Proprieta dei Linguaggi regolari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Proprieta dei Linguaggi regolari"

Transcript

1 Proprieta dei Linguaggi regolari Pumping Lemma. Ogni linguaggio regolare soddisfa il pumping lemma. Se qualcuno vi presenta un falso linguaggio regolare, l uso del pumping lemma mostrera una contraddizione. Proprieta di chiusura. Come costruire automi da componenti usando delle operazioni, ad esempio dati L e M possiamo costruire un automa per L M. Proprieta di decisione. Analisi computazionale di automi, cioe quando due automi sono equivalenti. Tecniche di minimizzazione. Possiamo risparmiare costruendo automi piu piccoli. 1

2 Il Pumping Lemma, informalmente Supponiamo che L 01 = {0 n 1 n : n 1} sia regolare. Allora deve essere accettato da un qualche DFA A, con, ad esempio, k stati. Supponiamo che A legga 0 k. Avra le seguenti transizioni: ǫ p 0 0 p 1 00 p k p k i < j : p i = p j Chiamiamo q questo stato. 2

3 Adesso possiamo ingannare A: Se ˆδ(q,1 i ) F l automa accettera, sbagliando, 0 j 1 i. Se ˆδ(q,1 i ) / F l automa rifiutera, sbagliando, 0 i 1 i. Quindi L 01 non puo essere regolare. Generaliziamo questo ragionamento. 3

4 Teorema 4.1. Il Pumping Lemma per Linguaggi Regolari. Sia L un linguaggio regolare. Allora n, w L : w n w = xyz tale che: 1. y ǫ 2. xy n 3. k 0, xy k z L 4

5 Prova: Supponiamo che L sia regolare. Allora L e riconosciuto da un DFA A con, ad esempio, n stati. Sia w = a 1 a 2... a m L, m > n. Sia p i = ˆδ(q 0, a 1 a 2 a i ). i < j : p i = p j 5

6 Ora w = xyz, dove 1. x = a 1 a 2 a i 2. y = a i+1 a i+2 a j 3. z = a j+1 a j+2... a m y = a i+1... a j Start p 0 x = z = a 1... a i a j+1... a m p i Quindi anche xy k z L, per ogni k 0. 6

7 Esempio: sia L eq il linguaggio delle stringhe con ugual numero di zeri e di uni. Supponiamo che L eq sia regolare. Allora w = 0 n 1 n L. Per il pumping lemma, w = xyz, xy n, y ǫ e xy k z L eq w = 000 }{{} x 0 }{{} y }{{} z In particolare, xz L eq, ma xz ha meno zeri di uni. 7

8 Supponiamo che L pr = {1 p : p e primo } sia regolare. Sia n dato dal pumping lemma. Scegliamo un numero primo p n + 2. w = p {}}{ 111 }{{} x 1 }{{} y y =m }{{} z Ora xy p m z L pr xy p m z = xz + (p m) y = p m + (p m)m = (1 + m)(p m) che non e primo a meno che uno dei fattori non sia 1. y ǫ 1 + m > 1 m = y xy n, p n + 2 p m n + 2 n = 2. 8

9 Proprieta di chiusura dei linguaggi regolari Siano L e M due linguaggi regolari. Allora i seguenti linguaggi sono regolari: Unione: L M Intersezione: L M Complemento: N Differenza: L \ M Inversione: L R = {w R : w L} Chiusura: L. Concatenazione: L.M Omomorfismo: h(l) = {h(w) : w L, h e un omom. } Omomorfismo inverso: h 1 (L) = {w Σ : h(w) L, h : Σ e un omom. } 9

10 Teorema 4.4. Per ogni coppia di linguaggi regolari L e M, L M e regolare. Prova. Sia L = L(E) e M = L(F). Allora L(E + F) = L M per definizione. Teorema 4.5. Se L e un linguaggio regolare su Σ, allora che L = Σ \ L e regolare. Prova. Sia L riconosciuto da un DFA A = (Q,Σ, δ, q 0, F). Sia B = (Q,Σ, δ, q 0, Q \ F). Allora L(B) = L. 10

11 Esempio: Sia L riconosciuto dal DFA qui sotto: 1 0 Start 0 1 { q } { q, q } {q, q } 0 1 Allora L e riconosciuto da: 1 0 Start 0 1 { q } { q, q } {q, q } 0 1 Domanda: Quali sono le espressioni regolari per L e L? 11

12 Teorema 4.8. Se L e M sono regolari, allora anche L M e regolare. Prova. Per la legge di DeMorgan, L M = L M. Sappiamo gia che i linguaggi regolari sono chiusi sotto il complemento e l unione. 12

13 Teorema 4.8. Se L e M sono regolari, allora anche L M e regolare. Prova. Sia L il linguaggio di A L = (Q L,Σ, δ L, q L, F L ) e M il linguaggio di A M = (Q M,Σ, δ M, q M, F M ) Assumiamo senza perdita di generalita che entrambi gli automi siano deterministici. Costruiremo un automa che simula A L e A M in parallelo, e accetta se e solo se sia A L che A M accettano. 13

14 Se A L va dallo stato p allo stato s leggendo a, e A M va dallo stato q allo stato t leggendo a, allora A L M andra dallo stato (p, q) allo stato (s, t) leggendo a. Input a A L Start AND Accept A M 14

15 Formalmente A L M = (Q L Q M,Σ, δ L M,(q L, q M ), F L F M ), dove δ L M ((p, q), a) = (δ L (p, a), δ M (q, a)) Si puo mostrare per induzione su w che ˆδ L M ((q L, q M ), w) = (ˆδ L (q L, w),ˆδ M (q M, w) ) 15

16 Esempio: (c) = (a) (b) 1 Start p 0 q 0,1 (a) 0 Start r 1 s 0,1 (b) 1 Start pr 1 ps 0 0 qr 1 qs 0,1 0 (c) 16

17 Teorema Se L e M sono linguaggi regolari, allora anche L \ M e regolare. Prova. Osserviamo che L \ M = L M. Sappiamo gia che i linguaggi regolari sono chiusi sotto il complemento e l intersezione. 17

18 Teorema Se L e un linguaggio regolare, allora anche L R e regolare. Prova 1: Sia L riconosciuto da un FA A. Modifichiamo A per renderlo un FA per L R : 1. Giriamo tutti gli archi. 2. Rendiamo il vecchio stato iniziale l unico stato finale. 3. Creiamo un nuovo stato iniziale p 0, con δ(p 0, ǫ) = F (i vecchi stati finali). 18

19 Teorema Se L e un linguaggio regolare, allora anche L R e regolare. Prova 2: Sia L descritto da un espressione regolare E. Costruiremo un espressione regolare E R, tale che L(E R ) = (L(E)) R. Procediamo per induzione strutturale su E. Base: Se E e ǫ,, o a, allora E R = E. Induzione: 1. E = F + G. Allora E R = F R + G R 2. E = F.G. Allora E R = G R.F R 3. E = F. Allora E R = (F R ) L(E R ) = (L(E)) R 19

20 Proprieta di decisione 1. Convertire tra diverse rappresentazioni dei linguaggi regolari. 2. E L =? 3. E w L? 4. Due descrizioni definiscono lo stesso linguaggio? 20

21 Da NFA a DFA Supponiamo che un ǫ-nfa abbia n stati. Per calcolare ECLOSE(p) seguiamo al piu n 2 archi. Il DFA ha 2 n stati, per ogni stato S e ogni a Σ calcoliamo δ D (S, a) in n 3 passi. In totale abbiamo O(n 3 2 n ) passi. Se calcoliamo δ solo per gli stati raggiungibili, dobbiamo calcolare δ D (S, a) solo s volte, dove s e il numero di stati raggiungibili. In totale: O(n 3 s) passi. 21

22 Da DFA a NFA Dobbiamo solo mettere le parentesi graffe attorno agli stati. Totale: O(n) passi. Da FA a espressioni regolari Dobbiamo calcolare n 3 cose di grandezza fino a 4 n. Totale: O(n 3 4 n ). L FA puo essere un NFA. Se prima vogliamo convertire l NFA in un DFA, il tempo totale sara doppiamente esponenziale. Da espressioni regolari a FA Possiamo costruire un albero per l espressione in n passi. Possiamo costruire l automa in n passi. Eliminare le ǫ-transizioni ha bisogno di O(n 3 ) passi. Se si vuole un DFA, potremmo aver bisogno di un numero esponenziale di passi. 22

23 Testare se un linguaggio e vuoto L(A) per FA A se e solo se uno stato finale e raggiungibile dallo stato iniziale in in A. Totale: O(n 2 ) passi. Oppure, possiamo guardare un espressione regolare E e vedere se L(E) =. Usiamo il seguente metodo: E = F + G. Allora L(E) e vuoto se e solo se sia L(F) che L(G) sono vuoti. E = F.G. Allora L(E) e vuoto se e solo se o L(F) o L(G) sono vuoti. E = F. Allora L(E) non e mai vuoto, perche ǫ L(E). E = ǫ. Allora L(E) non e vuoto. E = a. Allora L(E) non e vuoto. E =. Allora L(E) e vuoto. 23

24 Controllare l appartenenza Per controllare se w L(A) per DFA A, simuliamo A su w. Se w = n, questo prende O(n) passi. Se A e un NFA e ha s stati, simulare A su w prende O(ns 2 ) passi. Se A e un ǫ-nfa e ha s stati, simulare A su w prende O(ns 3 ) passi. Se L = L(E), per l espressione regolare E di lunghezza s, prima convertiamo E in un ǫ-nfa con 2s stati. Poi simuliamo w su questo automa, in O(ns 3 ) passi. 24

Linguaggi regolari e automi a stati finiti

Linguaggi regolari e automi a stati finiti utomi a stati finiti Gli automi a stati finiti sono usati come modello per Software per la progettazione di circuiti digitali. Analizzatori lessicali di un compilatore. Ricerca di parole chiave in un file

Dettagli

Linguaggio universale, riduzioni, e teorema di Rice. Linguaggio universale, riduzioni, e teorema di Rice

Linguaggio universale, riduzioni, e teorema di Rice. Linguaggio universale, riduzioni, e teorema di Rice l linguaggio universale Il linguaggio universale L u e l insieme delle stringhe binarie che codificano una coppia (M,w) dove w L(M). Esiste una TM U, detta TM universale, tale che L u = L(U). U ha tre

Dettagli

Equivalenza e minimizzazione di automi. Equivalenza e minimizzazione di automi

Equivalenza e minimizzazione di automi. Equivalenza e minimizzazione di automi tati equivalenti Sia A = (Q,Σ,δ,q,F) un DFA, e {p,q} Q. Definiamo p q w Σ : ˆδ(p,w) F se e solo se ˆδ(q,w) F Se p q diciamo che p e q sono equivalenti Se p q diciamo che p e q sono distinguibili In altre

Dettagli

Espressioni regolari. Espressioni regolari

Espressioni regolari. Espressioni regolari spressioni regolari Un FA (NFA o DFA) e un metodo per costruire una macchina che riconosce linguaggi regolari. Una espressione regolare e un modo dichiarativo per descrivere un linguaggio regolare. Esempio:

Dettagli

Espressioni regolari

Espressioni regolari spressioni Regolari Un FA (NFA o DFA) e una macchina a stati finiti che riconosce linguaggi regolari. Una espressione regolare e un modo dichiarativo (o algebrico) per descrivere un linguaggio regolare.

Dettagli

Aniello Murano Problemi non decidibili e riducibilità

Aniello Murano Problemi non decidibili e riducibilità Aniello Murano Problemi non decidibili e riducibilità 8 Lezione n. Parole chiave: Riduzione Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009 Overview Nelle lezioni

Dettagli

Un prefisso, un suffisso o una sottostringa di una stringa, quando non sono la stringa stessa, sono detti propri.

Un prefisso, un suffisso o una sottostringa di una stringa, quando non sono la stringa stessa, sono detti propri. SIMBOLI Un simbolo è un entità primitiva astratta non meglio definita. Per ciò che ci concerne, un simbolo è atomico: se anche avesse una struttura interna, noi non la osserviamo. Le uniche caratteristiche

Dettagli

Espressioni regolari descrivono i linguaggi regolari. Un FA (NFA o DFA) è un metodo per costruire una macchina che riconosce linguaggi regolari.

Espressioni regolari descrivono i linguaggi regolari. Un FA (NFA o DFA) è un metodo per costruire una macchina che riconosce linguaggi regolari. Espressioni regolari descrivono i linguaggi regolari Un FA (NFA o DFA) è un metodo per costruire una macchina che riconosce linguaggi regolari. Una espressione regolare e un modo dichiarativo per descrivere

Dettagli

Linguaggi Liberi dal Contesto. Linguaggi Liberi dal Contesto

Linguaggi Liberi dal Contesto. Linguaggi Liberi dal Contesto rammatiche e Linguaggi Liberi da Contesto Abbiamo visto che molti linguaggi non sono regolari. Consideriamo allora una classe piu ampia di linguaggi, i Linguaggi Liberi da Contesto (CFL) i CFL sono stati

Dettagli

Quiz sui linguaggi regolari

Quiz sui linguaggi regolari Fondamenti dell Informatica 1 semestre Quiz sui linguaggi regolari Prof. Giorgio Gambosi a.a. 2016-2017 Problema 1: Data l espressione regolare a, definita su {a, b}, descrivere il linguaggio corrispondente

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Linguaggi regolari Potere espressivo degli automi Costruzione di una grammatica equivalente a un automa Grammatiche regolari Potere espressivo delle grammatiche 1

Dettagli

Pumping lemma per i linguaggi Context-free

Pumping lemma per i linguaggi Context-free Pumping lemma per i linguaggi Context-free Sia L un linguaggio context-free. E possibile determinare una costante k, dipendente da L, tale che qualunque stringa z! L con z > k si può esprimere come z=

Dettagli

Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemm

Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemm Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemma N.Fanizzi - V.Carofiglio 6 aprile 2016 1 Teorema di Kleene 2 3 o 1 o 3 o 8 Teorema di Kleene Vale la seguente equivalenza: L 3 L FSL L REG Dimostrazione.

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Potenza espressiva degli automi Potenza espressiva delle grammatiche 9/11/2004 Programmazione - Luca Tesei 1 Linguaggi Regolari Tutti i linguaggi che possono essere

Dettagli

Aniello Murano Problemi decidibili e non decidibili

Aniello Murano Problemi decidibili e non decidibili Aniello Murano Problemi decidibili e non decidibili 7 Lezione n. Parole chiave: Decidibilità Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009 Overview In questa lezione

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

Cammini minimi fra tutte le coppie

Cammini minimi fra tutte le coppie Capitolo 12 Cammini minimi fra tutte le coppie Consideriamo il problema dei cammini minimi fra tutte le coppie in un grafo G = (V, E, w) orientato, pesato, dove possono essere presenti archi (ma non cicli)

Dettagli

Automi. Rosario Culmone, Luca Tesei. 20/10/2009 UNICAM - p. 1/55

Automi. Rosario Culmone, Luca Tesei. 20/10/2009 UNICAM - p. 1/55 Automi Rosario Culmone, Luca Tesei 20/10/2009 UNICAM - p. 1/55 Storia Dal latino automatus "che si muove da sé" Macchine o dispositivi reali o ipoteticamente realizzabili, i quali siano in grado di eseguire

Dettagli

Esercizi di Fondamenti di Informatica per la sicurezza. Stefano Ferrari

Esercizi di Fondamenti di Informatica per la sicurezza. Stefano Ferrari Esercizi di Fondamenti di Informatica per la sicurezza tefano Ferrari 23 dicembre 2003 2 Argomento 1 Grammatiche e linguaggi Esercizi Es. 1.1 Definiti i linguaggi: L 1 = {aa, ab, bc, c} L 2 = {1, 22, 31}

Dettagli

Esempio stringhe palindrome 1

Esempio stringhe palindrome 1 Esempio stringhe palindrome 1 Automa per il riconoscimento del linguaggio L = {w c w R } A = < {s,f}, {a,b,c}, {a,b},!, s, { f } > con! che contiene le transizioni: 1. (( s, a, " ), (s, a)! [ push a] 2.

