Relazione e funzione inversa

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Relazione e funzione inversa"

Transcript

1 Relazione e funzione inversa Invertiamo una relazione Una relazione tra due insiemi e, come abbiamo detto, è direzionata, opera una specie di passaggio da a : agisce associando a ogni elemento dell insieme u o più elementi dell insieme, e n viceversa. Possiamo infatti individuarla in un insieme di coppie ordinate (a; b), aventi primo elemento a e secondo elemento b. L espressione : e la rappresentazione sagittale, in cui le frecce so dotate di un verso, sottolinea questo carattere (fig. ). a b Figura La coppia (a; b), : Tra le relazioni che opera in senso opposto, da verso, andiamo alla ricerca di quella che ripercorre il passaggio della da a tornando indietro dall insieme all insieme. Pensiamo cioè a una nuova relazione, distinta dalla, che agisce nella direzione opposta, da verso. Essa deve consentire, dopo essere partiti con la da a per arrivare a b, di partire da b e ritornare proprio in a. Chiamiamo questa nuova relazione inversa della, e la indichiamo con il simbolo : in questo modo, pur essendo distinta dalla di partenza, la relazione è definita attraverso la (fig. ). Vale che :. a b La coppia (a; b), : La coppia (b; a), : Figura La distinzione tra la e la è sottolineata dal fatto che per esprimere occorre cambiare linguaggio. Lo vediamo attraverso alcuni esempi. 00 RCS Libri S.p.., ETS - ndreini, Manara, Prestipi, Saporiti - Matematica Controluce

2 ESEMPI. Se = {Roma, Londra, Parigi, Madrid, erli}, = {Italia, Germania, Spagna, Francia, Gran retagna} e la relazione : è a è la capitale di b, per definire la relazione : inversa di dobbiamo dire b ha per capitale a.. Dati i due insiemi = {n n 0}, = {n n 0}, se la relazione : è espressa da a è divisore di b, la relazione : inversa di si esprime dicendo b è multiplo di a. Quindi, per esempio, la coppia (; ) perché è divisore di, mentre la coppia (; ) perché è multiplo di. Diamo ora la definizione: Definizione Data una relazione : nella quale b è immagine di a, si dice relazione inversa della la relazione da ad, :, che associa a ogni elemento b la sua controimmagine a nella relazione. Nel passaggio da una relazione alla sua inversa si opera u scambio tra dominio e codominio: il codominio di diventa il dominio della e viceversa, il dominio della diventa il codominio della. Una relazione e la sua inversa posso essere rappresentate con tabelle a doppia entrata. ESEMPI. Sia = = e sia : la relazione a è il doppio di,,,,,,,,,,, b. La relazione :, definita da a è il doppio di b, è rappresentata nella tabella di figura. La relazione inversa di, :, è definita da b è la metà di a, e la tabella che la rappresenta è riportata in figura. - Figura Figura 00 RCS Libri S.p.., ETS - ndreini, Manara, Prestipi, Saporiti - Matematica Controluce

3 . Consideriamo = e la relazione : nell insieme = {,,, 0}, che associa a ogni a il suo successivo b : (a; b) R se e solo se a è il precedente di b, cioè a = b. Facciamone la rappresentazione in tabella a doppia entrata: la tabella che otteniamo è quadrata Figura Per invertire la, dobbiamo esprimere la relazione :, dicendo che alla relazione appartengo le coppie (b; a) se e solo se b è il successivo di a. Nella tabella n è visibile lo scambio tra dominio e codominio, però vediamo una diversa relazione Figura 00 RCS Libri S.p.., ETS - ndreini, Manara, Prestipi, Saporiti - Matematica Controluce

4 Funzione inversa Data una relazione : tra due insiemi e, si può costruire una particolare relazione :, inversa della, che torna indietro da ad associando a ogni elemento di le sue controimmagini nella. Considerando le funzioni, che so relazioni con caratteristiche precise (univoche), ci possiamo porre il problema se sia possibile invertire una funzione f, in modo tale che la relazione inversa sia anch essa una funzione, che chiameremo funzione inversa della f, e che indicheremo con f. Prendiamo in considerazione tre grafici di funzioni e analizziamone la funzione inversa. X Figura 7.a f b X Figura 7.b Vediamo che, invertendo la relazione f b, ci so elementi di a cui so associate due controimmagini in : la relazione inversa perciò n è una funzione, e diremo che f n è invertibile. f b f b X f c X f c f c Figura 8.a Figura 8.b La funzione f c è biiettiva, la sua relazione inversa è a sua volta una funzione: in questo caso diciamo che f c è invertibile, e la f c è la funzione inversa di f c. X f a f a f a Figura.a Figura.b Nella relazione inversa f a osserviamo che in c è un elemento che n corrisponde ad alcun elemento del dominio X, perché n appartiene al codominio. llora, è possibile associare la controimmagine, unica, nella f a solo agli elementi del codominio. Diremo che f a n è invertibile su tutto l insieme : ma se operiamo una restrizione al sottoinsieme di, in possiamo considerare f a come funzione inversa di f a. 00 RCS Libri S.p.., ETS - ndreini, Manara, Prestipi, Saporiti - Matematica Controluce

5 Sintetizziamo le considerazioni fatte negli esempi, dando le definizioni di funzione inversa e di invertibilità per una funzione. Definizione Data una funzione f di dominio X e codominio, f : X, la funzione inversa di f, indicata con f, se esiste, è la funzione che associa a ogni elemento y del codominio la sua controimmagine x X per la f. Vale che f : X, e che x = f (y) se e solo se è y = f(x). Definizione La funzione f è detta invertibile se esiste la sua funzione inversa. Dalle considerazioni fatte possiamo concludere che una funzione è invertibile se e solo se è biiettiva. ESEMPI. La funzione f : che associa a ogni intero x il suo successivo y, ed ha equazione y = x +, è biiettiva, perciò è invertibile. La sua funzione inversa f associa a ogni intero y il suo precedente x ed ha equazione x = y.. La funzione f: + che associa a ogni intero x il suo quadrato y, ed ha equazione y = x, n è iniettiva e neppure suriettiva, perciò n è invertibile. Infatti, dato un intero y +, se esso n è un quadrato perfetto, n è possibile associargli alcuna controimmagine; se invece è un quadrato perfetto, esisto due interi che ne so controimmagini.. Nella figura 0 è rappresentata una funzione f : X. Ricosciamo che è invertibile perché è iniettiva e suriettiva. La sua inversa f : X è rappresentata nella figura. 0 X 0 0 X 0 Figura 0 Figura. Se una funzione è data attraverso lo schema di calcolo, come nel seguente caso: x y = f(x) Figura è intuitivo ottenere lo schema di calcolo della sua inversa: basta percorrerlo al contrario, invertendo le operazioni che vi compaio: x = f - (y) + y Passando alle equazioni, da y = x otteniamo x = y +. Figura 00 RCS Libri S.p.., ETS - ndreini, Manara, Prestipi, Saporiti - Matematica Controluce

6 ESERCIZI Relazione inversa In figura è rappresentata la relazione : : rosso giallo verde a. Esprimere a parole la. b. Elencare gli elementi di. c. Esprimere a parole la relazione inversa :. d. Elencare gli elementi di. [ : al colore a corrisponde la parola b ; : alla parola b corrisponde il colore a ] Completare, leggendo la tabella: a. = {...}, = {...}; b. definire a parole la relazione : ; c. ={...}; d. costruire la tabella che rappresenta la funzione inversa : ; e. definire a parole la relazione. LT! TTENZIONE! VI! So dati gli insiemi: = {a a 0} = {b b 0} Rappresentare con un grafico sagittale la relazione : : a è la metà del successivo di b. a. Determinare il dominio e il codominio della relazione. b. Esprimere a parole la relazione inversa. c. Costruire il grafico sagittale della relazione inversa. d.il dominio di coincide con il codominio di? [ : b è il doppio di a me ] Nell insieme dei numeri pari P è definita la relazione : P P che associa a ogni a P il suo successivo pari b. Individuare tra le coppie ( ; ), ( ; ), (; ), (; ), ( ; 0), (8; ), (0; ), ( 8; ): a. quali coppie so elementi di ; b. quali coppie so elementi di ; c. quali coppie n appartengo a. So dati gli insiemi = {,, } e = {, 0, } e la relazione : a è maggiore di b. a. Indicare le coppie che definisco la relazione. b. Esprimere a parole la relazione inversa :. c. Costruire la tabella di e di. [ : a è la terza parte di b ; : b è triplo di a ] So dati = {a 0 < a < 0} e la relazione = co definita: ={(a; b) a, b, a = b } a. Rappresentare la relazione con una tabella a doppia entrata. b. Individuare il dominio e il codominio di. c. Determinare la relazione inversa. d. Rappresentare la relazione inversa con una tabella a doppia entrata. 7 So dati gli insiemi: X = {x < x < } = {y < y < } e la relazione : X : x è discorde con y. a. Determinare quante e quali coppie definisco la. b. Esprimere a parole la relazione inversa. c. Determinare gli elementi della relazione inversa. d. Rappresentare la e la, ciascuna su una tabella a doppia entrata. 00 RCS Libri S.p.., ETS - ndreini, Manara, Prestipi, Saporiti - Matematica Controluce

7 8 So dati X ={x 0 < x 0} e la relazione = X X co definita: ={(x; y) x, y X, y = 0 } x a. Elencare gli elementi della relazione. b. Determinare il dominio di. c. Determinare gli elementi della relazione inversa. d. Rappresentare la e la, ciascuna su un reticolo cartesia. f: Invertibilità e funzione inversa Date le funzioni rappresentate nei seguenti grafici sagittali, completare le tabelle. Nel caso di funzioni invertibili, rappresentare sul grafico la funzione inversa. f Date le funzioni rappresentate nelle seguenti tabelle, completare ciascuna tabella. Nel caso di funzioni invertibili, rappresentare in tabella a doppia entrata la funzione inversa. 8 X f: 0 X 7 8 f: 7 00 RCS Libri S.p.., ETS - ndreini, Manara, Prestipi, Saporiti - Matematica Controluce

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

Le relazioni tra due insiemi

Le relazioni tra due insiemi 1 Le relazioni tra due insiemi DEFINIZIONE. Quando tra due insiemi A e B si individua una proprietà che associa agli elementi di A gli elementi di B, tra i due insiemi si stabilisce una corrispondenza;

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

insieme c n ce c r e t r ez e z z a a par a t r ien e e e o no distinguere l uno dall altro insieme degli animali a quattro zampe

insieme c n ce c r e t r ez e z z a a par a t r ien e e e o no distinguere l uno dall altro insieme degli animali a quattro zampe Parlando di oggetti, persone, elementi in genere, usiamo spesso il termine di insieme con il significato di un raggruppamento di oggetti, persone ecc. In matematica il termine insieme non è così generico;

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Verifica per la classe prima COGNOME... NOME... Classe... Data...

Verifica per la classe prima COGNOME... NOME... Classe... Data... Capitolo Gli insiemi Insiemi Insiemi Sottoinsiemi Operazioni.a Rappresentare per tabulazione e tramite l uso dei diagrammi di Eulero-Venn i seguenti insiemi dati per caratteristica: A {n n H 0 ; n 7} B

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

GEOMETRIA /2009 II

GEOMETRIA /2009 II Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.

Dettagli

X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R

X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R X Settimana 1 Elementi basilari della teoria degli anelli (I parte) Un anello (R, +, ) è un insieme non vuoto R dotato di due operazioni (binarie), denotate per semplicità con i simboli + e + : R R R,

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a RADICALI E PROPRIETÀ DEI RADICALI I radicali in Matematica sono numeri definiti mediante radici con indice intero. I radicali possono essere espressi sotto forma di potenze con esponente fratto mediante

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Matematica Capitolo 1. Funzioni. Ivan Zivko

Matematica Capitolo 1. Funzioni. Ivan Zivko Matematica Capitolo 1 Funzioni Ivan Zivko Introduzione Una unzione è un qualcosa che mette in relazione un valore in entrata ( input ) con un altro in uscita ( output ). Input FUNZIONE Output Matematica

Dettagli

y = tgx, la funzione reciproca e la funzione inversa di ciascuna di esse risultano rispettivamente avere le seguenti equazioni:

y = tgx, la funzione reciproca e la funzione inversa di ciascuna di esse risultano rispettivamente avere le seguenti equazioni: Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 LA FUNZIONE RECIPROCA E LA FUNZIONE INVERSA Partendo dalle funzioni trigonometriche fondamentali y = senx, y = cos x, y = tgx, la funzione

Dettagli

L insieme dei numeri razionali Q Prof. Walter Pugliese

L insieme dei numeri razionali Q Prof. Walter Pugliese L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

Forme differenziali lineari e loro integrazione

Forme differenziali lineari e loro integrazione Forme differenziali lineari e loro integrazione Integrazione di una forma differenziale in due variabili Siano L(, ) e ( ) consideriamo l espressione M, due funzioni definite e continue in un insieme connesso

Dettagli

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine.

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine. LA RETTA La retta è un insieme illimitato di punti che non ha inizio, né fine. Proprietà: Per due punti del piano passa una ed una sola retta. Nel precedente modulo abbiamo visto che ad ogni punto del

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo. Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4 RELAZIONI E FUNZIONI 3 Per ricordare H Dati due insiemi A e B e una proposizione aperta px,y, con x 2 A e y 2 B, si dice che x eá in relazione con y, e si scrive x R y, sepx,y eá vera; si parla allora

Dettagli

Equazioni e disequazioni goniometriche

Equazioni e disequazioni goniometriche 1 Equazioni e disequazioni goniometriche Restrizione di una funzione Nel definire la funzione logaritmica come inversa di quella esponenziale, avevamo ricordato che: Una funzione è invertibile se e soltanto

Dettagli

5. Massimi, minimi e flessi

5. Massimi, minimi e flessi 1 5. Massimi, minimi e flessi Funzioni crescenti e decrescenti A questo punto dovremmo avere imparato come si calcolano le derivate di una funzione razionale fratta, ma dobbiamo capire in che modo queste

Dettagli

x appartiene ad N, tale che x è maggiore uguale a 9, e ( x minore uguale a 12.

x appartiene ad N, tale che x è maggiore uguale a 9, e ( x minore uguale a 12. Cos è un insieme? Gruppo d oggetti, detti elementi, aventi la/e stessa/e caratteristica/che. 1) Come lo definisco? Utilizziamo sempre una lettera Maiuscola per nominarlo. Un insieme può essere definito

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

PROBABILITA. ESERCIZIO: In un urna ci sono 2 biglie rosse, 2 biglie bianche ed 1 biglia gialla.

PROBABILITA. ESERCIZIO: In un urna ci sono 2 biglie rosse, 2 biglie bianche ed 1 biglia gialla. PROBABILITA ESERCIZIO: In un urna ci sono 2 biglie rosse, 2 biglie bianche ed 1 biglia gialla. a) Si eseguono due estrazioni con rimessa, calcolare la probabilità che le biglie estratte abbiano lo stesso

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

La codifica. dell informazione

La codifica. dell informazione 00010010101001110101010100010110101000011100010111 00010010101001110101010100010110101000011100010111 La codifica 00010010101001110101010100010110101000011100010111 dell informazione 00010010101001110101010100010110101000011100010111

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

PROBABILITA. ESERCIZIO: In un urna ci sono 2 biglie rosse, 2 biglie bianche ed 1 biglia gialla.

PROBABILITA. ESERCIZIO: In un urna ci sono 2 biglie rosse, 2 biglie bianche ed 1 biglia gialla. PROBABILITA ESERCIZIO: In un urna ci sono 2 biglie rosse, 2 biglie bianche ed 1 biglia gialla. a) Si eseguono due estrazioni con rimessa, calcolare la probabilità che le biglie estratte abbiano lo stesso

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

Propedeutico di matematica Centro Multimediale Montiferru. Lezione 1. Gli insiemi

Propedeutico di matematica Centro Multimediale Montiferru. Lezione 1. Gli insiemi Lezione 1 Gli insiemi Definizione: Un insieme è una collezione di oggetti aventi certe caratteristiche in comune. Gli oggetti si definiscono elementi dell insieme. Esempi: Insieme delle lettere dell alfabeto,

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli