, sfera ) anche se il rischio è quello di un eccessivo appesantimento; gli alunni imparano ad affrontare problemi complessi in cui le relazioni tra le variabili non sono quelle di solito incontrate e intuiscono la complessità di risposte e soluzioni che al loro livello sono necessariamente parziali. Verifiche Assegnare la somma delle tre dimensioni di un parallelepipedo e chiedere quali sono le dimensioni di base che permettono di ottenere il volume ma conoscendo e tenendone fissa una. Se il pacco fosse cilindrico e alto 100 cm, quale misura potrà avere al massimo la circonferenza di base? E quale sarà il volume corrispondente? Abbiamo notato con sorpresa che il pacco a base quadrata con il volume maggiore non era quello alto 100 cm ma quello alto 70 cm; prova a verificare se questo vale anche nel caso di un pacco cilindrico tenendo come massima possibile la seconda condizione fissata dalle Poste.

CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO. SCUOLA secondaria di secondaria di primo grado

CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO. SCUOLA secondaria di secondaria di primo grado CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO SCUOLA secondaria di secondaria di primo grado classe 1^ TRAGUARDI per lo sviluppo L alunno si muove con sicurezza nel calcolo con i numeri Naturali

Dettagli

Prepararsi alla Prova di matematica

Prepararsi alla Prova di matematica Scuola Media E. Fermi Prepararsi alla Prova di matematica Prove d esame di matematica Prof. Vincenzo Loseto 2013/ 2014 PROVA NUMERO 1 QUESITO 1 In un triangolo rettangolo la somma di un cateto e dell ipotenusa

Dettagli

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro

Dettagli

Curricolo Verticale Scuola Secondaria di I Grado I. C. S. Via Libertà San Donato Milanese (MI) CLASSE PRIMA

Curricolo Verticale Scuola Secondaria di I Grado I. C. S. Via Libertà San Donato Milanese (MI) CLASSE PRIMA CLASSE PRIMA TRAGUARDI per lo sviluppo delle competenze OBIETTIVI CONTENUTI al termine della classe 3 a Comprendere il significato logico dei numeri nell insieme N e rappresentarli sulla retta orientata.

Dettagli

9.4 Esercizi. Sezione 9.4. Esercizi 253

9.4 Esercizi. Sezione 9.4. Esercizi 253 Sezione 9.. Esercizi 5 9. Esercizi 9..1 Esercizi dei singoli paragrafi 9.1 - Espressioni letterali e valori numerici 9.1. Esprimi con una formula l area della superficie della zona colorata della figura

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

FIGURE ISOPERIMETRICHE HANNO LA STESSA AREA?

FIGURE ISOPERIMETRICHE HANNO LA STESSA AREA? Stefania Renna 3DL a.s. 2007/2008 FIGURE ISOPERIMETRICHE HANNO LA STESSA AREA? Si è partiti da qui: Due contadini si incontrano in un negozio di ferramenta: devono acquistare entrambi 40 m. di rete metallica

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI SOLIDI In figura è rappresentato un solido ottenuto da un cubo grande dal quale è stato tolto un cubo più piccolo. Quale delle seguenti espressioni permette di calcolare il volume

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo 1. Da un quadrato di cartone di lato 9dm si vuole ricavare, ritagliando e ripiegando opportunamente i lembi, una scatola aperta, a base quadrata, di capacità massima. Determinare

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in. Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m. I problemi di massimo e minimo sono problemi

Dettagli

U. A. 1 GLI INSIEMI CONOSCENZE

U. A. 1 GLI INSIEMI CONOSCENZE U. A. 1 GLI INSIEMI Acquisire il significato dei termini,dei simboli e caratteristiche dell'insieme delle parti, dell'insieme differenza e complementare della partizione di un insieme e del prodotto cartesiano.

Dettagli

Esempi di domande per ambiti e livelli di competenza Grado 8 MATEMATICA

Esempi di domande per ambiti e livelli di competenza Grado 8 MATEMATICA Esempi di domande per ambiti e livelli di competenza Grado 8 MATEMATICA 1 A.S. 2018 19 Esempi di domande per ambiti e livelli di competenza MATEMATICA Sommario SPAZIO E FIGURE... 3 ESEMPIO... 3 RELAZIONI

Dettagli

MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA MATEMATICA CONCORRENTI DISCIPLINA DI RIFERIMENTO: MATEMATICA COMPETENZA DISCIPLINE tutte

MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA MATEMATICA CONCORRENTI DISCIPLINA DI RIFERIMENTO: MATEMATICA COMPETENZA DISCIPLINE tutte MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA MATEMATICA CONCORRENTI DISCIPLINA DI RIFERIMENTO: MATEMATICA COMPETENZA DISCIPLINE tutte MATEMATICA CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE Utilizzare

Dettagli

ISTITUTO COMPRENSIVO STATALE F. E P. CORDENONS

ISTITUTO COMPRENSIVO STATALE F. E P. CORDENONS Numeri Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica -Comprendere il significato logico-operativo di numeri appartenenti ai diversi

Dettagli

COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale.

COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale. SCUOLA SECONDARIA DI 1 GRADO TOVINI CURRICOLO DI SCIENZE MATEMATICHE PER LA CLASSE PRIMA COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale. _Il concetto di insieme.

Dettagli

Compito di matematica Classe III ASA 23 aprile 2015

Compito di matematica Classe III ASA 23 aprile 2015 Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9

Dettagli

Espressioni letterali e valori numerici

Espressioni letterali e valori numerici Espressioni letterali e valori numerici 9 9.1 Lettere 9.1.1 Lettere per esprimere formule Esempio 9.1. In tutte le villette a schiera di recente costruzione del nuovo quartiere Stella, vi è un terreno

Dettagli

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e Corso di Laurea in Matematica (A.A. 2007-2008) SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004 Rispondere (nello spazio assegnato) alle seguenti domande (1) Calcolare il MCD e il mcm tra i numeri

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Espressioni letterali e valori numerici

Espressioni letterali e valori numerici Espressioni letterali e valori numerici 8 8.1 Lettere 8.1.1 Lettere per esprimere formule Esempio 8.1. In tutte le villette a schiera di recente costruzione del nuovo quartiere Stella, vi è un terreno

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

Triangoli equilateri e parabole

Triangoli equilateri e parabole Triangoli equilateri e parabole Livello scolare: 2 biennio Abilità interessate Realizzare semplici costruzioni di luoghi geometrici. Risolvere semplici problemi riguardanti rette, circonferenze, parabole.

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Simmetrie e quadriche

Simmetrie e quadriche Appendice A Simmetrie e quadriche A.1 Rappresentazione e proprietà degli insiemi nel piano Una delle prime difficoltà che si incontrano nell impostare il calcolo di un integrale doppio consiste nel rappresentare

Dettagli

MATEMATICA SCUOLA PRIMARIA CLASSE 4ª. - Leggere e scrivere i numeri naturali entro le migliaia usando materiale strutturato.

MATEMATICA SCUOLA PRIMARIA CLASSE 4ª. - Leggere e scrivere i numeri naturali entro le migliaia usando materiale strutturato. MATEMATICA SCUOLA PRIMARIA CLASSE 4ª NUMERI INDICATORI DISCIPLINARI TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE L alunno sviluppa un atteggiamento positivo rispetto alla matematica, anche grazie a molte

Dettagli

DIVISIONE TRA POLINOMI E SCOMPOSIZIONI

DIVISIONE TRA POLINOMI E SCOMPOSIZIONI DIVISIONE TRA POLINOMI E SCOMPOSIZIONI Esegui la seguente divisione fra polinomi e scrivi quoziente e resto.. b b 8b b 5 : b 5 5. x x x : x. 6 x x x : x x Q b b R 5; Q x x x ; R x 7 9 Q x x x ; R x Esegui

Dettagli

MAPPA DELLE COMPETENZE CODICE ASSE: PRIMO ANNO SECONDO ANNO

MAPPA DELLE COMPETENZE CODICE ASSE: PRIMO ANNO SECONDO ANNO MAPPA DELLE COMPETENZE Utilizzare le procedure del calcolo aritmetico (a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche e risolvere I numeri: naturali, interi, razionali, sotto

Dettagli

grazie alla proprietà associativa dell'addizione è possibile tralasciare le parentesi. Si sommano poi tra loro i monomi simili.

grazie alla proprietà associativa dell'addizione è possibile tralasciare le parentesi. Si sommano poi tra loro i monomi simili. 1. POLINOMI Un polinomio è una somma algebrica di monomi. Es.:... Se il polinomio è formato da due monomi si chiama binomio. Se il polinomio è formato da tre monomi si chiama trinomio. Il grado del polinomio

Dettagli

Prova d esame 1999/2000. Quesito 1

Prova d esame 1999/2000. Quesito 1 Prova d esame 1999/2000 In un trapezio isoscele la somma delle lunghezze della base minore e dell altezza misura 38 cm e la base minore è i 7/12 dell altezza. Il solido generato dalla rotazione completa

Dettagli

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Concorso Interno, per titoli ed esami, a 300 posti per l ammissione al 20 corso di aggiornamento e formazione professionale

Dettagli

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 };

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 }; ESERCIZI. INSIEMISTICA. Sia l insieme dei punti dello spazio, Γ una sfera e N il suo polo nord. Quali delle seguenti relazioni sono corrette? N Γ; N ; Γ ; Γ ; N ; Γ N.. Dire quali dei seguenti insiemi

Dettagli

IC BOSCO CHIESANUOVA - CURRICOLO UNITARIO - SCUOLA SECONDARIA I

IC BOSCO CHIESANUOVA - CURRICOLO UNITARIO - SCUOLA SECONDARIA I IC BOSCO CHIESANUOVA - CURRICOLO UNITARIO - SCUOLA SECONDARIA I MATEMATICA Classe PRIMA secondaria 1 COMPETENZE SPECIFICHE ABILITÀ CONOSCENZE IL NUMERO - Utilizzare in modo corretto le tecniche, le procedure

Dettagli

SCIENZE MATEMATICHE FISICHE e NATURALI

SCIENZE MATEMATICHE FISICHE e NATURALI UNIVERSITÀ di ROMA TOR VERGATA FACOLTÀ di SCIENZE MATEMATICHE FISICHE e NATURALI Argomenti di Matematica delle prove di valutazione Anno 03-04 A. Manipolazioni algebriche, semplificazioni; calcolo elementare

Dettagli

Progettazione per unità di apprendimento Percorso di istruzione di 1 livello, 2 periodo didattico, Unità di apprendimento 1

Progettazione per unità di apprendimento Percorso di istruzione di 1 livello, 2 periodo didattico, Unità di apprendimento 1 Unità di apprendimento 1 UdA n. 1 GLI INSIEMI E IL CALCOLO IN Q DURATA PREVISTA 30 0 30 STANDARD DI RIFERIMENTO asse Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico rappresentandole

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Progettazione per unità di apprendimento Percorso di istruzione di 1 livello, 2 periodo didattico, Unità di apprendimento 1

Progettazione per unità di apprendimento Percorso di istruzione di 1 livello, 2 periodo didattico, Unità di apprendimento 1 Unità di apprendimento 1 UdA n. 1 GLI INSIEMI E IL CALCOLO IN Q DURATA PREVISTA 0 STANDARD DI RIFERIMENTO asse Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico rappresentandole

Dettagli

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2 0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la

Dettagli

COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali)

COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali) COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali) Utilizzare con sicurezza le tecniche e le procedure nel calcolo aritmetico e algebrico, scritto e mentale, anche con

Dettagli

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 2 I SISTEMI LINEARI

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 2 I SISTEMI LINEARI PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI I SISTEMI LINEARI Stabilisci se il sistema è determinato, indeterminato o impossibile senza risolverlo [determinato] [impossibile] Determina per

Dettagli

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE 1.L alunno si muove con sicurezza sia nel calcolo scritto che mentale a partire dai numeri naturali fino a quelli reali; ne padroneggia le diverse rappresentazioni, stima la grandezza di un numero e il

Dettagli

ICS Erasmo da Rotterdam Via Giovanni XXIII n CISLIANO Tel./Fax

ICS Erasmo da Rotterdam Via Giovanni XXIII n CISLIANO Tel./Fax ICS Erasmo da Rotterdam Via Giovanni XXIII n.8 20080 CISLIANO www.albaciscuole.gov.it Tel./Fax02.9018574 [email protected] MAIL [email protected] PEC: [email protected] C.F. 90015600159

Dettagli

CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO

CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO Nuclei tematici Il numero Traguardi per lo sviluppo della competenza - Muoversi con sicurezza nel calcolo anche con i numeri razionali e stimare

Dettagli

Matematica Lezione 4

Matematica Lezione 4 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE "Charles Darwin" VIA TUSCOLANA 388 00181 ROMA FAX 06-78398487 / TEL 7809542 A.S. 2015-2016 PROGRAMMA DI MATEMATICA CLASSE IB LICEO Prof.: CHIUMMARIELLO ASSUNTA Libro di testo

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

MATEMATICA SCUOLA SECONDARIA CLASSE TERZA

MATEMATICA SCUOLA SECONDARIA CLASSE TERZA MATEMATICA SCUOLA SECONDARIA CLASSE TERZA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE RELATIVI A NUMERI L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse

Dettagli

Istituto Comprensivo Statale Falcone e Borsellino di Castano Primo PROGETTAZIONE ANNUALE CLASSI TERZE SCUOLA SECONDARIA. anno scolastico2016/17

Istituto Comprensivo Statale Falcone e Borsellino di Castano Primo PROGETTAZIONE ANNUALE CLASSI TERZE SCUOLA SECONDARIA. anno scolastico2016/17 Istituto Comprensivo Statale Falcone e Borsellino di Castano Primo PROGETTAZIONE ANNUALE CLASSI TERZE SCUOLA SECONDARIA anno scolastico2016/17 Raccordi con le competenze chiave europee Spirito di imprenditorialità

Dettagli

Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende

Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Attività - I Dadi Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Ci proponiamo l obiettivo di studiare le regole di costruzione dei dadi per progettare

Dettagli

OBIETTIVI GENERALI OBIETTIVI SPECIFICI ALGEBRA

OBIETTIVI GENERALI OBIETTIVI SPECIFICI ALGEBRA Revisione dei contenuti in data 21 aprile 2015 OBIETTIVI GENERALI Imparare a lavorare in classe (saper ascoltare insegnante e compagni, intervenire con ordine e nei momenti opportuni). Concepire il lavoro

Dettagli

a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti:

a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti: 1. Sia ABC un triangolo equilatero di area S. Siano L, M, N, i punti medi dei lati AB, BC, CA, e E, F, D, i punti medi dei lati LM, MN, NL.. L area del triangolo DEF è uguale a: a) S/ 4; b) S/ 8; c) S/12;

Dettagli

PROGRAMMAZIONE ANNUALE A.S / 2017 FIOCCO ELIO MANNELLI MARIA GRAZIA OCCHINO SEBASTIANO-PASELLO DIANA

PROGRAMMAZIONE ANNUALE A.S / 2017 FIOCCO ELIO MANNELLI MARIA GRAZIA OCCHINO SEBASTIANO-PASELLO DIANA INDIRIZZO SCOLASTICO DISCIPLINA DOCENTE / I CLASSE / I MECCANICA e MECCATRONICA ELETTRONICA LOGISTICA e TRASPORTI X LICEO SCIENTIFICO Matematica PROGRAMMAZIONE ANNUALE A.S. 2016 / 2017 FIOCCO ELIO MANNELLI

Dettagli

Programmazione di Matematica Classe 4 F A.S

Programmazione di Matematica Classe 4 F A.S Programmazione di Matematica Classe 4 F A.S. 2016-2017 TEMA 1: Relazioni e funzioni TEMA 2: Geometria Esponenziali e logaritmi. Le funzioni goniometriche La trigonometria Successioni e progressioni Geometria

Dettagli

DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA

DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo I numeri naturali e il

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa

Dettagli

Testi d Esame sulla Geometria Euclidea

Testi d Esame sulla Geometria Euclidea Testi d Esame sulla Geometria Euclidea Nota: ove richiesta la sostituzione dei parametri a e b, utilizzeremo i valori a = e b = 0 (0 < b 9 nel caso in cui il valore 0 comprometta la risolubilità dell esercizio).

Dettagli

ISTITUTO SCOLASTICO COMPRENSIVO MINEO

ISTITUTO SCOLASTICO COMPRENSIVO MINEO ISTITUTO SCOLASTICO COMPRENSIVO MINEO CURRICOLO DI MATEMATICA SCUOLA PRIMARIA Classe QUINTA INDICATORI NUMERI OBIETTIVI D'APPRENDIMENTO a. Leggere, scrivere, confrontare numeri decimali. b. Interpretare

Dettagli

PROGRAMMAZIONE DI MATEMATICA 2016/2017

PROGRAMMAZIONE DI MATEMATICA 2016/2017 PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero

Dettagli

Geometria di carta: tetraedri, cubi e piramidi

Geometria di carta: tetraedri, cubi e piramidi Geometria di carta: tetraedri, cubi e piramidi Titolo Geometria di carta: tetraedri, cubi e piramidi Autori Paolo Bascetta e Francesco Decio Sede di lavoro Centro Diffusione Origami, Pavia (Italia) Età

Dettagli

ESAME DI STATO CONCLUSIVO DEL I CICLO DI ISTRUZIONE

ESAME DI STATO CONCLUSIVO DEL I CICLO DI ISTRUZIONE ESAME DI STATO CONCLUSIVO DEL I CICLO DI ISTRUZIONE PROVA SCRITTA DI MATEMATICA n.1 QUESITO N 1 Un fermacarte di vetro (d = 2,5 g/cm 3 ) ha la forma di un prisma retto a base quadrangolare regolare. Sapendo

Dettagli

OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO

OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO OBIETTIVI DELLE INDICAZIONI PER IL CURRICOLO OBIETTIVI DI APPRENDIMENTO ANNUALI Classe prima- secondaria Classe seconda secondaria

Dettagli