Approccio Classico: Metodi di Scomposizione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Approccio Classico: Metodi di Scomposizione"

Transcript

1 Approccio Classico: Meodi di Scomposizione

2

3 Il Modello di Scomposizione Il modello maemaico ipoizzao nel meodo classico di scomposizione è: y =f(s, T, E ) dove y è il dao riferio al periodo S è la componene sagionale al periodo T e la componene rend-ciclo al periodo E è la componene irregolare al empo. La forma di f() dipende dall approccio seguio. Una forma molo comune è la seguene: y =S +T +E che viene definia modello addiivo. Un alra forma alreano frequene è il modello moliplicaivo: y =S x T x E

4 Modello Addiivo Un modello addiivo è appropriao quando l ampiezza dell oscillazione sagionale non varia col livello della serie.

5 Modello Moliplicaivo Un modello moliplicaivo è adeguao quando la fluuazione sagionale aumena (o diminuisce) proporzionalmene con l aumeno (diminuzione) del livello della serie

6 Osservazioni Nel modello addiivo, le componeni S,T, E sono espresse nella sessa unià di misura di y ; nel modello moliplicaivo, solo T (per convenzione) viene espresso nell unià di misura di y ; E e S sono numeri puri. Nel modello addiivo l errore può assumere valori posiivi o negaivi; 0 è il valore neurale, nel senso che non influenza la serie. Nel modello moliplicaivo l errore può assumere solo valori non negaivi e ha 1 come valore neurale. Si noi che, col modello moliplicaivo, porebbe essere uile ricorrere alla rasformazione della serie. Poiché la funzione logarimica rasforma una espressione moliplicaiva in una addiiva si ha: ln y =ln(s x T x E ) ln y =lns + lnt + lne Quindi, invece del modello moliplicaivo sui dai originari della serie, si porebbe applicare il modello addiivo sulle rasformae logarimiche.

7

8 Rappresenazioni grafiche negli approcci di scomposizione Analizziamo i dai relaivi alla vendia di boiglie di birra Nr. boiglie Modello addiivo? Dai desagionalizzai Sagionalià

9 Si noa invece la presenza di una cera ciclicià degli sessi: i residui sono più vicini a zero nella pare cenrale della serie menre sono maggiori (in valore assoluo) alle esremià. Analisi dei Residui Se la scomposizione è valida allora i residui devono presenare un andameno accidenale rispeo al empo Acual Prediced Acual Prediced Residui 0 Y

10 Serie Desagionalizzaa Nel caso di un modello addiivo, il dao desagionalizzao D è derivao come: D =y S =y +E menre nel modello addiivo: D =y /S =y x E una vola che è saa simaa la componene sagionale S.

11 Sudio del rend mediane forma analiica L evoluzione di lungo periodo di una serie sorica è denominaa rend. Nell economia, ad esempio, il rend è deerminao dal leno sviluppo delle ecnologie, dei fenomeni demografici e sociali, ecc. L esisenza di una evoluzione di lungo periodo può essere evidenziaa dall andameno dei dai desagionalizzai risulani da un analisi di scomposizione, oppure dalla serie di dai annuali (anch essi privi della sagionalià). Nel capiolo precedene abbiamo illusrao la sima del rend mediane le medie mobili; ale procedimeno è denominao adaameno locale del rend o sima locale. In queso capiolo affroneremo la sima del rend mediane specificazione e sima di una funzione analiica del empo. Queso procedimeno è denominao analisi globale poiché la funzione simaa definisce come una sora di legge di dipendenza del rend dal empo. Varie forme funzionali sono uilizzae per rappresenare il rend.

12 Forma Lineare Ipoizziamo che y =T +e, dove y qui rappresena o il dao annuale o quello desagionalizzao e e la componene di disurbo. La forma lineare in è: T =β 0 +β 1 =1,,n dove β 0 è l inercea e β 1 è la pendenza della rea. Se β 1 >0 il rend è crescene; se β 1 <0, il rend è decrescene; se β 1 =0 esise un paern orizzonale.

13 Sima del Trend Una vola che è saa scela una forma analiica per rappresenare il rend, è necessario passare alla sua sima a parire da dai di osservazione. I dai sui quali viene simao il rend dovrebbero essere privi di andameno sagionale e ciclico. In alre parole, l unica componene sisemaica presene nei dai deve essere quella endenziale di lungo periodo. In assenza di significaive oscillazioni cicliche, i dai più idonei all analisi del rend sono: i valori desagionalizzai oppure la serie di dai annuali.

14 Esempio: Vendie di Bibia Dai Desagionalizzai ANNO MESE y

15 Sima del Trend Mediane il meodo dei minimi quadrai ordinari, la funzione analiica che rappresena il rend è in al caso: Tˆ = 380, 3 + 9, 505 che regisra un indice di deerminazione lineare R 2 pari a 0,985. Nello sudio del rend mediane funzione analiica, viene usao il meodo dei minimi quadrai come in una consuea analisi di regressione.

16 La Media Mobile La media mobile è un semplice meodo che smussa (liscia, perequa) la serie sorica. Tale procedura è basilare nei meodi di scomposizione. Se la serie è composa solo da rend e dalla componene residua, la media mobile elimina gli effei dei disurbi. Se nella serie originaria è presene anche il fenomeno sagionale di periodo p, allora una media mobile di ampiezza p è in grado di eliminare anche la sagionalià. Nei due casi, la media mobile si propone di isolare il rend-ciclo.

17 Esempio: Vendie mensili di shampoo Mese y 1 266, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,9

18 Time Plo

19 Calcolo della Media Mobile La media mobile a re ermini ci dà una sima del rend T 2 del mese di Febbraio 1999, mediane la media arimeica dei dai di Gennaio, Febbraio, Marzo 1999: T 2 =(y 1 +y 2 +y 3 )/3 Generalizzando, la media mobile a re ermini cenraa su è: T =(y -1 +y +y +1 )/3, =2,,n-1 Si noino, nella Tab. 3.1, i valori della media mobile a re ermini: non c è sima del rend per i empi =1 e =n perché mancano le osservazioni al empo 0 e al empo n+1. Come si sarà capio, quesa procedura è denominaa media mobile perché ogni successiva media viene calcolaa eliminando il valore più vecchio e inserendone un nuovo. La media mobile è un meodo di adaameno locale in quano crea una serie di valori smussai di lunghezza pari alla serie originaria, ognuno in corrispondenza del puno di osservazione.

20 Calcolo della Media Mobile Come si può facilmene verificare, una media mobile a k ermini, con k dispari, fa perdere (k 1)/2 ermini all inizio e alreani ermini alla fine della serie. La perdia dei primi ermini ha poca imporanza; al conrario la perdia degli ermini più receni ha conseguenze rilevani ai fini della operazione di previsione. Una possibile soluzione consise nell effeuare, agli esremi, delle medie mobili con un numero inferiore di ermini. Ad esempio, nel caso di media mobile a re ermini si può calcolare T 1 come T 1 =(y 1 +y 2 )/2 e T n come T n =(y n-1 +y n )/2. Mese y MM3 MM5 MM , ,9 198, ,1 149,4 178, ,3 160,9 159,4 185, ,3 156,0 176,6 179, ,5 193,5 184,9 185, ,8 208,3 199,6 177, ,5 216,4 188,1 208, ,8 180,1 221,7 209, ,9 217,4 212,5 212, ,5 215,1 206,5 200, ,9 238,9 197,8 198, ,3 176,6 215,3 210, ,5 184,6 202,6 220, ,1 211,0 203,7 213, ,3 224,9 222,3 218, ,4 250,6 237,6 234, ,0 234,8 256,3 254, ,0 272,2 259,6 284, ,6 273,2 305,6 283, ,9 338,4 301,1 305, ,6 325,3 324,4 312, ,5 342,8 331,6 343, ,3 315,5 361,7 344, ,7 374,1 340,6 366, ,4 365,3 375,5 363, ,9 398,5 387,3 388, ,3 385,5 406,9 421, ,3 426,0 433,9 431, ,4 471,4 452,2 465, ,5 473,5 500,8 488, ,6 555,0 515,6 508, ,0 521,6 544,3 543, ,3 579,5 558, ,3 567, ,9

21 Valori Osservai e Medie Mobili 800,0 700,0 600,0 500,0 Osservai MM3 MM7 400,0 300,0 200,0 100,0 0,

22 Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,9

23 Le medie mobili inrodoe in precedenza hanno un numero dispari di ermini e perciò risulano auomaicamene cenrae su un puno di osservazione. Tali medie sono dee semplici poiché ui i ermini della media hanno associao lo sesso peso. Supponiamo che si voglia calcolare una media mobile con numero pari di ermini. Ad esempio, poso k=4, sui dai Vendie di Shampoo si ha: T =(y 1 +y 2 +y 3 +y 4 )/4= (266,0+145,9+183,1+119,3)/4 T = (y 2 +y 3 +y 4 +y 5 )/4= (145,9+183,1+119,3+180,3)/4 La prima media sarebbe cenraa fra il secondo e il erzo ermine; la seconda media cenraa fra il erzo e il quaro. Per risolvere la quesione della cenraura, si effeua una media mobile a 2 ermini sulle due successive medie mobili a ermini pari. Con queso procedimeno la media arimeica delle due medie mobili a 4 ermini sopra calcolae, viene ad essere cenraa nel puno =3. Quindi: T 3 =(T +T )/2 Sosiuendo a T e T le espressioni precedeni, la formula di T 3 divena: (3.4) T 3 =(y 1 +2y 2 +2y 3 +2y 4 +y 5 )/8 che è una media ponderaa: i ermini cenrali hanno peso 2, i ermini esremi peso 1; il denominaore è, ovviamene, la somma dei pesi. Essa è dea media mobile cenraa a k ermini (k pari). Medie mobili con numero pari di ermini sono usae per eliminare l oscillazione sagionale. Su dai mensili si userà k=12; k=4 su dai rimesrali e k=2 su dai semesrali. Ovviamene, con k pari, si perdono k/2 ermini all inizio e alla fine della serie.

24 Scomposizione classica: il modello addiivo Esempio: Vendie mensili di boiglie di bibia XXX (da ½ liro) Anno Mese Nr. Anno Mese Nr. Anno Mese Nr

25 Scomposizione classica: il modello addiivo La scomposizione classica viene condoa svolgendo le fasi segueni. 1. Calcolo del rend-ciclo di prima approssimazione. 2. Calcolo della componene (SE) : serie della sagionalià misa e errore. 3. Sima della componene sagionale 4. Derivazione della serie desagionalizzaa D 5. Sima del ciclo-rend 6. Sima dell inera componene sisemaica della serie. 7. Calcolo del residuo del modello.

26 1. Calcolo del rend-ciclo di prima approssimazione Si raa di una fase srumenale che non produce una sima definiiva della componene rend-ciclo. Il rend-ciclo di prima approssimazione viene calcolao con una media mobile cenraa a 12 ermini. Indichiamo con MM il valore di dea media, dove =7,,n-6 a causa della perdia di dai all inizio e al ermine della serie. 2. Calcolo della componene (SE) Anche quesa è una fase srumenale. La serie (SE) è calcolaa soraendo dalla serie originale, la grandezza MM : (SE) =y MM

27 3. Sima della componene sagionale Dalla componene (SE) si elimina il disurbo e si perviene alla sima di S. Nell approccio classico si ipoizza che l oscillazione sagionale sia cosane da anno in anno, per cui, con dai mensili, S =S +12 =S +24 =. Si parla di modello di sagionalià cosane. Il coefficiene di sagionalià S m per il mese m (m=1,,12) viene calcolao effeuando la media arimeica dei ermini (SE) dove =m, m+12, m+24,. In alre parole la sima della sagionalià per gennaio è daa dalla media arimeica dei valori (SE) riferii a gennaio. Il risulao di quesa operazione produce 12 coefficieni di sagionalià m Ŝ, m=1,..,12 (dove m indica il mese), che si ripeono per ogni anno.

28 4. Derivazione della serie desagionalizzaa D. Il dao desagionalizzao D è calcolao nel modello addiivo come: D = y Ŝ e Ŝ = Ŝ m se si riferisce al mese m. La serie D coniene dunque il paern del ciclo-rend e l effeo del disurbo. Essa è perano uile per lo sudio del ciclo-rend. 5. Sima del ciclo-rend La sima Tˆ del ciclo-rend è oenua mediane una media mobile a 3 ermini sui dai D. ( con eccezione del primo e ulimo ermine, oenui con una media a 2 ermini)

29 6. Sima dell inera componene sisemaica della serie Mediane le sime della sagionalià e del rend-ciclo si oiene la sima ŷ, che coniene solo il paern sisemaico della serie, dove: ŷ = Tˆ + Ŝ 7. Calcolo del residuo del modello Il residuo del modello Ê = y ŷ Ê è, infine:

30 Scomposizione classica: il modello moliplicaivo Modello Moliplicaivo y =S x T x E La scomposizione classica viene condoa svolgendo le fasi segueni. 1. Calcolo del rend-ciclo di prima approssimazione. 2. Calcolo della componene (SE) : serie della sagionalià misa e errore. 3. Sima della componene sagionale. 4. Derivazione della serie desagionalizzaa D. 5. Sima del ciclo-rend. 6. Sima dell inera componene sisemaica della serie. 7. Calcolo del residuo del modello

31 1. Calcolo del rend-ciclo di prima approssimazione Viene calcolao con una media mobile cenraa a 12 ermini. (sesso procedimeno del modello addiivo). 2. Calcolo della componene (SE) La serie (SE), composa da sagionalià ed errore, è calcolaa dividendo la serie y per MM : (SE) =y /MM

32 3. Sima della componene sagionale Dalla serie (SE) si elimina il disurbo e si perviene alla sima di S. Si ipoizza, anche qui, che l oscillazione sagionale sia cosane di anno in anno per cui, con dai mensili, S =S +12 =S +24 =. Il coefficiene di sagionalià S m per il mese m (m=1,,12) viene calcolao effeuando la media arimeica dei ermini (SE) dove =m, m+12, m+24,. Ancora, la sima della sagionalià per gennaio è daa dalla media arimeica dei valori (SE) riferii a gennaio. 4. Derivazione della serie desagionalizzaa. Il dao desagionalizzao D si ricava come: D = y / Ŝ Quesa grandezza coniene il paern del ciclo-rend e l effeo del disurbo. Essa è uile per il successivo sudio del ciclo-rend.

33 5. Sima del ciclo-rend La sima del ciclo-rend Tˆ è oenua mediane una media mobile a 3 ermini sui dai D. 6. Sima della componene sisemaica della serie Mediane le sime della sagionalià e del rend-ciclo, si ricava la sima ŷ che coniene solo il paern sisemaico della serie, dove: ŷ = Tˆ Ŝ 7. Calcolo del residuo del modello Si ricava, infine, il residuo del modello Ê come: Ê = y / ŷ Tuavia, per consenire un confrono con l adaameno del modello addiivo, ai fini del calcolo degli indici MAPE, MAE, ecc., conviene uilizzare i residui calcolai nel modo consueo: Res = y ŷ

34 Valuazione della scomposizione oenua La valuazione dell adaameno oenuo mediane il modello di scomposizione può essere condoa mediane indici quali MSE, MAE, MAPE, riferii alla serie sorica disponibile. Olre al calcolo di ali indici, è buona norma condurre anche delle analisi grafiche dei residui Ê. L idea che sa alla base di quesi conrolli è la seguene: se la scomposizione è valida allora il residuo non dovrebbe evidenziare oscillazioni sisemaiche di nessun ipo e il suo line plo dovrebbe oscillare inorno al valore neurale (0 per il residuo del modello addiivo, 1 per il residuo del modello moliplicaivo), in modo accidenale. Vediamo il caso del modello addiivo dove il residuo è: Ê = y ŷ Può essere uile rappresenare graficamene l Andameno di Ê rispeo al empo. L ideale è che non si presenino oscillazioni sisemaiche, come avviene in Fig Siuazione dubbia è quella di Fig. 3.8 (la scomposizione oenua è più valida per periodi più remoi). La Fig. 3.9, infine, evidenzia che non siamo sai in grado di individuare un andameno ciclico (o comunque curvilineo)

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

3. Metodi di scomposizione

3. Metodi di scomposizione Cap 3 Meodi di scomposizione 31 3. Meodi di scomposizione 3.1 Inroduzione Moli meodi di previsione si basano sul fao che, se esise un paern sisemaico, queso possa essere individuao e separao da evenuali

Dettagli

Il Modello di Scomposizione

Il Modello di Scomposizione Approccio Classico: Metodi di Scomposizione Il Modello di Scomposizione Il modello matematico ipotizzato nel metodo classico di scomposizione è: y t =f(s t, T t, E t ) dove y t è il dato riferito al periodo

Dettagli

Analisi delle serie storiche parte IV Metodi di regressione

Analisi delle serie storiche parte IV Metodi di regressione Analisi delle serie soriche pare IV Meodi di regressione a.a. 16/17 Saisica Economica -Laurea in Relazioni Economiche Inernazionali 1 Meodo della regressione La componene di fondo, Trend o Ciclo-Trend,

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

L analisi delle serie storiche

L analisi delle serie storiche L analisi delle serie soriche Per serie sorica si inende un insieme di dai ordinai secondo un crierio cronologico. Ogni dao è associao ad un paricolare isane o inervallo di empo. Se a ciascun isane o inervallo

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO. LA CINEMAICA IN BREVE Schede di sinesi a cura di Nicola SANORO Lo scopo di quese schede è quello di riassumere i concei principali e le formule fondamenali della cinemaica, per venire inconro alle esigenze

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero [email protected] Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura:

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Esercizi 5. Sistemi lineari

Esercizi 5. Sistemi lineari Esercizi 5 10\04\017 Sisemi lineari David Barbao Esercizio 1 (Appello 014-015 ese 3). Dao il sisema lineare: x 1 + x + 3x 3 + 4x 4 = 0 x + x 3 + 3x 4 = 0 x 1 x x 3 x 4 = 0 (1) sia T lo spazio delle soluzioni

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. ) Il signor A,

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

Corso di Misure Geodeiche Esercizio posizionameno relaivo Versione:. Jun. 00 Creao da Marco Scurai. remessa. La presene eserciazione risolve in modo compleo e deagliao un problema di sima della posizione

Dettagli

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo.

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo. Il Debio Pubblico In quesa lezione: Sudiamo il vincolo di bilancio del governo. Esaminiamo i faori che influenzano il debio pubblico nel lungo periodo. Sudiamo la sabilià del debio pubblico. 327 Il disavanzo

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli