ALCUNI CENNI SUGLI INSIEMI
|
|
|
- Dario Innocenti
- 9 anni fa
- Visualizzazioni
Transcript
1 ALCUNI CENNI SUGLI INSIEMI
2 In Matematica il concetto di insieme è assunto come primitivo, cioè non si definisce. Considereremo quindi la nozione di insieme dal punto di vista intuitivo. Un insieme è quindi un agglomerato di oggetti di qualsiasi specie (numeri, persone, piante, elementi chimici, ecc.) Tali oggetti si chiamano elementi dell insieme.
3 Esempi l agglomerato dei pazienti di un ospedale
4 Esempi l agglomerato dei pazienti di un ospedale la totalità dei numeri pari
5 Esempi l agglomerato dei pazienti di un ospedale la totalità dei numeri pari la collezione degli studenti iscritti al Corso di Laurea in Farmacia dell Università di Cagliari.
6 Gli insiemi si indicano usualmente con le lettere maiuscole A, B, C, racchiudendo in parentesi graffe gli elementi che appartengono all insieme.
7 Per esempio, S = {vista, udito, olfatto, gusto, tatto} è l insieme dei cinque sensi
8 Per esempio, S = {vista, udito, olfatto, gusto, tatto} è l insieme dei cinque sensi A = {1, 2, 4, 8} è l insieme dei divisori del numero 8.
9 Un modo per rappresentare graficamente un insieme è disegnare una figura geometrica di questo tipo: S vista udito olfatto gusto tatto A insieme dei 5 sensi insieme dei divisori di 8 S ed A sono esempi di insiemi finiti, cioè insiemi con un numero finito di elementi.
10 Invece un esempio di insieme infinito è l insieme dei numeri naturali N = {1, 2, 3, 4,..}.
11 Invece un esempio di insieme infinito è l insieme dei numeri naturali N = {1, 2, 3, 4,..}. Un altro esempio di insieme infinito è l insieme dei numeri relativi Z = {0, 1, -1, 2, -2, 3, -3,.} o l insieme dei numeri reali, indicato con il simbolo R
12 Per esprimere che un oggetto appartiene ad un insieme si usa il simbolo e si legge appartiene a. Per esempio, per dire che il numero 12 appartiene all insieme dei numeri naturali si scrive 12 N.
13 Invece, per dire che un oggetto non fa parte di un insieme si usa il simbolo che si legge: non appartiene a. Per esempio, intuito S π N 5 {numeri pari}
14 Per insiemi molto grandi spesso è sconveniente o impossibile elencarne tutti gli elementi. Quindi essi vengono definiti per mezzo di parole o espressioni matematiche.
15 Per insiemi molto grandi spesso è sconveniente o impossibile elencarne tutti gli elementi. Quindi essi vengono definiti per mezzo di parole o espressioni matematiche. Per esempio, come descriviamo l insieme di tutti i numeri più grandi di 8? Non possiamo enumerare tutti i numeri reali più grandi di 8. Ma possiamo scrivere {x R tali che x > 8}
16 Per usare una scrittura più abbreviata, al posto delle parole tali che si può usare il simbolo : oppure
17 Per usare una scrittura più abbreviata, al posto delle parole tali che si può usare il simbolo : oppure Per esempio cosa indica questa scrittura? {x R x 2 = 4}
18 Per usare una scrittura più abbreviata, al posto delle parole tali che si può usare il simbolo : oppure Per esempio cosa indica questa scrittura? {x R x 2 = 4} Essa indica l insieme dei numeri reali che elevati al quadrato danno 4, cioè i numeri 2 e -2. Quindi {x R x 2 = 4} = {2, 2}.
19 Due insiemi A e B si dicono uguali, e si indica con il simbolo A = B quando contengono esattamente gli stessi elementi.
20 Ora consideriamo {x R x 2 = 1}
21 Ora consideriamo {x R x 2 = 1} Tale insieme non ha alcun elemento, perché nessun numero reale elevato al quadrato è uguale a -1.