Dettagli

1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi

1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi In ogni esercizio c è la data del giorno in cui l ho proposto. 1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi Se X è un insieme indichiamo con Sym(X) l insieme delle biiezioni X X. Si tratta

Dettagli

Corso di Crittografia Prof. Dario Catalano. Firme Digitali

Corso di Crittografia Prof. Dario Catalano. Firme Digitali Corso di Crittografia Prof. Dario Catalano Firme Digitali Introduzione n Una firma digitale e l equivalente informatico di una firma convenzionale. n Molto simile a MA, solo che qui abbiamo una struttura

Dettagli

Fondamenti dell Informatica: Linguaggi Formali e Calcolabilità

Fondamenti dell Informatica: Linguaggi Formali e Calcolabilità Eserciziario per il corso di Verona, Settembre 24 Fondamenti dell Informatica: Linguaggi Formali e Calcolabilità Dott.ssa Isabella Mastroeni Dipartimento di Informatica Università degli Studi di Verona

Dettagli

Informatica teorica Lez. n 7 Macchine di Turing. Macchine di Turing. Prof. Giorgio Ausiello Università di Roma La Sapienza

Informatica teorica Lez. n 7 Macchine di Turing. Macchine di Turing. Prof. Giorgio Ausiello Università di Roma La Sapienza Macchine di Turing Argomenti della lezione Definizione della macchina di Turing Riconoscimento e accettazione di linguaggi Macchine a più nastri La macchina di Turing èun è automa che può leggere e scrivere

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi ([email protected]) Dipartimento di Informatica Università degli Studi di Bari Grammatiche

Dettagli

I Prodotti. Notevoli

I Prodotti. Notevoli I Prodotti Muovimi nella pagina Notevoli Prof.ssa G. Messina 1 I PRODOTTI NOTEVOLI Dopo questa unità: imparerai a riconoscere e ad applicare le regole dei prodotti notevoli Obiettivi Prerequisiti Prof.ssa

Dettagli

Aniello Murano Automi e Pushdown

Aniello Murano Automi e Pushdown Aniello Murano Automi e Pushdown 2 Lezione n. Parole chiave: Automi e PDA Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009 Calcolabilità, complessità e macchine computazionali

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è

Dettagli

LINGUAGGI CONTEXT FREE. Lezione Lezione

LINGUAGGI CONTEXT FREE. Lezione Lezione LINGUAGGI CONTEXT FREE Lezione 25-11-2010 Lezione 30-11-2010 2 INTRODUZIONE GERARCHIA DI CHOMSKY 3 4 DEFINIZIONE DEI LINGUAGGI CONTEXT FREE LINGUAGGI CF I linguaggi di tipo 2 sono detti context free (CF)

Dettagli

Linguaggi e Grammatiche Liberi da Contesto

Linguaggi e Grammatiche Liberi da Contesto N.Fanizzi-V.Carofiglio Dipartimento di Informatica Università degli Studi di Bari 22 aprile 2016 1 Linguaggi Liberi da Contesto 2 Grammatiche e Linguaggi Liberi da Contesto G = (X, V, S, P) è una grammatica

Dettagli

Automi Automi finiti: macchine a stati su sistemi di transizioni finiti Modellare con TS e specificare con automi: si usa lo stesso tipo di

Automi Automi finiti: macchine a stati su sistemi di transizioni finiti Modellare con TS e specificare con automi: si usa lo stesso tipo di Automi Automi finiti: macchine a stati su sistemi di transizioni finiti Modellare con TS e specificare con automi: si usa lo stesso tipo di rappresentazione per descrivere programmi e specifiche. ω-automi:

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

Elementi di Sintassi dei Linguaggi di Programmazione. Appunti per gli studenti di Fondamenti di Programmazione (corsi A-B-C)

Elementi di Sintassi dei Linguaggi di Programmazione. Appunti per gli studenti di Fondamenti di Programmazione (corsi A-B-C) Elementi di Sintassi dei Linguaggi di Programmazione Appunti per gli studenti di Fondamenti di Programmazione (corsi A-B-C) Corso di Laurea in Informatica Università di Pisa a.a. 2004/05 R. Barbuti, P.

