Linguaggi Regolari e Linguaggi Liberi
|
|
|
- Franco Ranieri
- 9 anni fa
- Visualizzazioni
Transcript
1 Linguaggi Regolari e Linguaggi Liberi Linguaggi regolari Potere espressivo degli automi Costruzione di una grammatica equivalente a un automa Grammatiche regolari Potere espressivo delle grammatiche 1
2 Linguaggi Regolari Tutti i linguaggi che possono essere accettati da automi a stati finiti non deterministici sono detti Linguaggi Regolari La definizione include linguaggi su tutti i possibili alfabeti Σ finiti 2
3 Determinismo vs Non determinismo Abbiamo visto che, tramite la costruzione dei sottoinsiemi, un qualsiasi automa non deterministico può essere trasformato in uno deterministico equivalente Inoltre un automa deterministico può essere visto come un particolare automa non deterministico Pertanto in realtà è superfluo dire, nella definizione di linguaggi regolari, che gli automi debbano essere non deterministici La classe di linguaggi accettati da automi deterministici è uguale a quella dei linguaggi accettati da automi non deterministici 3
4 Potere espressivo In questo caso si dice che i due formalismi, gli automi deterministici e non deterministici, hanno lo stesso potere espressivo Oltre a quello degli automi deterministici, anche il formalismo delle espressioni regolari ha lo stesso potere espressivo degli automi non deterministici Una costruzione per costruire un NFA a partire da una qualsiasi espressione regolare si vedrà nel corso di Compilatori 4
5 Linguaggi Regolari La classe dei linguaggi regolari può essere quindi specificata equivalentemente con tre tipi diversi di formalismi: Automi non deterministici (NFA) Automi deterministici (DFA) Espressioni Regolari Questi tre formalismi hanno tutti lo stesso potere espressivo 5
6 Potere espressivo superiore Ma tutti i linguaggi sono regolari? La risposta è NO Ci sono dei linguaggi che non possono essere specificati con NFA (o DFA o espressioni regolari) I linguaggi di questo tipo sono detti non regolari 6
7 Un esempio classico L esempio classico di linguaggio non regolare è il seguente L = { a n b n n 0 } È impossibile scrivere un automa o un espressione regolare che accetti/denoti questo linguaggio La dimostrazione di questo enunciato è interessante e può essere trovata sulla dispensa alternativa di sintassi 7
8 Limiti degli automi Intuitivamente il motivo è che gli automi non possono contare, cioè non possono implementare un contatore che possa assumere un qualsiasi valore intero (n) in modo da accettare stringhe in cui ci sia una corrispondenza fra il numero di certi elementi e il numero di altri elementi 8
9 Potere espressivo delle grammatiche È facile scrivere una grammatica libera dal contesto per il linguaggio visto: S asb ε In effetti si ha che le grammatiche libere dal contesto hanno un potere espressivo maggiore degli automi/espressioni regolari Ciò significa più precisamente che: Ogni linguaggio regolare può essere generato con una grammatica Esiste almeno un linguaggio non regolare che è accettato da una grammatica 9
10 Potere Espressivo delle grammatiche Universo dei linguaggi Linguaggi generati da grammatiche libere L = { a n b n n 0 } Linguaggi Regolari 10
11 Potere espressivo delle grammatiche Per mostrare la seconda parte basta usare il linguaggio { a n b n n 0 } Per la prima parte definiamo un algoritmo che, dato un qualsiasi automa (deterministico o no), costruisce una grammatica equivalente 11
12 Algoritmo: dagli automi alle grammatiche Input: Automa <S, Σ, s0, move, F> Output: Grammatica <V, Σ, S, P> equivalente Costruzione dei simboli non terminali di V e dello stato iniziale: Per ogni stato s di S costruiamo un simbolo non terminale <s> in V Poniamo <s 0 > come simbolo iniziale S della grammatica 12