22 Nasce quindi l esigenza di considerare l insieme privo di elementi, indicato con il simbolo e chiamato insieme vuoto.
23 Nasce quindi l esigenza di considerare l insieme privo di elementi, indicato con il simbolo e chiamato insieme vuoto. Pertanto {x R x 2 = 1} =
24 Sottoinsiemi Consideriamo A = insieme dei farmaci antipiretici B = insieme di tutti i farmaci Chiaramente tutti gli elementi di A sono anche elementi di B.
25 Sottoinsiemi Consideriamo A = insieme dei farmaci antipiretici B = insieme di tutti i farmaci Chiaramente tutti gli elementi di A sono anche elementi di B. Possiamo rappresentare graficamente tale situazione in questo modo: A B
26 In generale, diremo che A è sottoinsieme di B se tutti gli elementi di A sono anche elementi di B Ciò si indica con il simbolo A B
27 Conseguenze immediate 1) A A 2) A per qualsiasi insieme A.
28 Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?
29 Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3},
30 Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1},
31 Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2},
32 Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2}, {3},
33 Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2}, {3}, {1,2},
34 Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2}, {3}, {1,2}, {1,3},
35 Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}
36 Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3} 2. Consideriamo A = insieme di tutte le malattie cardiovascolari B = {angina pectoris} Allora B A.
37 3. Indichiamo con A = l insieme dei quadrilateri B = l insieme dei rombi C = l insieme dei quadrati Allora si ha che C B A
38 Unione L unione di due insiemi A e B è l insieme, indicato A B i cui elementi sono esattamente gli elementi che appartengono ad A oppure che appartengono a B. Più in breve: A B = { x x A oppure x B}
39 A B A B
40 Esempi 1. Consideriamo gli insiemi e Allora: A = {-2, 0, 1} B = {1, 2, 3, 4} A B =?
41 Esempi 1. Consideriamo gli insiemi e Allora: A = {-2, 0, 1} B = {1, 2, 3, 4} A B = {-2, 0, 1, 2, 3, 4}
42 2. Siano A = insieme dei numeri pari B = insieme dei numeri dispari Allora A B =?
43 2. Siano A = insieme dei numeri pari B = insieme dei numeri dispari Allora A B = Z
44 Intersezione Si chiama intersezione di A e B l insieme, indicato con A B costituito dagli elementi che appartengono sia ad A che a B. Più in breve, A B = { x x A e x B}
45 In altre parole, A B è l insieme degli elementi che i due insiemi A e B hanno in comune. A B A B
46 Può anche capitare che due insiemi non abbiano alcun elemento in comune. In questo caso A B = cioè i due insiemi hanno intersezione vuota.
47 Esempi 1 π,10,11,12,10,11, 50? 2 1., { π } =
48 Esempi 1 π,10,11,12,10,11, 50? 2 1., { π } = A -π 12 1/ π 50 B A B
49 Esempi π,,10,11,12 { π,10,11, 50} = { 10,11} A -π 12 1/ π 50 B A B
50 2. R N = N. Infatti ogni numero naturale è anche un numero reale.
51 2. R N = N. Infatti ogni numero naturale è anche un numero reale. 3. Sia A = insieme dei rettangoli B = insieme dei rombi Allora A B = insieme di quei rombi che sono anche rettangoli = insieme dei quadrati
52 2. R N = N. Infatti ogni numero naturale è anche un numero reale. 3. Sia A = insieme dei rettangoli B = insieme dei rombi Allora A B = insieme di quei rombi che sono anche rettangoli = insieme dei quadrati
53 2. R N = N. Infatti ogni numero naturale è anche un numero reale. 3. Sia A = insieme dei rettangoli B = insieme dei rombi Allora A B = insieme di quei rombi che sono anche rettangoli = insieme dei quadrati
54 Differenza La differenza tra due insiemi A e B è l insieme, indicato A \ B i cui elementi sono gli elementi di A che non appartengono a B: A \ B { x A x B} =
55 A B A \ B
56 Nel caso particolare in cui A S, la differenza S \ A si chiama complementare di A rispetto ad S e si indica con A c S A c S \ A = A
57 Esempi 1. {-1, 0, 4, 5} \ {-1, 4} =?
58 Esempi 1. {-1, 0, 4, 5} \ {-1, 4} = {0, 5}
59 Esempi 1. {-1, 0, 4, 5} \ {-1, 4} = {0, 5} 2. Siano Allora A = insieme degli anti-infiammatori B = insieme dei cortisonici A \ B =?
60 Esempi 1. {-1, 0, 4, 5} \ {-1, 4} = {0, 5} 2. Siano Allora A = insieme degli anti-infiammatori B = insieme dei cortisonici A \ B = anti-infiammatori non steroidei
61 Simbologia In Matematica si tende ad usare dei simboli in luogo di espressioni di parole
62 Simbologia In Matematica si tende ad usare dei simboli in luogo di espressioni di parole per una questione di comodità
63 Simbologia In Matematica si tende ad usare dei simboli in luogo di espressioni di parole per una questione di comodità per evitare di scrivere espressioni matematiche troppo lunghe
64 Simbologia In Matematica si tende ad usare dei simboli in luogo di espressioni di parole per una questione di comodità per evitare di scrivere espressioni matematiche troppo lunghe per poter disporre di un linguaggio universale comune a tutti gli scienziati, anche di diversa nazionalità
65 Riassumiamo qui sotto alcuni di questi simboli con il relativo significato. x A x appartiene A B A è sottoinsieme di B all insieme A x A x non appartiene A B unione di A e B all insieme A A B intersezione di A e B tale che : A \ B differenza di A e B esiste A c complementare di A per ogni implica insieme vuoto è equivalente a (oppure se e solo se )
66 L implicazione Cosa significa il simbolo?
67 L implicazione Cosa significa il simbolo? Si usa per esprimere in forma abbreviata che se succede P allora capita anche Q Scriveremo e si legge P Q P implica Q
68 Esempio Consideriamo la frase Se Ugo è uno studente italiano allora è uno studente europeo
69 Esempio Consideriamo la frase Se Ugo è uno studente italiano allora è uno studente europeo Questo si può abbreviare scrivendo Ugo è studente italiano Ugo è studente europeo
70 Esempio Consideriamo la frase Se Ugo è uno studente italiano allora è uno studente europeo Questo si può abbreviare scrivendo Ugo è studente italiano Ugo è studente europeo P Q
71 Esempio Consideriamo la frase Se Ugo è uno studente italiano allora è uno studente europeo Questo si può abbreviare scrivendo Ugo è studente italiano Ugo è studente europeo P Q Se P Q non è affatto detto che Q P. Per esempio il fatto che Ugo è un alunno europeo non implica che egli sia necessariamente italiano.
72 Quando accade che si abbia P Q e nello stesso tempo anche che Q P diremo che P e Q sono equivalenti e useremo il simbolo P Q Che si legge P equivale a Q oppure P se e solo se Q.
73 Esempio Consideriamo le affermazioni P = Andrea ha superato l esame di Matematica Q = Andrea ha ottenuto un voto almeno pari a 18/30 all esame di Matematica
74 Esempio Consideriamo le affermazioni P = Andrea ha superato l esame di Matematica Q = Andrea ha ottenuto un voto almeno pari a 18/30 all esame di Matematica Chiaramente P Q
75 Esempio Consideriamo le affermazioni P = Andrea ha superato l esame di Matematica Q = Andrea ha ottenuto un voto almeno pari a 18/30 all esame di Matematica Chiaramente Ma anche P Q Q P
76 Esempio Consideriamo le affermazioni P = Andrea ha superato l esame di Matematica Q = Andrea ha ottenuto un voto almeno pari a 18/30 all esame di Matematica Chiaramente Ma anche Quindi P Q Q P P Q
Teoria intuitiva degli insiemi
Teoria intuitiva degli insiemi Il concetto di insieme. lcuni esempi Tutta la matematica moderna è fondata sul concetto di insieme. Un insieme è da considerarsi nella sua nozione intuitiva di collezione,
Elementi di teoria degli insiemi
ppendice Elementi di teoria degli insiemi.1 Introduzione Comincia qui l esposizione di alcuni concetti primitivi, molto semplici da un punto di vista intuitivo, ma a volte difficili da definire con grande
insieme c n ce c r e t r ez e z z a a par a t r ien e e e o no distinguere l uno dall altro insieme degli animali a quattro zampe
Parlando di oggetti, persone, elementi in genere, usiamo spesso il termine di insieme con il significato di un raggruppamento di oggetti, persone ecc. In matematica il termine insieme non è così generico;