Dettagli

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I APPUNTI DI TEORIA DEGLI INSIEMI MAURIZIO CORNALBA L assioma della scelta e il lemma di Zorn Sia {A i } i I un insieme di insiemi. Il prodotto i I A i è l insieme di tutte le applicazioni α : I i I A i

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Sommario. Caratterizzazione alternativa di NP: il verificatore polinomiale esempi di problemi in NP

Sommario. Caratterizzazione alternativa di NP: il verificatore polinomiale esempi di problemi in NP Sommario Caratterizzazione alternativa di NP: il verificatore polinomiale esempi di problemi in NP I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # 6 1 Test ed intervalli di confidenza per una popolazione Esercizio n. 1 Il calore (in calorie

Dettagli

La macchina universale

La macchina universale La macchina universale Una immediata conseguenza della dimostrazione è la seguente Corollario il linguaggio L H = {M (w) M rappresenta una macchina di Turing che si ferma con input w} sull alfabeto {0,1}*

Dettagli

64=8 radice perché 8 2 = 64

64=8 radice perché 8 2 = 64 RADICI E NUMERI IRRAZIONALI 1. Che cosa vuol dire estrarre la radice quadrata di un numero? Estrarre la radice quadrata di un numero vuol dire calcolare quel numero, che elevato al quadrato, dà per risultato

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso Propedeutico - METS A.A. 2013/2014 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor,

Dettagli

(b) le operazioni, sono distributive: (c) le operazioni, hanno un elemento neutro: cioè esistono O e I P(X) tali che A P(X) : A O = A, A I = A.

(b) le operazioni, sono distributive: (c) le operazioni, hanno un elemento neutro: cioè esistono O e I P(X) tali che A P(X) : A O = A, A I = A. Elementi di Algebra e Logica 2008. 7. Algebre di Boole. 1. Sia X un insieme e sia P(X) l insieme delle parti di X. Indichiamo con, e rispettivamente le operazioni di intersezione, unione e complementare

Dettagli

Alcuni equivalenti dell Assioma della Scelta

Alcuni equivalenti dell Assioma della Scelta Alcuni equivalenti dell Assioma della Scelta Giugno 2010 Gabriele Gullà Sommario Dimostreremo l equivalenza fra l assioma della scelta ed altri enunciati della matematica piú o meno noti. Enunciati: 1)

Dettagli

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2.

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. TEN 2008. Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. Lemma 1. Sia n Z. Sia p > 2 un numero primo. (a) n è un quadrato modulo p se e solo se n p 1 2 1 mod p; (b) Sia n 0

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli

La matematica non è un opinione, lo è oppure...?

La matematica non è un opinione, lo è oppure...? La matematica non è un opinione, lo è oppure...? Giulio Giusteri Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Brescia 26 Febbraio 2010 Vecchie conoscenze Dedurre... dedurre...

Dettagli

Circuiti digitali. Operazioni Logiche: Algebra di Boole. Esempio di circuito. Porte Logiche. Fondamenti di Informatica A Ingegneria Gestionale

Circuiti digitali. Operazioni Logiche: Algebra di Boole. Esempio di circuito. Porte Logiche. Fondamenti di Informatica A Ingegneria Gestionale Operazioni Logiche: lgebra di oole Fondamenti di Informatica Ingegneria Gestionale Università degli Studi di rescia Docente: Prof. lfonso Gerevini Circuiti digitali Il calcolatore può essere visto come

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 1 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.1, 3.2,

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

1 Principio di Induzione

1 Principio di Induzione 1 Principio di Induzione Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi 0, 1,, 3, Da un punto di vista insiemistico costruttivo, a partire dall esistenza dell insieme

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing

Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing 1 Macchina di Turing (MDT ) Un dispositivo che accede a un nastro (potenzialmente) illimitato diviso in celle contenenti ciascuna un simbolo

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Grafi e reti di flusso

Grafi e reti di flusso Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui

Dettagli

Suffix Trees. Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017

Suffix Trees. Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017 Complementi di Algoritmi e Strutture Dati Suffix Trees Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017 In generale, possiamo trovare tutte le occorrenze di un pattern y in un testo x in tempo O(

Dettagli

Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi

Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi Francesco Pasquale 6 maggio 2015 Esercizio 1. Su una strada rettilinea ci sono n case nelle posizioni 0 c 1 < c 2 < < c n. Bisogna installare

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili roblemi che i calcolatori non possono risolvere E importante sapere se un programma e corretto, cioe fa quello che ci aspettiamo. E facile

Dettagli