STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE
|
|
|
- Maurizio Martino
- 9 anni fa
- Visualizzazioni
Transcript
1 1 STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente a risultati tipo "il 60% degli individui trattati con un farmaco è migliorato rispetto al 47% del gruppo di soggetti di controllo", implicando con ciò un confronto tra i risultati ottenuti per i due gruppi. Risulta evidente che tali risultati non sono espressi da dati su scala quantitativa e quindi non è possibile fare riferimento alla distribuzione Gaussiana o a quelle del t di Student, ma occorre considerare metodiche specifiche che permettano, anche con tale tipo di dati, di verificare l'ipotesi zero di una differenza casuale tra le frequenze riscontrate.
2 2 LA STATISTICA CHI-QUADRATO (χ 2 ) χ 2 -test (non parametrico) VARIABILE STATISTICA SEMPLICE (v.s.s.) Esempio 1. C è parità tra i 2 sessi nei 180 iscritti al corso di laurea in medicina? Si organizza un'indagine su un campione casuale di 80 studenti. (H o : MF; H 1 : M F) I risultati (O) e le attese (A) sono riportati nella tabella. SESSO O 1 A χ 2 -test O 2 χ 2 -test M / /40 F / /40 TOT / /40 χ 2 g.l per p< n.s. 5 *
3 3 V.S.S. CON >2 MODALITÀ ANCHE UNA SERIE EMPIRICA PUÒ SEGUIRE UN MODELLO. O i -A i DOVUTA AD ERRORE? Esempio 2. 4 campioni di 400 pts ciascuno vengono sottoposti a dosaggi di un farmaco. Si registra il numero di guariti (O i ). Dose di farmaco O i A i χ 2 -test 0.5 mg / mg / mg / mg /400 χ Dove H o : A scala a raddoppio χ 2 COME INDICE DI CONFORMITA χ , χ ,316.27
4 4 VARIABILI STATISTICHE DOPPIE CONFRONTO DI 2 CAMPIONI (Confronto tra due percentuali) Esempio 3.Si abbia un campione di 1020 soggetti diviso in Fumatori (A): n A 400 Prevalenza BCO 30% Non fumatori (B): n B 620 Prevalenza BCO 15% Il fumo è causa (o fattore di rischio) per la bronchite? ossia il (+15%) è statisticamente significativo? Tabella di contingenza (2x2) BRONCHITE FUMO SI NO TOT SI NO TOTALE LA PREVALENZA DI BRONCHITE RISULTA STATISTICAMENTE TRA I FUMATORI E I NON FUMATORI? H 0 : La bronchite si sviluppa indipendentemente dal fumo; H 1 : I fumatori sviluppano bronchite più dei non fumatori;
5 5 TASSI DI PREVALENZA x 100 SOGGETTI PT 20.8% PF 30% PNF 15% Se ci fosse indipendenza tra fumo e BCO si dovrebbero riscontrare le stesse prevalenze di pazienti con BCO tra i fumatori e i non fumatori. Va costruita quindi una tabella le cui frequenze rispondono alla condizione d'indipendenza
6 6 TABELLA TETRACORICA D'INDIPENDENZA Fattore di rischio Malattia P (+) NP (-) TOT A (+) a b n A (a+b) B (-) c d n B (c+d) TOT n 1 (a+c) n 2 (b+d) n VALORI DELLE FREQUENZE NEL CASO DI INDIPENDENZA n 1 :n a:n A a n A n n 1 n 1 :n c:n B n n n B 1 c idem per b e d
7 7 Tornando all esempio dell'associazione tra BCO e fumo si ha la tabella delle frequenze attese: BRONCHITE CRONICA FUMO SI NO TOT SI NO TOTALE Es. (620x213)/ ; per differenza si calcolano le altre tre frequenze interne. χ 2 (120-84) 2 + ( ) 2 + (93-129) ( ) LA FORMULA PER CALCOLARE L'INDICE-TEST CHI-QUADRATO Σ (O i -A i ) 2 A i
8 8 TEORIA SULLE IPOTESI H0 IPOTESI ZERO O IPOTESI NULLA LE DUE PERCENTUALI (30% E 15%) DIFFERISCONO PER EFFETTO DELL'ERRORE DI CAMPIONAMENTO. H1 IPOTESI ALTERNATIVA LE DUE PERCENTUALI NON DIFFERISCONO PER EFFETTO DELL'ERRORE DI CAMPIONAMENTO. IL TEST DEL χ2 CONSENTE DI SAGGIARE L'IPOTESI NULLA.
9 9 Nel caso di tabelle 2x2 si può calcolare il valore del test χ 2 anche direttamente attraverso la formula seguente: χ 2 -test (ad - cb) 2 N N 1 N 2 N A N B FORMULA PER IL CALCOLO DEL χ 2 VALIDA SOLO NEL CASO DI TABELLE TETRACORICHE Nel nostro esempio avremo: 2 χ ( 120*527 93* 280) * *807 * 400* Valore quasi coincidente a quello calcolato con la precedente formula, quindi LE DUE FORMULE DANNO RISULTATI EQUIVALENTI
10 10 Se il campione e 1/10 del precedente si ha: FUMO BCO SI BCO NO TOTALE SI NO TOTALE χ 2 ((12 * 53 9 * 28) 56) 21 * 81 * 40 * 62 2 * L ipotesi nulla non può essere rifiutata.
11 11 MISURE DI RISCHIO % 15 )% 15 ( : % ) ( % ) ( RA RR NF NF BCO F F BCO
12 12 La CORREZIONE di YATES (per la continuità) La correzione di Yates viene applicata nel caso di tabelle 2x2 che presentino: la numerosità complessiva (n)<200 oppure uno tra n A, n B, n 1, n 2 <40 a, b, c, d >5 la correzione si attua con la formula: χ 2 ( ad - cb - n/2) 2 n n 1 n 2 n A n B N.B. Anche per n>200 conviene applicarla
13 13 Esempio 4. Si supponga di aver rilevato, su un campione di 36 giovani, la pressione arteriosa e la pratica sportiva. PRATICA IPERTENSIONE ARTERIOSA SPORT SI NO TOT SI NO TOT Applichiamo il test χ 2 con la correzione di Yates per la continuità ( 7x6-14x9-36/2) 2 36 χ n.s. 21x15x20x16
14 14 FUMO BCO SI BCO NO TOTALE SI NO TOTALE χ ((12 * 53 9 * 28) 56) 21 * 81 * 40 * 62 2 *
15 15 TEST ESATTO di FISCHER Viene applicato nel caso in cui in una tabella 2x2 il numero delle osservazioni è minore di 20 o una delle frequenze attese è inferiore a 5. Permette di calcolare direttamente la probabilità esatta. P(a+b)! (c+d)! (a+c)! (b+d)! a! b! c! d! N! PRATICA IPERTENSIONE ARTERIOSA SPORT SI NO TOT SI NO TOT P 1 11! 20! 16! 15! ! 10! 15! 5! 31!
16 16 PRATICA IPERTENSIONE ARTERIOSA SPORT SI NO TOT SI NO TOT P 0 11! 20! 16! 15! ! 11! 16! 4! 31! P Altamente significativo. P<0.001
17 17 Generalizzazione al caso di una tabella di dimensione rxs. Esempio 5. Guariti Migliorati Non migliorati Tot. Farmaco A 21 (15) 15 (17) 7 (11) 43 Farmaco B 12 (18) 24 (22) 18 (14) 54 Tot / %(GUARITI) 39/ % (MIGLIORATI) 25/ % (INSUCCESSI TERAPEUTICI) 21/4348.8% 15/4334.9% 12/5422.2% 18/5433.3% Si applica la formula generale per una valutazione complessiva: (21-15) 2 (12-18) 2 (15-17) 2 (24-22) 2 (7-11) 2 χ (18-14)
18 CONFRONTO TRA PERCENTUALI IN CAMPIONI INDIPENDENTI Campione 1: n Prevalenza 70% Campione 2: n Prevalenza 80% + - TOT C C TOT χ 2 (210x80-320x90) x170x300x400 p<0.001 Campione 1: n 1 30 Prevalenza 70% Campione 2: n 2 40 Prevalenza 80% + - TOT C C TOT χ 2 ( 21x8-32x9-70/2) x17x30x40 n.s.
19 VERIFICA DI IPOTESI 1. TEORIA DELLA VERIFICA DELLE IPOTESI STATISTICHE Consiste nello stabilire se l'assunzione fatta, si possa considerare esatta o meno, sulla base delle osservazioni condotte su una parte delle unità del collettivo medesimo. 2. L'IPOTESI (H 0 ) E' un assunto particolare circa le caratteristiche (i parametri della popolazione. E' una affermazione su eventi "sconosciuti" costruita in modo tale da poter essere verificata mediante un test statistico (T.S.) 3. TEST STATISTICO E' una tecnica di inferenza statistica, mediante la quale si accetta o rifiuta una certa ipotesi, ad un livello critico di significatività. 4. LIVELLO DI SIGNIFICATIVITA' E' il margine d'errore che siamo disposti a commettere, di solito 5 o 1%, ma più è piccolo e più riduciamo il rischio di rifiutare H 0 quando in realtà è vera. 5. FUNZIONE TEST E' la funzione dei dati campionari di cui si serve un test per portare alla decisione di accettare o respingere H VERIFICA D'IPOTESI E' una metodologia statistica che basandosi sulle probabilità porta a prendere delle decisioni. 7. GRADI DI LIBERTA' Sono dati, in generale, dal numero delle modalità che la variabile assume meno i vincoli g.l.r-1 g.l.(r-1)(c-1) per variabili statistiche semplice per variabili statistiche doppie 19
20 20
21 21
STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE
1 STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono
STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE
STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente
STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE
STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente
Statistica inferenziale per variabili quantitative
Lezione 7: - Z - test e intervalli di Confidenza - t-test per campioni indipendenti e dipendenti Cattedra di Biostatistica Dipartimento di Scienze scperimentali e cliniche, Università degli Studi G. d
Lezione VII: t-test. Prof. Enzo Ballone
Lezione VII: t-test Cattedra di Biostatistica Dipartimento di Scienze Biomediche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Un terzo problema: si considerino 2 campioni
NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI VERIFICA DI IPOTESI PER IL CONFRONTO TRA DUE PROPORZIONI
NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI VERIFICA DI IPOTESI PER IL CONFRONTO TRA DUE PROPORZIONI IL PROBLEMA Si vuole verificare se un nuovo trattamento per la cura dell otite è più efficace
TRACCIA DI STUDIO. Test di confronto per misure qualitative. Verifica di ipotesi
TRACCIA DI STUDIO Verifica di ipotesi Nelle analisi statistiche di dati sperimentali riguardanti più gruppi di studio (talvolta più variabili) si pone come ipotesi da verificare la cosiddetta ipotesi zero:
Contenuti: Capitolo 14 del libro di testo
Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4
Capitolo 11 Test chi-quadro
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corsi di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.
Lezione 16. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 16. A. Iodice. Ipotesi statistiche
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 23 Outline 1 2 3 4 5 6 () Statistica 2 / 23 La verifica delle ipotesi Definizione Un ipotesi statistica
Statistica Inferenziale
Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione
Statistica. Esercitazione 14. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice. Verifica di ipotesi
Esercitazione 14 Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () 1 / 14 Ex.1: Verifica Ipotesi sulla media (varianza nota) Le funi prodotte da un certo macchinario hanno una
LEZIONI DI STATISTICA MEDICA
LEZIONI DI STATISTICA MEDICA Lezione n.12 - Test statistico Sezione di Epidemiologia & Statistica Medica Università degli Studi di Verona IPOTESI SCIENTIFICA Affermazione che si può sottoporre a verifica
SOLUZIONI ESERCITAZIONE NR. 8 Test statistici
SOLUZIONI ESERCITAZIONE NR. 8 Test statistici ESERCIZIO nr. 1 Un campione casuale di dieci pazienti di sesso maschile in cura per comportamenti aggressivi nell ambito del contesto familiare è stato classificato
Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione
Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione Alessandra Mattei Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) Università degli Studi di Firenze
Cognome e nome. 2 In uno studio viene misurata la pressione arteriosa sistolica a 5 maschi adulti, con i seguenti risultati : 129; 134; 142; 128; 146
Statistica medica. Biotecnologie mediche A.a. 2004-2005 1 Febbraio 2005 Tempo previsto 60 minuti Cognome e nome 1 Indicate a quale categoria appartengono le seguenti variabili: Nominale Ordinale Numerica
Statistica. Lezione 8
Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 8 a.a 2011-2012 Dott.ssa Daniela
STATISTICA AZIENDALE Modulo Controllo di Qualità
STATISTICA AZIENDALE Modulo Controllo di Qualità A.A. 009/10 - Sottoperiodo PROA DEL 14 MAGGIO 010 Cognome:.. Nome: Matricola:.. AERTENZE: Negli esercizi in cui sono richiesti calcoli riportare tutte la
Esercitazione 8 del corso di Statistica 2
Esercitazione 8 del corso di Statistica Prof. Domenico Vistocco Dott.ssa Paola Costantini 6 Giugno 8 Decisione vera falsa è respinta Errore di I tipo Decisione corretta non è respinta Probabilità α Decisione
Indice. centrale, dispersione e forma Introduzione alla Statistica Statistica descrittiva per variabili quantitative: tendenza
XIII Presentazione del volume XV L Editore ringrazia 3 1. Introduzione alla Statistica 5 1.1 Definizione di Statistica 6 1.2 I Rami della Statistica Statistica Descrittiva, 6 Statistica Inferenziale, 6
Il Test di Ipotesi Lezione 5
Last updated May 23, 2016 Il Test di Ipotesi Lezione 5 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura I anno, II semestre Il test di ipotesi Cuore della statistica inferenziale!
Fondamenti di Psicometria. La statistica è facile!!! VERIFICA DELLE IPOTESI
Fondamenti di Psicometria La statistica è facile!!! VERIFICA DELLE IPOTESI INFERENZA STATISTICA Teoria della verifica dell ipotesi : si verifica, in termini probabilistici, se una certa affermazione relativa
COMPLEMENTI DI PROBABILITA E STATISTICA. 3 Crediti
CMPLEMENTI DI PRBABILITA E STATISTICA 3 Crediti Docente : Elvira Di Nardo ([email protected], 097-05890) Modalità di esame: Prova scritta alla fine del corso + Tesina (facoltativa) Testi consigliati: Manuale
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE. a.a.
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 CDF empirica
Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II
Fondamenti di statistica per il miglioramento genetico delle piante Antonio Di Matteo Università Federico II Modulo 2 Variabili continue e Metodi parametrici Distribuzione Un insieme di misure è detto
Esercizi di statistica
Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..
DISTRIBUZIONI DI CAMPIONAMENTO
DISTRIBUZIONI DI CAMPIONAMENTO 12 DISTRIBUZIONE DI CAMPIONAMENTO DELLA MEDIA Situazione reale Della popolazione di tutti i laureati in odontoiatria negli ultimi 10 anni, in tutte le Università d Italia,
Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione
La verifica delle ipotesi In molte circostanze il ricercatore si trova a dover decidere quale, tra le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze
Concetti principale della lezione precedente
Corso di Statistica medica e applicata 9 a Lezione Dott.ssa Donatella Cocca Concetti principale della lezione precedente I concetti principali che sono stati presentati sono: Variabili su scala nominale
Il grado di associazione tra le due mutabili dicotomiche si saggia attraverso l indice ϕ tetracorico:
1. Analisi bivariata con due mutabili qualitative dicotomiche (caso tetracorico / 2 2) Si supponga di avere rilevato due mutabili dicotomiche su un campione di n soggetti. La tabella di contingenza (in
C.I. di Metodologia clinica
C.I. di Metodologia clinica Modulo 5. I metodi per la sintesi e la comunicazione delle informazioni sulla salute Quali errori influenzano le stime? L errore casuale I metodi per la produzione delle informazioni
Indice. L Editore ringrazia. Ringraziamenti. Autori. Prefazione. Obiettivi formativi XIII XVII
Indice XI XI XIII XV XVII L Editore ringrazia Ringraziamenti Autori Prefazione Obiettivi formativi XIX Istruzioni per gli studenti XIX Un po di storia XX Cosa è la Statistica XXI Come usare questo libro
08/04/2014. Misure di posizione. INDICI DI POSIZIONE (measures of location or central tendency) 1. MODA 2. MEDIA 3. MEDIANA
Misure di posizione INDICI DI POSIZIONE (measures of location or central tendency) 1. MODA 2. MEDIA 3. MEDIANA 1 MODA E la scelta fatta dalla maggioranza della popolazione, lo stile che tutti seguono in
3) In una distribuzione di frequenza si può ottenere più di una moda Vero Falso
CLM C Verifica in itinere statistica medica 13-01-2014 1) Indicate a quale categoria (Qualitativa, qualitativa ordinabile, quantitativa discreta, quantitativa continua) appartengono le seguenti variabili:
Ulteriori applicazioni del test del Chi-quadrato (χ 2 )
Ulteriori applicazioni del test del Chi-quadrato (χ 2 ) Finora abbiamo confrontato con il χ 2 le numerosità osservate in diverse categorie in un campione con le numerosità previste da un certo modello
Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi
Prova d'esame di Statistica I - Corso Prof.ssa S. Terzi Esercizio 1 Data la variabile casuale X con funzione di densità f(x) = 2x, per 0 x 1; f(x) = 0 per x [0, 1], determinare: a) P( - 0,5 < X< 0,7) b)
Lezione 17. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 17. A. Iodice
con Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 29 Outline con 1 2 3 con 4 5 campioni appaiati 6 Indipendenza tra variabili () Statistica 2 /
Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A
Università degli Studi di Padova Corso di Laurea in Medicina e Chirurgia - A.A. 015-16 Corso Integrato: Statistica e Metodologia Epidemiologica Disciplina: Statistica e Metodologia Epidemiologica Docenti:
Statistica inferenziale. La statistica inferenziale consente di verificare le ipotesi sulla popolazione a partire dai dati osservati sul campione.
Statistica inferenziale La statistica inferenziale consente di verificare le ipotesi sulla popolazione a partire dai dati osservati sul campione. Verifica delle ipotesi sulla medie Quando si conduce una
Test d ipotesi: confronto fra medie
Test d ipotesi: confronto fra medie Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona CONFRONTO FRA MEDIE 1) confronto fra una media campionaria e una media di popolazione