Nozioni introduttive e notazioni
Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione
01 - Elementi di Teoria degli Insiemi
Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016
BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1
BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1 SOMMARIO DEL TOMO 1 CAPITOLO 1: IL LINGUAGGIO DEGLI INSIEMI 1.1 Gli insiemi e la loro rappresentazione pag. 1 1. I sottoinsiemi pag. 6 1.3 Insieme
Insiemi e sottoinsiemi
Insiemi e sottoinsiemi DEFINIZIONE. Per insieme matematico si intende un raggruppamento di elementi che possono essere definiti con assoluta certezza. Gli insiemi matematici vengono indicati con una lettera
M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI
M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica
Insiemi: Rappresentazione
Insiemi: Rappresentazione Elencazione Per rappresentare un insieme per elencazione si indicheranno i suoi elementi tra parentesi graffe. Caratteristica Un insieme è rappresentato per caratteristica quando
Gli insiemi. Che cosa è un insieme? Come si indica un insieme?
Gli insiemi Che cosa è un insieme? In matematica si definisce insieme un raggruppamento per cui è possibile stabilire senza ambiguità se un elemento vi appartiene o no. Sono insiemi: i giorni della settimana
Insiemi di numeri reali
Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono
Anno 1. Teoria degli insiemi: definizioni principali
Anno 1 Teoria degli insiemi: definizioni principali 1 Introduzione In questa lezione introdurremo gli elementi base della teoria degli insiemi. I matematici hanno costruito una vera e propria Teoria degli
GLI INSIEMI PROF. WALTER PUGLIESE
GLI INSIEMI PROF. WALTER PUGLIESE INSIEME DEFINIZIONE UN RAGGRUPPAMENTO DI OGGETTI RAPPRESENTA UN INSIEME IN SENSO MATEMATICO SE ESISTE UN CRITERIO OGGETTIVO CHE PERMETTE DI DECIDERE UNIVOCAMENTE SE UN
Un insieme si dice ben definito quando si può stabilire in modo inequivocabile se un oggetto appartiene o non appartiene a tale insieme
Gli insiemi In matematica usiamo la parola insieme per indicare un raggruppamento, una collezione, una raccolta di oggetti (persone, simboli, numeri, lettere, figure ) che sono detti elementi dell insieme
1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A.
1 PRELIMINARI 1.1 NOTAZIONI denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. B A si legge B è un sottoinsieme di A e significa che ogni elemento di B è anche elemento di
Propedeutico di matematica Centro Multimediale Montiferru. Lezione 1. Gli insiemi
Lezione 1 Gli insiemi Definizione: Un insieme è una collezione di oggetti aventi certe caratteristiche in comune. Gli oggetti si definiscono elementi dell insieme. Esempi: Insieme delle lettere dell alfabeto,
GLI INSIEMI. Il termine INSIEME è una parola primitiva, cioè un termine che ha bisogno di un esempio per essere spiegato e quindi compreso.
GLI INSIEMI Il termine INSIEME è una parola primitiva, cioè un termine che ha bisogno di un esempio per essere spiegato e quindi compreso. Non ha alcun senso affermare : Io possiedo un insieme Lui fa parte
CORSO DI AZZERAMENTO DI MATEMATICA
CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA
Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica A.A.
Matematica e-learning - Gli Insiemi Prof. Erasmo Modica http://www.galois.it [email protected] A.A. 2009/2010 1 Simboli Matematici Poiché in queste pagine verranno utilizzati differenti simboli matematici,
DEFINIZIONE DI INSIEME
ELEMENTI DI TEORIA DEGLI INSIEMI PROF.SSA ROSSELLA PISCOPO Indice 1 DEFINIZIONE DI INSIEME ------------------------------------------------------------------------------------------------ 3 2 METODI DI
delta δ mu (mi) µ M iupsilon υ Y eta η H omicron o O psi ψ Ψ 1. Scrivere il proprio nome e cognome in lettere greche.
Capitolo 1 Numeri 1.1 Alfabeto greco Un ingrediente indispensabile per lo studente che affronta un corso di analisi matematica è la conoscenza dell alfabeto greco, di cui verranno usate a vario titolo
01 - Elementi di Teoria degli Insiemi
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014
ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A
TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo
Matematica e Statistica per Scienze Ambientali
per Scienze Ambientali Insiemi e Combinatoria - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 23 - Ottobre 2012 Il concetto di insieme Non tratterò la teoria assiomatica degli
Il concetto di insieme. La rappresentazione di un insieme
Il concetto di insieme I concetti di insieme e di elemento di un insieme sono concetti primitivi, cioè non definibili mediante altri concetti più semplici. Il termine insieme è sinonimo di collezione,
ELEMENTI di TEORIA degli INSIEMI
ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)
Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia
Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione
INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.
INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme
Precorsi di matematica
Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono
Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.
Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è
LA CLASSIFICAZIONE DEI VIVENTI
LA CLASSIFICAZIONE DEI VIVENTI Cinque regni (Robert Whittaker-1959): Regno animale (eucarioti pluricellulari a nutrizione eterotrofa, per ingestione) Regno vegetale (autotrofi pluricellulari a nutrizione
Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi
Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere
Complementi di Analisi Matematica Ia. Carlo Bardaro
Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo
Prof. Roberto Capone
Prof. Roberto Capone 1 Il concetto di insieme è un CONCETTO PRIMITIVO proprio come i concetti di punto, retta e piano introdotti nella geometria 2 Il termine insieme in matematica indica una collezione
LA CLASSIFICAZIONE DEI VIVENTI
LA CLASSIFICAZIONE DEI VIVENTI Cinque regni (Robert Whittaker-1959): Regno animale (eucarioti pluricellulari a nutrizione eterotrofa, per ingestione) Regno vegetale (autotrofi pluricellulari a nutrizione
1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6
1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni
GLI INSIEMI RAPPRESENTAZIONE DI UN INSIEME. 1. Per ELENCAZIONE o RAPPRESENTAZIONE TABULARE
GLI INSIEMI Gli elementi di un insieme devono essere distinti (cioè diversi, non si ammettono due elementi uguali nello stesso insieme) e ben definiti (si deve poter stabilire se un elemento appartiene
Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni
Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2017/2018 1 Corsi Introduttivi - a.a. 2017/2018 2 1 Logica matematica Serve
Elementi di Logica Teoria degli insiemi
Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università
DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI
FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti
ESERCITAZIONE 4 : INSIEMI E LOGICA
ESERCITAZIONE 4 : INSIEMI E LOGICA e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 30 Ottobre 2012 Esercizio 1 I due
INSIEMI. (in english set)
1 INSIEMI (in english set) Una flotta di navi, una squadra di operai, un stormo di uccelli, un coro a voci dispare, una scolaresca di liceali ecc. Le parole in rosso sono per la grammatica italiana nomi
Gli insiemi N, Z e Q. I numeri naturali
Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,
I NUMERI NATURALI E RELATIVI
Ministero dell Istruzione, dell Università e della Ricerca ISTITUTO DI ISTRUZIONE SUPERIORE B. PASCAL PRE - CORSO DI MATEMATICA I NUMERI NATURALI E RELATIVI DOCENTI: PROF.SSA DAMIANI PROF.SSA DE FEO PROF.
Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni
Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve
MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche
MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).
1. Elementi di teoria degli insiemi
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 1. Elementi di teoria degli insiemi A. A. 2014-2015 L.Doretti 1 Secondo il matematico tedesco Cantor (1845-1918), il vocabolo insieme va usato in
Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche
Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni
INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica
INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica [email protected] SIMBOLI MATEMATICI Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne subito i principali. SIMBOLO