13 Algoritmo: dagli automi alle grammatiche Costruzione delle produzioni P: Per ogni s S e per ogni a Σ: Se c è nell automa una transizione etichettata con a che dallo stato s va nello stato s allora inseriamo la produzione <s> a <s > in P Se c è nell automa una transizione etichettata con a che dallo stato s va nello stato s e s F allora inseriamo una produzione <s> a in P Se l'automa accetta anche la stringa vuota ε allora bisogna fare un ulteriore passo e creare un simbolo iniziale fittizio 13
14 Algoritmo: dagli automi alle grammatiche Se l'automa accetta la stringa vuota: Aggiungere un ulteriore simbolo non terminale <s 0 '> e porlo come simbolo iniziale della grammatica a posto di <s 0 > Inserire la produzione <s 0 '> ε Aggiungere una produzione <s 0 '> α per ogni produzione <s 0 > α che si trova già in P (costruito come nella pagina precedente) 14
15 Esempio a a b c {a, b, c} 3 15
16 Esempio Seguendo le indicazioni dell algoritmo otteniamo la seguente grammatica, al primo passo <0> a <0> a <1> a <1> b <2> <2> c <3> c <3> a <3> b <3> c <3> a b c Ma l'automa accetta anche la stringa vuota Dobbiamo completare come segue 16
17 Esempio Nuovo simbolo iniziale <0'> <0'> ε a <0> a <1> a <0> a <0> a <1> a <1> b <2> <2> c <3> c <3> a <3> b <3> c <3> a b c 17
18 Grammatiche regolari Le grammatiche in cui le produzioni sono tutte della forma A ab oppure A a A ε oppure Sono chiamate Grammatiche Regolari e hanno lo stesso potere espressivo degli automi/espressioni regolari L algoritmo visto genera grammatiche regolari 18
19 Linguaggi liberi Tutti i linguaggi che possono essere specificati attraverso una grammatica libera dal contesto sono detti Linguaggi Liberi I linguaggi liberi, sappiamo dal potere espressivo, includono i linguaggi regolari più altri linguaggi non regolari come { a n b n n 0 } Ma i linguaggi non liberi sono tutti i possibili linguaggi? La risposta è ancora NO 19
20 Linguaggi non liberi Esistono dei linguaggi che non possono essere generati da nessuna grammatica libera dal contesto, ad esempio: L = {a m b m c m m 0} Esistono infiniti linguaggi non liberi. Esistono infiniti linguaggi non regolari, ma liberi. Esistono gerarchie di formalismi più potenti delle grammatiche libere dal contesto 20
21 Potere espressivo delle grammatiche libere Universo dei linguaggi Linguaggi generati da grammatiche libere L = { a n b n n 0 } L = {a m b m c m m 0 } Linguaggi Regolari 21
Linguaggi Regolari e Linguaggi Liberi
Linguaggi Regolari e Linguaggi Liberi Potenza espressiva degli automi Potenza espressiva delle grammatiche 9/11/2004 Programmazione - Luca Tesei 1 Linguaggi Regolari Tutti i linguaggi che possono essere
Espressioni regolari
spressioni Regolari Un FA (NFA o DFA) e una macchina a stati finiti che riconosce linguaggi regolari. Una espressione regolare e un modo dichiarativo (o algebrico) per descrivere un linguaggio regolare.
Linguaggi regolari e automi a stati finiti
utomi a stati finiti Gli automi a stati finiti sono usati come modello per Software per la progettazione di circuiti digitali. Analizzatori lessicali di un compilatore. Ricerca di parole chiave in un file
Le grammatiche formali
Le grammatiche formali Il carattere generativo dei sistemi linguisticii i Consideriamo i la seguente frase: Un gatto rincorre il topo Non facciamo difficoltà a riconoscere che si tratta di una frase sintatticamente
Linguaggio universale, riduzioni, e teorema di Rice. Linguaggio universale, riduzioni, e teorema di Rice
l linguaggio universale Il linguaggio universale L u e l insieme delle stringhe binarie che codificano una coppia (M,w) dove w L(M). Esiste una TM U, detta TM universale, tale che L u = L(U). U ha tre
Forme Normali. Forma normale di Chomsky. E caratterizzata da regole di due tipi. A! BC dove A, B, C $ V N A! a con a $ V T. Forma normale di Greibach
Forme Normali A partire da una grammatica Context-free G è sempre possibile costruire una grammatica equivalente G ovvero L(G) = L(G ) che abbiano le produzioni in forme particolari, dette forme normali.
Pumping lemma per i linguaggi Context-free
Pumping lemma per i linguaggi Context-free Sia L un linguaggio context-free. E possibile determinare una costante k, dipendente da L, tale che qualunque stringa z! L con z > k si può esprimere come z=
Forma Normale di Chomsky
2. Eliminazione delle produzioni unitarie Forma Normale di Chomsky Una produzione si dice unitaria se è della forma A! B. Le produzioni unitarie in pratica consistono in una ridenominazione di variabili,
GRAMMATICHE DEI LINGUAGGI DI PROGRAMMAZIONE. Cosimo Laneve
GRAMMATICHE DEI LINGUAGGI DI PROGRAMMAZIONE Cosimo Laneve 1 argomenti 1. linguaggi di programmazione 2. definizione formale di insiemi infiniti 3. la grammatica e la notazione BNF 4. notazioni alternative
Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio
Appunti di informatica Lezione 7 anno accademico 2016-2017 Mario Verdicchio L algoritmo di Euclide per l MCD Dati due numeri A e B, per trovare il loro MCD procedere nel seguente modo: 1. dividere il maggiore
Definizione di Grammatica
Corso di Linguaggi e Traduttori 1 AA 2004-05 GRAMMATICHE 1 Definizione di Grammatica Formalmente definiamo un grammatica G mediante una quadrupla ( VN, VT, P, S ) dove: V N e l insieme dei simboli non
IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.
IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è
Grammatiche. Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione
Grammatiche Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione Esempio dei numeri interi Si consideri il linguaggio
Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing
Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing 1 Macchina di Turing (MDT ) Un dispositivo che accede a un nastro (potenzialmente) illimitato diviso in celle contenenti ciascuna un simbolo
Grammatiche Parse trees Lezione del 17/10/2012
Fondamenti di Programmazione A.A. 2012-2013 Grammatiche Parse trees Lezione del 17/10/2012 AUTILI MARCO http://www.di.univaq.it/marco.autili/ Riassunto lezione precedente Sintassi vs Semantica Stringhe,
Esercizi di Fondamenti di Informatica per la sicurezza. Stefano Ferrari
Esercizi di Fondamenti di Informatica per la sicurezza tefano Ferrari 23 dicembre 2003 2 Argomento 1 Grammatiche e linguaggi Esercizi Es. 1.1 Definiti i linguaggi: L 1 = {aa, ab, bc, c} L 2 = {1, 22, 31}
8. Completamento di uno spazio di misura.
8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme
Corso di Linguaggi di Programmazione + Laboratorio Docente: Marco de Gemmis
Corso di Linguaggi di Programmazione + Laboratorio Docente: Marco de Gemmis Capitolo 2 Grammatiche e Linguaggi Si ringraziano il Prof. Giovanni Semeraro e il Dott. Pasquale Lops per la concessione del
Verificare se una grammatica e LL(1) e costruirne la tabella di parsing. Verificare se una grammatica e LR(0) e costruirne la tabele ACTION e GOTO
ANALISI SINTATTICA TIPO 1: Data un linguaggio scrivere una grammatica che lo generi TIPO 2: Verificare se una grammatica non contestuale è ambigua TiPO 3: Verificare se una grammatica e LL(1) e costruirne
Presentazione di gruppi
Presentazione di gruppi Sia G un gruppo e X un suo sottoinsieme non vuoto, indichiamo con Gp(X) = {x ɛ 1 1 x ɛ 2 2... x ɛ n n x i X, ɛ i = ±1} dove gli elementi di questo insieme sono da intendersi come
Complementi di Analisi Matematica Ia. Carlo Bardaro
Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo
Cosa è l Informatica?
