Le relazioni tra due insiemi
|
|
|
- Emilio Vaccaro
- 9 anni fa
- Visualizzazioni
Transcript
1 1 Le relazioni tra due insiemi DEFINIZIONE. Quando tra due insiemi A e B si individua una proprietà che associa agli elementi di A gli elementi di B, tra i due insiemi si stabilisce una corrispondenza; la proprietà che associa gli elementi appartenenti all insieme A con gli elementi appartenenti all insieme B si chiama relazione R. Mettiamo in corrispondenza gli elementi dell insieme A = {BG, MI, TO, Roma} con gli elementi dell insieme B = {Lombardia, Piemonte, Lazio} considerando la caratteristica : << appartiene alla regione >> e rappresentiamo tale corrispondenza in forma sagittale con il diagramma di Eulero-Venn. Gli elementi di B in cui arriva una freccia si dicono immagini: gli elementi di A da cui parte una freccia si dicono controimmagini. Area 2 - Capitolo 2 - PAG
2 1 Le relazioni tra due insiemi È possibile rappresentare la relazione precedente anche mediante: L elenco delle coppie che si formano: C BG, Lombardia ; MI, Lombardia ; TO, Piemonte ; Roma, Lazio Una tabella a doppia entrata Un diagramma cartesiano R BG MI TO Roma Lombardia Piemonte Lazio x x x x Area 2 - Capitolo 2 - PAG
3 1 Le relazioni tra due insiemi Consideriamo ora gli insiemi A = {Roma; Londra; Atene; Oslo; Vienna; Varsavia} e B = {Italia; Francia; Gran Bretagna; Grecia; Austria; Portogallo} e la relazione R da A verso B individuata dalla frase << è capitale di >>. Rappresentiamo la relazione in forma sagittale. Il sottoinsieme di A raggruppa gli elementi da cui parte almeno una freccia. Il sottoinsieme di B raggruppa gli elementi sui quali arriva almeno una freccia. DEFINIZIONE. Il dominio di una relazione è l insieme degli elementi che hanno almeno una immagine in B. Il codominio di una relazione è l insieme degli elementi immagine in A. a A b B che hanno almeno una contro- Area 2 - Capitolo 2 - PAG
4 1 Relazioni particolari DEFINIZIONE. Una corrispondenza tra due insiemi A e B si dice biunivoca se associa ad ogni elemento di A uno e un solo elemento di B e viceversa. DEFINIZIONE. Due insiemi in corrispondenza biunivoca si dicono anche equipotenti. Area 2 - Capitolo 2 - PAG
5 1 Relazioni particolari DEFINIZIONE. Una corrispondenza tra due insiemi A e B si dice univoca se associa a ogni elemento di A uno e un solo elemento di B ma non viceversa. Area 2 - Capitolo 2 - PAG
6 2 Le relazioni in un insieme DEFINIZIONE. Si chiama relazione R in un insieme A la proprietà che associa gli elementi di A con gli elementi di A stesso. Anche in questo caso è possibile rappresentare la relazione attraverso: una rappresentazione sagittale una tabella a doppia entrata una rappresentazione cartesiana Area 2 - Capitolo 2 - PAG
7 3 Le proprietà di una relazione in un insieme La proprietà riflessiva PROPRIETÀ. Una relazione R in un insieme A si dice riflessiva quando ogni elemento x appartenente ad A è in relazione con se stesso. In simboli si scrive: x A x R x La proprietà antiriflessiva PROPRIETÀ. Una relazione R in un insieme A si dice antiriflessiva se nessun elemento x appartenente ad A è in relazione con se stesso. In simboli si scrive: x A x R x Area 2 - Capitolo 2 - PAG
8 3 Le proprietà di una relazione in un insieme La proprietà simmetrica PROPRIETÀ. Una relazione R in un insieme A si dice simmetrica quando considerati due qualsiasi elementi x e y appartenenti ad A ogni volta che x è in relazione con y, allora anche y è in relazione con x. In simboli: x, y A se x R y y R x La proprietà transitiva PROPRIETÀ. Una relazione R in un insieme A si dice transitiva quando considerati tre qualsiasi elementi x, y e z appartenenti ad A, ogni volta che x è in relazione con y e y è in relazione con z, anche x è in relazione con z. In simboli si scrive: x, y, z A se x R y e y R z x R z Area 2 - Capitolo 2 - PAG
9 3 Le proprietà di una relazione in un insieme La proprietà antisimmetrica PROPRIETÀ. Una relazione R in un insieme A si dice antisimmetrica quando, considerati due qualsiasi elementi x e y appartenenti ad A, possono sussistere contemporaneamente x R y e y R x solo se x = y. In simboli: x, y A se x R y e y R x x = y Area 2 - Capitolo 2 - PAG
10 4 Le relazioni di equivalenza e di ordine La relazione di equivalenza DEFINIZIONE. Una relazione R definita in un insieme A si dice di equivalenza quando gode contemporaneamente delle proprietà riflessiva, simmetrica e transitiva. La relazione di ordine DEFINIZIONE. Una relazione R definita in un insieme A si dice di ordine quando gode contemporaneamente delle proprietà transitiva e antisimmetrica. Inoltre si dice: di ordine largo se R gode anche della proprietà riflessiva; di ordine stretto se R gode anche della proprietà antiriflessiva. Area 2 - Capitolo 2 - PAG
La rappresentazione di un insieme. DEFINIZIONE - Per insieme si intende un raggruppamento di elementi definibile con precisione.
Premessa: classificare, contare Classificare significa dividere in classi, cioè in raggruppamenti di elementi che hanno in comune certe caratteristiche prefissate. L atto del classificare è alla base della
LE RELAZIONI E LE FUNZIONI
LE RELAZIONI E LE FUNZIONI ESERCIZI. Le relazioni binarie e la loro rappresentazione Rappresenta in forma sagittale e tramite una tabella a doppia entrata la seguente relazione binaria e scrivi le coppie
01 - Elementi di Teoria degli Insiemi
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014
ELEMENTI di TEORIA degli INSIEMI
ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)
RELAZIONI TRA INSIEMI
Volume 1 - Complemento 1 RELAZIONI TRA INSIEMI RELAZIONI TRA INSIEMI Le relazioni binarie Tra gli elementi di due insiemi o, come caso particolare, di uno stesso insieme, possono sussistere delle relazioni
Teoria degli Insiemi
Teoria degli Insiemi Docente: Francesca Benanti Ottobre 2017 1 Teoria degli Insiemi La Teoria degli Insiemi è una branca della matematica creata alla fine del diciannovesimo secolo principalmente dal matematico
Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.
Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è
Elementi di teoria degli insiemi
ppendice Elementi di teoria degli insiemi.1 Introduzione Comincia qui l esposizione di alcuni concetti primitivi, molto semplici da un punto di vista intuitivo, ma a volte difficili da definire con grande
Verifica per la classe prima COGNOME... NOME... Classe... Data...
Capitolo Gli insiemi Insiemi Insiemi Sottoinsiemi Operazioni.a Rappresentare per tabulazione e tramite l uso dei diagrammi di Eulero-Venn i seguenti insiemi dati per caratteristica: A {n n H 0 ; n 7} B
Insiemi e sottoinsiemi
Insiemi e sottoinsiemi DEFINIZIONE. Per insieme matematico si intende un raggruppamento di elementi che possono essere definiti con assoluta certezza. Gli insiemi matematici vengono indicati con una lettera
DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI
FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti
Proprietà delle relazioni 1
Proprietà delle relazioni 1 Ricordiamo che una proprietà vale se vale per ogni elemento dell insieme. Al contrario perché non valga basta un controesempio, cioè anche un solo caso per il quale la proprietà
Esempi di funzione...
Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di
R = {(0, 0), (1, 1), (2, 2), (3, 3),... }. Esempio 2. L insieme
Definizione 1. Siano A e B insiemi. Si definisce prodotto cartesiano l insieme: A B = {(a, b) : a A b B}. Osservazione 1. Si osservi che nella Definizione 1. le coppie sono ordinate, vale a dire (x, y)
METODI MATEMATICI PER L INFORMATICA. Canale E O a.a Docente: C. Malvenuto Primo compito di esonero 26 novembre 2008
METODI MATEMATICI PER L INFORMATICA Canale E O a.a. 2008 09 Docente: C. Malvenuto Primo compito di esonero 26 novembre 2008 Istruzioni. Completare subito la parte inferiore di questa pagina con il proprio
Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1
Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze
APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)
ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,
Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni
Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo
RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :
RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una
CORSO DI AZZERAMENTO DI MATEMATICA
CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA
ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A
TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo
Elementi di teoria degli insiemi
Elementi di teoria degli insiemi Liberamente adattato da: Cristante, Lis e Sambin (1984). Aspetti quantitativi in psicologia. Fondamenti teorici per i metodi statistici. Liviana, Padova. Psicometria 1
Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche
Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni
202 Capitolo 7. Relazioni
202 Capitolo 7. Relazioni 7.7 Esercizi 7.7.1 Esercizi dei singoli paragrafi 7.1 - Proposizioni e predicati 7.1. Completa la tabella come suggerito nella prima riga, individuando, per ciascuna proposizione,
Insiemi: Rappresentazione
Insiemi: Rappresentazione Elencazione Per rappresentare un insieme per elencazione si indicheranno i suoi elementi tra parentesi graffe. Caratteristica Un insieme è rappresentato per caratteristica quando
Relazione e funzione inversa
Relazione e funzione inversa Invertiamo una relazione Una relazione tra due insiemi e, come abbiamo detto, è direzionata, opera una specie di passaggio da a : agisce associando a ogni elemento dell insieme
LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI
LIBRO ADOTTATO G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI M.G. BIANCHI, A. GILLIO: INTRODUZIONE ALLA MA-
GLI INSIEMI PROF. WALTER PUGLIESE
GLI INSIEMI PROF. WALTER PUGLIESE INSIEME DEFINIZIONE UN RAGGRUPPAMENTO DI OGGETTI RAPPRESENTA UN INSIEME IN SENSO MATEMATICO SE ESISTE UN CRITERIO OGGETTIVO CHE PERMETTE DI DECIDERE UNIVOCAMENTE SE UN
01 - Elementi di Teoria degli Insiemi
Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016
M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI
M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica
1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A.
1 PRELIMINARI 1.1 NOTAZIONI denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. B A si legge B è un sottoinsieme di A e significa che ogni elemento di B è anche elemento di
Corso di Analisi Matematica Funzioni di una variabile
Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali
.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1
Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y
1.3. Logaritmi ed esponenziali
1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione
RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano
RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata
CURRICOLO VERTICALE MATEMATICA RELAZIONI/ DATI E PREVISIONI/ MISURA
CURRICOLO VERTICALE MATEMATICA / DATI E PREVISIONI/ MISURA SCUOLA PRIMARIA CONOSCENZE (Concetti) ABILITA Classe 1^ - Classificazione - in situazioni concrete, classificare persone, oggetti, figure, numeri
MATEMATICA LEZIONE 9 PRODOTTO CARTESIANO DI INSIEMI. (Prof. Daniele Baldissin) A = {1, 7} B = {2, 3, 5}. C = A x B. che si legge.
MATEMATICA LEZIONE 9 ARGOMENTI 1) Il prodotto cartesiano 2) Rappresentazione cartesiana di insiemi PRODOTTO CARTESIANO DI INSIEMI (Prof. Daniele Baldissin) Consideriamo l'insieme A e l'insieme B tali che:
Insiemi di numeri reali
Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono
Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Statistiche e Matematiche Silvio Vianelli
Università degli Studi di Palermo Facoltà di Economia Dip di Scienze Statistiche e Matematiche Silvio Vianelli Appunti del corso di Matematica Generale Gli Insiemi Anno Accademico 2009/2010 V Lacagnina
1. INSIEME DEI NUMERI NATURALI
1. INSIEME DEI NUMERI NATURALI 1.1 CONCETTO DI NUMERO NATURALE: UGUAGLIANZA E DISUGUAGLIANZA Consideriamo l'insieme E, detto insieme Universo, costituito da tutti i possibili insiemi che si possono costruire
1 Funzioni reali di una variabile reale
1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione
MATEMATICA COMPITI PER LE VACANZE ICS e IASA Gli esercizi sono presi dal vostro libri di testo: Lineamenti.MATH BLU volume 1.
P a g i n a 1 MATEMATICA COMPITI PER LE VACANZE ICS e IASA Gli esercizi sono presi dal vostro libri di testo: Lineamenti.MATH BLU volume 1. ARGOMENTO NUMERI RA- ZIONALI Insiemi Relazioni e funzioni Polinomi
Gli insiemi. Che cosa è un insieme? Come si indica un insieme?
Gli insiemi Che cosa è un insieme? In matematica si definisce insieme un raggruppamento per cui è possibile stabilire senza ambiguità se un elemento vi appartiene o no. Sono insiemi: i giorni della settimana
Capitolo 1. Gli strumenti. 1.1 Relazioni
Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici
RETTE PARALLELE E RETTE PERPENDICOLARI
RETTE PARALLELE E RETTE PERPENDICOLARI Rette perpendicolari Due rette si dicono perpendicolari se incontrandosi formano 4 angoli retti. In simboli, per indicare che a è perpendicolare ad b si scrive: a