Cosa è l Informatica? Scienza degli elaboratori elettronici (Computer Science) Scienza dell informazione Scienza della rappresentazione, memorizzazione, elaborazione e trasmissione dell informazione Elaboratore
Il concetto di calcolatore e di algoritmo
Il concetto di calcolatore e di algoritmo Elementi di Informatica e Programmazione Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin Informatica
Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo
Università Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Marco Liverani ([email protected])
Informatica Teorica. Sezione Cremona + Como. Appello del 20 Luglio 2004
Informatica Teorica Sezione Cremona + Como Appello del 20 Luglio 2004 Coloro che recuperano la I prova risolvano gli esercizi e 2 tra quelli indicati qui sotto entro un ora. Coloro che recuperano la II
Aniello Murano Automi e Pushdown
Aniello Murano Automi e Pushdown 2 Lezione n. Parole chiave: Automi e PDA Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009 Calcolabilità, complessità e macchine computazionali
ELEMENTI DI PROGRAMMAZIONE a.a. 2013/14 UNA GERARCHIA DI MACCHINE
ELEMENTI DI PROGRAMMAZIONE a.a. 23/4 UNA GERARCHIA DI MACCHINE Andrea Prevete, UNINA2 24 UNA GERARCHIA DI MACCHINE macchine combinatorie macchine sequenziali (automi a numero finito di stati)... macchine
Proprieta dei Linguaggi regolari
Proprieta dei Linguaggi regolari Pumping Lemma. Ogni linguaggio regolare soddisfa il pumping lemma. Se qualcuno vi presenta un falso linguaggio regolare, l uso del pumping lemma mostrera una contraddizione.
1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine
1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine In questo tipo di giochi l arena è costituita da due grafi orientati G = (V, E), G = (V, E ). Lo scopo del I giocatore è di mostrare, in un numero
Macchina di Turing ... !!... !!! a b b! b a! Nastro di Input. testina. s t q i. s r. Unità di Controllo q j S / D / F
Macchina di Turing Nastro di Input...!!! a b b! b a! testina!!... s r s t q i Unità di Controllo q j Q S / D / F P Definizione Formale Una macchina di Turing deterministica è una sestupla
Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia
Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione
PROLOG E ANALISI SINTATTICA DEI LINGUAGGI Quando si vuole definire in modo preciso la sintassi di un linguaggio si ricorre a una grammatica G=(V n,v t
PROLOG E ANALISI SINTATTICA DEI LINGUAGGI Quando si vuole definire in modo preciso la sintassi di un linguaggio si ricorre a una grammatica Una grammatica permette di stabilire se una sequenza di simboli
1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):
. equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale
1 Equazioni parametriche e cartesiane di sottospazi affini di R n
2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale
Espressioni regolari. Espressioni regolari
spressioni regolari Un FA (NFA o DFA) e un metodo per costruire una macchina che riconosce linguaggi regolari. Una espressione regolare e un modo dichiarativo per descrivere un linguaggio regolare. Esempio:
Espressioni regolari descrivono i linguaggi regolari. Un FA (NFA o DFA) è un metodo per costruire una macchina che riconosce linguaggi regolari.
Espressioni regolari descrivono i linguaggi regolari Un FA (NFA o DFA) è un metodo per costruire una macchina che riconosce linguaggi regolari. Una espressione regolare e un modo dichiarativo per descrivere
Macchine di Turing. Francesco Paoli. Istituzioni di logica, Francesco Paoli (Istituzioni di logica, ) Macchine di Turing 1 / 29
Macchine di Turing Francesco Paoli Istituzioni di logica, 2016-17 Francesco Paoli (Istituzioni di logica, 2016-17) Macchine di Turing 1 / 29 Alan M. Turing (1912-1954) Francesco Paoli (Istituzioni di logica,
Automi Automi finiti: macchine a stati su sistemi di transizioni finiti Modellare con TS e specificare con automi: si usa lo stesso tipo di
Automi Automi finiti: macchine a stati su sistemi di transizioni finiti Modellare con TS e specificare con automi: si usa lo stesso tipo di rappresentazione per descrivere programmi e specifiche. ω-automi:
Nozioni introduttive e notazioni
Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione
Esercitazioni di Reti Logiche
Esercitazioni di Reti Logiche Sintesi di Reti Sequenziali Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico 2007/2008 Sintesi dei circuiti sequenziali
Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing
Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing 1 Macchina di Turing (MDT ) Un dispositivo che accede a un nastro (potenzialmente) illimitato diviso in celle contenenti ciascuna un simbolo
Dispense del corso di Linguaggi di programmazione e laboratorio Linguaggi formali(versione non definitiva con diversi refusi) Francesco Sisini
Dispense del corso di Linguaggi di programmazione e laboratorio Linguaggi formali(versione non definitiva con diversi refusi) Francesco Sisini 04 Giugno 2014 Indice 0.1 Automi.................................
04 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,
Appunti di Linguaggi Formali
Appunti di Linguaggi Formali A cura di Roberta Prendin [email protected] Appunti delle lezioni di Calcolabilità e Linguaggi Formali tenute dal professor Antonino Salibra, anno accademico 2013/2014.
Sviluppi e derivate delle funzioni elementari
Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim
Corso di Crittografia Prof. Dario Catalano. Firme Digitali
Corso di Crittografia Prof. Dario Catalano Firme Digitali Introduzione n Una firma digitale e l equivalente informatico di una firma convenzionale. n Molto simile a MA, solo che qui abbiamo una struttura
acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1
acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 richiami teorici sulle grammatiche di Chomsky esercizivari esercizi su grammatiche ed espressioni regolari
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema
ESERCIZI SULLE DISEQUAZIONI I
ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x
Fondamenti dell Informatica: Linguaggi Formali e Calcolabilità
Eserciziario per il corso di Verona, Settembre 24 Fondamenti dell Informatica: Linguaggi Formali e Calcolabilità Dott.ssa Isabella Mastroeni Dipartimento di Informatica Università degli Studi di Verona
ELEMENTI DI PROGRAMMAZIONE a.a. 2012/13 MACCHINE, ALGORITMI, PROGRAMMI
ELEMENTI DI PROGRAMMAZIONE a.a. 22/3 MACCHINE, ALGORITMI, PROGRAMMI Andrea Prevete, UNINA2 23 UNA GERARCHIA DI MACCHINE macchine combinatorie macchine sequenziali (automi a stati finiti)... macchine di
Corso di Informatica di Base
Corso di Informatica di Base A.A. 2011/2012 Algoritmi e diagrammi di flusso Luca Tornatore Cos è l informatica? Calcolatore: esecutore di ordini o automa Programma: insieme di istruzioni che possono essere
ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011
ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie
La codifica digitale
La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore
Un insieme si dice ben definito quando si può stabilire in modo inequivocabile se un oggetto appartiene o non appartiene a tale insieme
Gli insiemi In matematica usiamo la parola insieme per indicare un raggruppamento, una collezione, una raccolta di oggetti (persone, simboli, numeri, lettere, figure ) che sono detti elementi dell insieme
Alcune Tracce dei Precedenti Esami del Dottorato di Siena in Logica Matematica ed Informatica Teorica
Alcune Tracce dei Precedenti Esami del Dottorato di Siena in Logica Matematica ed Informatica Teorica Raccolti e curati da Luca Spada Indice 1 Temi 1 1.1 Logica Matematica.......................... 1 1.2
Lezione 4. Da questa definizione si ha dunque che le similitudini sono particolari trasformazioni affini.
Lezione 4 Trasformazioni affini tra piani Una affinità f tra due piani P e Q è una trasformazione biunivoca di P in Q che conserva l allineamento. Ciò significa che comunque si scelgano tre punti allineati
Analizzatore lessicale o scanner. Lo scanner rappresenta un'interfaccia fra il programma sorgente e l'analizzatore sintattico o parser.
Analizzatore lessicale o scanner Dispensa del corso di Linguaggi e Traduttori A.A. 2005-2006 Lo scanner rappresenta un'interfaccia fra il programma sorgente e l'analizzatore sintattico o parser. Lo scanner,
Informatica/ Ing. Meccanica/ Edile/ Prof. Verdicchio/ 25/02/2016/ Foglio delle domande / VERSIONE 1
Informatica/ Ing. Meccanica/ Edile/ Prof. Verdicchio/ 25/02/2016/ Foglio delle domande/ VERSIONE 1 1) In Python, se scrivo v = [ ] in un programma, vuol dire che a) v è un quadrato b) v è una list c) v
Reti Sequenziali. Reti Sequenziali. Corso di Architetture degli Elaboratori
Reti Sequenziali Reti Sequenziali Corso di Architetture degli Elaboratori Caratteristiche 1 Caratteristiche delle reti sequenziali Reti combinatorie: il valore in uscita è funzione (con il ritardo indotto
Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila
Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sommario Poliedri Poliedri compatibili Diseguaglianzeimplicate Proiezione di un poliedro Definizione
Espressività e limitazioni delle grammatiche regolari
Espressività e limitazioni delle grammatiche regolari Vantaggi: Le grammatiche regolari consentono di esprimere una significativa classe di linguaggi: linguaggi con un numero di sequenze infinito grazie
Anno 1. Teoria degli insiemi: definizioni principali
Anno 1 Teoria degli insiemi: definizioni principali 1 Introduzione In questa lezione introdurremo gli elementi base della teoria degli insiemi. I matematici hanno costruito una vera e propria Teoria degli
1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi
In ogni esercizio c è la data del giorno in cui l ho proposto. 1 Se X e Y sono equipotenti, Sym(X) e Sym(Y ) sono isomorfi Se X è un insieme indichiamo con Sym(X) l insieme delle biiezioni X X. Si tratta
Linguaggi di programmazione - Principi e paradigmi 2/ed Maurizio Gabbrielli, Simone Martini Copyright The McGraw-Hill Companies srl
Approfondimento 2.1 Non è questo il testo dove trattare esaurientemente queste tecniche semantiche. Ci accontenteremo di dare un semplice esempio delle tecniche basate sui sistemi di transizione per dare
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
Linguaggio C. strutture di controllo: strutture iterative. Università degli Studi di Brescia. Docente: Massimiliano Giacomin
Linguaggio C strutture di controllo: strutture iterative Università degli Studi di Brescia Docente: Massimiliano Giacomin Elementi di Informatica e Programmazione Università di Brescia 1 Strutture iterative
La cardinalità di Q e R
La cardinalità di Q e R Ha senso chiedersi se ci sono più elementi in N o in Q? Sono entrambi due insiemi infiniti. I numeri naturali sono numerosi quanto i quadrati perfetti, infatti ad ogni numero naturale
LINGUAGGI DI ALTO LIVELLO. Si basano su una macchina virtuale le cui mosse non sono quelle della macchina hardware
LINGUAGGI DI ALTO LIVELLO Si basano su una macchina virtuale le cui mosse non sono quelle della macchina hardware 1 LINGUAGGI DI ALTO LIVELLO Barriera di astrazione Fortran Cobol Basic Pascal Python C
LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali
LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA
I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati
I Poligoni Spezzata C A cosa vi fa pensare una spezzata? Qualcosa che si rompe in tanti pezzi A me dà l idea di un spaghetto che si rompe Se noi rompiamo uno spaghetto e manteniamo uniti i vari pezzi per
Analisi lessicale (scanner)
Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2011-2012 Linguaggi Formali e Compilatori Analisi lessicale (scanner) Giacomo PISCITELLI Ruolo dell Analizzatore lessicale Compito di un analizzatore
Successioni, massimo e minimo limite e compattezza in R
Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Successioni, massimo e minimo limite e compattezza in R Massimo A. Picardello BOZZA 10.11.2011 21:24 i CAPITOLO 1 Successioni
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME
ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di
