Il Modello di Scomposizione
|
|
|
- Cristina Molinari
- 8 anni fa
- Visualizzazioni
Transcript
1 Approccio Classico: Metodi di Scomposizione
2
3 Il Modello di Scomposizione Il modello matematico ipotizzato nel metodo classico di scomposizione è: y t =f(s t, T t, E t ) dove y t è il dato riferito al periodo t S t è la componente stagionale al periodo t T t e la componente trend-ciclo al periodo t E t è la componente irregolare al tempo t. La forma di f() dipende dall approccio seguito. Una forma molto comune è la seguente: y t =S t +T t +E t che viene definita modello additivo. Un altra forma altrettanto frequente è il modello moltiplicativo: y t =S t x T t x E t
4 Modello Additivo Un modello additivo è appropriato quando l ampiezza dell oscillazione stagionale non varia col livello della serie.
5 Modello Moltiplicativo Un modello moltiplicativo è adeguato quando la fluttuazione stagionale aumenta (o diminuisce) proporzionalmente con l aumento (diminuzione) del livello della serie
6 Osservazioni Nel modello additivo, le componenti S t,t t, E t sono espresse nella stessa unità di misura di y t ; nel modello moltiplicativo, solo T t (per convenzione) viene espresso nell unità di misura di y t ; E t e S t sono numeri puri. Nel modello additivo l errore può assumere valori positivi o negativi; 0 è il valore neutrale, nel senso che non influenza la serie. Nel modello moltiplicativo l errore può assumere solo valori non negativi e ha 1 come valore neutrale. Si noti che, col modello moltiplicativo, potrebbe essere utile ricorrere alla trasformazione della serie. Poiché la funzione logaritmica trasforma una espressione moltiplicativa in una additiva si ha: ln y t =ln(s t x T t x E t ) ln y t =lns t + lnt t + lne t Quindi, invece del modello moltiplicativo sui dati originari della serie, si potrebbe applicare il modello additivo sulle trasformate logaritmiche.
7
8 Rappresentazioni grafiche negli approcci di scomposizione Analizziamo i dati relativi alla vendita di bottiglie di birra Nr. bottiglie Modello additivo? t Dati destagionalizzati Stagionalità t t
9 Analisi dei Residui Se la scomposizione è valida allora i residui devono presentare un andamento accidentale rispetto al tempo Actual Predicte Actual Predicte Residui 0 Yt t 0 10 t Si nota invece la presenza di una certa ciclicità degli stessi: i residui sono più vicini a zero nella parte centrale della serie mentre sono maggiori (in valore assoluto) alle
10 Serie Destagionalizzata Nel caso di un modello additivo, il dato destagionalizzato D t è deriva come: D t =y t S t =y t +E t mentre nel modello additivo: D t =y t /S t =y t x E t una volta che è stata stimata la componente stagionale S t.
11 Studio del trend mediante forma analitica L evoluzione di lungo periodo di una serie storica è denominata trend. Nell economia, ad esempio, il trend è determinato dal lento sviluppo delle tecnologie, dei fenomeni demografici e sociali, ecc. L esistenza di una evoluzione di lungo periodo può essere evidenziata dall andamento dei dati destagionalizzati risultanti da un analisi di scomposizione, oppure dalla serie di dati annuali (anch essi privi della stagionalità). Nel capitolo precedente abbiamo illustrato la stima del trend mediante le medie mobili; tale procedimento è denominato adattamento locale del trend o stima locale. In questo capitolo affronteremo la stima del trend mediante specificazione e stima di una funzione analitica del tempo t. Questo procedimento è denominato analisi globale poiché la funzione stimata definisce come una sorta di legge di dipendenza del trend dal tempo t. Varie forme funzionali sono utilizzate per rappresentare il trend.
12 Forma Lineare Ipotizziamo che y t =T t +e t, dove y t qui rappresenta o il dato annuale o quell destagionalizzato e e t la componente di disturbo. La forma lineare in t è: T t =β 0 +β 1 t t=1,,n dove β 0 è l intercetta e β 1 è la pendenza della retta. Se β 1 >0 il trend è crescente; se β 1 <0, il trend è decrescente; se β 1 =0 esiste un pattern orizzontale.
13 Stima del Trend Una volta che è stata scelta una forma analitica per rappresentare il trend, è necessario passare alla sua stima a partire da dati di osservazione. I dati sui quali viene stimato il trend dovrebbero essere privi di andamento stagionale e ciclico. In altre parole, l unica componente sistematica presente nei dati deve essere quella tendenziale di lungo periodo. In assenza di significative oscillazioni cicliche, i dati più idonei all analisi del trend sono: i valori destagionalizzati oppure la serie di dati annuali.
14 Esempio: Vendite di Bibita Dati Destagionalizzati ANNO MESE t y t
15 Stima del Trend Mediante il metodo dei minimi quadrati ordinari, la funzione analitica che rappresenta il trend è in tal caso: Tˆ t = 380, 3 + 9, 505t che registra un indice di determinazione lineare R 2 pari a 0,985. Nello studio del trend mediante funzione analitica, viene usato il metodo dei minimi quadrati come in una consueta analisi di regressione.
16 La Media Mobile La media mobile è un semplice metodo che smussa (liscia, perequa) la serie storica. Tale procedura è basilare nei metodi di scomposizione. Se la serie è composta solo da trend e dalla componente residua, la media mobile elimina gli effetti dei disturbi. Se nella serie originaria è presente anche il fenomeno stagionale di periodo p, allora una media mobile di ampiezza p è in grado di eliminare anche la stagionalità. Nei due casi, la media mobile si propone di isolare il trend-ciclo.
17 Esempio: Vendite mensili di shampoo Mese y t 1 266, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,9
18 Time Plot
19 Calcolo della Media Mobile La media mobile a tre termini ci dà una stima del trend T 2 del mese di Febbraio 1999, mediante la media aritmetica dei dati di Gennaio, Febbraio, Marzo 1999: T 2 =(y 1 +y 2 +y 3 )/3 Generalizzando, la media mobile a tre termini centrata su t è: T t =(y t-1 +y t +y t+1 )/3, t=2,,n-1 Si notino, nella Tab. 3.1, i valori della media mobile a tre termini: non c è stima del trend per i tempi t=1 e t=n perché mancano le osservazioni al tempo 0 e al tempo n+1. Come si sarà capito, questa procedura è denominata media mobile perché ogni successiva media viene calcolata eliminando il valore più vecchio e inserendone un nuovo. La media mobile è un metodo di adattamento locale in quanto crea una serie di valori smussati di lunghezza pari alla serie originaria, ognuno in corrispondenza del punto di osservazione t.
20 Calcolo della Media Mobile ome si può facilmente verificare, una media mobile a k termini, con k ispari, fa perdere (k 1)/2 termini all inizio e altrettanti termini alla fine ella serie. La perdita dei primi termini ha poca importanza; al contrario la erdita degli termini più recenti ha conseguenze rilevanti ai fini della perazione di previsione. Una possibile soluzione consiste nell effettuare, gli estremi, delle medie mobili con un numero inferiore di termini. Ad sempio, nel caso di media mobile a tre termini si può calcolare T 1 come 1=(y 1 +y 2 )/2 e T n come T n =(y n-1 +y n )/2. Mese y t MM3 MM5 MM , ,9 198, ,1 149,4 178, ,3 160,9 159,4 185, ,3 156,0 176,6 179, ,5 193,5 184,9 185, ,8 208,3 199,6 177, ,5 216,4 188,1 208, ,8 180,1 221,7 209, ,9 217,4 212,5 212, ,5 215,1 206,5 200, ,9 238,9 197,8 198, ,3 176,6 215,3 210, ,5 184,6 202,6 220, ,1 211,0 203,7 213, ,3 224,9 222,3 218, ,4 250,6 237,6 234, ,0 234,8 256,3 254, ,0 272,2 259,6 284, ,6 273,2 305,6 283, ,9 338,4 301,1 305, ,6 325,3 324,4 312, ,5 342,8 331,6 343, ,3 315,5 361,7 344, ,7 374,1 340,6 366, ,4 365,3 375,5 363, ,9 398,5 387,3 388, ,3 385,5 406,9 421, ,3 426,0 433,9 431, ,4 471,4 452,2 465, ,5 473,5 500,8 488, ,6 555,0 515,6 508, ,0 521,6 544,3 543, ,3 579,5 558, ,3 567, ,9
21 Valori Osservati e Medie Mobili 800,0 700,0 600,0 500,0 Osservati MM3 MM7 400,0 300,0 200,0 100,0 0,
Capitolo 3 (parte prima) Modelli di (s)composizione. Capitolo 3 1
Capitolo 3 (parte prima) Modelli di (s)composizione Capitolo 3 1 Tipi di pattern sistematico Molti metodi di previsione si basano sul fatto che, se esiste un pattern sistematico (rispetto al tempo), questo
Serie storiche Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007
Serie storiche Introduzione Per alcuni dataset, l attributo target è soggetto ad un evoluzione temporale e risulta associato ad istanti di tempo successivi. I modelli di analisi delle serie storiche si
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri
Statistica multivariata Donata Rodi 17/10/2016
Statistica multivariata Donata Rodi 17/10/2016 Quale analisi? Variabile Dipendente Categoriale Continua Variabile Indipendente Categoriale Chi Quadro ANOVA Continua Regressione Logistica Regressione Lineare
CURVE DI DURATA: Introduzione e Rappresentazione analitica
CURVE DI DURATA: Introduzione e Rappresentazione analitica Premesse Si definisce durata di una portata Q riferita ad una sezione di misura, l'intervallo di tempo in cui le portate naturali del corso d
x, y rappresenta la coppia di valori relativa La rappresentazione nel piano cartesiano dei punti ( x, y ),( x, y ),...,( x, y )
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 0/03 lezioni di statistica del 5 e 8 aprile 03 - di Massimo Cristallo - A. Le relazioni tra i fenomeni
Lezioni di Statistica del 15 e 18 aprile Docente: Massimo Cristallo
UIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECOOMIA Corso di laurea in Economia Aziendale anno accademico 2012/2013 Lezioni di Statistica del 15 e 18 aprile 2013 Docente: Massimo Cristallo LA RELAZIOE
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 1 Outline 1 () Statistica 2 / 1 Outline 1 2 () Statistica 2 / 1 Outline 1 2 3 () Statistica 2 / 1
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative
Indice. Previsioni. Serie con trend. Metodo di Holt. Previsioni: trend e stagionalità. serie con trend/tendenza serie con stagionalità
Indice Previsioni serie con trend/tendenza serie con stagionalità Previsioni: trend e stagionalità 7/11/23 16.51 1 2 Serie con trend Regressione lineare Metodo di (doppio smorzamento esponenziale) Metodo
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
Regressione lineare semplice
Regressione lineare semplice Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Statistica con due variabili var. nominale, var. nominale: gruppo sanguigno - cancro
POLITECNICO DI TORINO
POLITECNICO DI TORINO ESERCITAZIONI DI LOGISTICA Laurea in Ingegneria Logistica e della Produzione Corso di Logistica e di Distribuzione 1 Docente: Prof. Ing. Giulio Zotteri Tutore: Ing. Giuliano Scapaccino
Regressione Lineare Semplice e Correlazione
Regressione Lineare Semplice e Correlazione 1 Introduzione La Regressione è una tecnica di analisi della relazione tra due variabili quantitative Questa tecnica è utilizzata per calcolare il valore (y)
Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009)
Il modello di regressione (VEDI CAP 12 VOLUME IEZZI, 2009) Quesito: Posso stimare il numero di ore passate a studiare statistica sul voto conseguito all esame? Potrei calcolare il coefficiente di correlazione.
CAPITOLO 11 ANALISI DI REGRESSIONE
VERO FALSO CAPITOLO 11 ANALISI DI REGRESSIONE 1. V F Se c è una relazione deterministica tra due variabili,x e y, ogni valore dato di x,determinerà un unico valore di y. 2. V F Quando si cerca di scoprire
R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre
R - Esercitazione 6 Andrea Fasulo [email protected] Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria
CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica -
CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI Scuola Secondaria di Primo Grado Matematica - Classe Prima COMPETENZA CHIAVE EUROPEA: COMPETENZA MATEMATICA Profilo dello studente al termine del Primo ciclo
STATISTICA A K (60 ore)
STATISTICA A K (60 ore) Marco Riani [email protected] http://www.riani.it Richiami sulla regressione Marco Riani, Univ. di Parma 1 MODELLO DI REGRESSIONE y i = a + bx i + e i dove: i = 1,, n a + bx i rappresenta
ESERCITAZIONI DI LOGISTICA. Laurea in Ingegneria Logistica e della Produzione. Corso di Logistica e di Distribuzione
ESERCITAZIONI DI LOGISTICA Laurea in Ingegneria Logistica e della Produzione Corso di Logistica e di Distribuzione Docente: Prof. Ing. Giulio Zotteri A.A. 2002/2003 Tutore: Ing. Scapaccino Giuliano QUARTA
ANALISI DELLE SERIE STORICHE
ANALISI DELLE SERIE STORICHE De Iaco S. [email protected] UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA Indice 1 Teoria dei processi stocastici
Statistica Descrittiva Soluzioni 7. Interpolazione: minimi quadrati
ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona
Il modello di regressione lineare multipla. Il modello di regressione lineare multipla
Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa
ANALISI MULTIVARIATA
ANALISI MULTIVARIATA Marcella Montico Servizio di epidemiologia e biostatistica... ancora sulla relazione tra due variabili: la regressione lineare semplice VD: quantitativa VI: quantitativa Misura la
La regressione lineare multipla
13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività
Fasi di uno Studio di Fattibilità. Corso di Progettazione degli Impianti Prof. Sergio Cavalieri
Fasi di uno Studio di Fattibilità Corso di Progettazione degli Impianti Prof. Sergio Cavalieri 1 DEFINIZIONE L Analisi di Fattibilità è un insieme organico di studi tecnici ed economici effettuati allo
Funzioni di regressione non lineari
Funzioni di regressione non lineari Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2013 Rossi Regressione nonlineare Econometria - 2013 1 / 25 Sommario Funzioni di regressione non lineari - note
Capitolo 1 : CENNI SULL ANALISI TECNICA
Capitolo 1 : CENNI SULL ANALISI TECNICA 1.1 INTRODUZIONE L analisi tecnica è uno strumento utilizzato dagli operatori borsistici per cercare di prevedere l andamento del corso dei titoli trattati. Volendo
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..
Test delle Ipotesi Parte I
Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test
Statistica. Capitolo 12. Regressione Lineare Semplice. Cap. 12-1
Statistica Capitolo 1 Regressione Lineare Semplice Cap. 1-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Spiegare il significato del coefficiente di correlazione lineare
Principi di analisi causale Lezione 3
Anno accademico 2007/08 Principi di analisi causale Lezione 3 Docente: prof. Maurizio Pisati Approccio causale Nella maggior parte dei casi i ricercatori sociali utilizzano la regressione per stimare l
Statistica Esercitazione. alessandro polli facoltà di scienze politiche, sociologia, comunicazione
Statistica Esercitazione alessandro polli facoltà di scienze politiche, sociologia, comunicazione Obiettivo Esercizio 1. Questo e alcuni degli esercizi che proporremo nei prossimi giorni si basano sul
La regressione lineare. Rappresentazione analitica delle distribuzioni
La regressione lineare Rappresentazione analitica delle distribuzioni Richiamiamo il concetto di dipendenza tra le distribuzioni di due caratteri X e Y. Ricordiamo che abbiamo definito dipendenza perfetta
Settimana 3. G. M. Marchetti. Marzo 2017
Settimana 3 G. M. Marchetti Marzo 2017 1 / 26 Prima parte Relazioni tra variabili e regressione lineare 2 / 26 Una legge fisica approssimata Il fisico scozzese Forbes 3 / 26 L esperimento di Forbes Sulla
L'analisi classica delle serie storiche. Dr. Simone Celant
L'analisi classica delle serie storiche Dr. Simone Celant Cos'è una serie storica? Una serie storica è una serie di osservazioni del medesimo fenomeno ad intervalli regolari di tempo Esempi di serie storiche:
3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17
C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica
Metodi computazionali per i Minimi Quadrati
Metodi computazionali per i Minimi Quadrati Come introdotto in precedenza si considera la matrice. A causa di mal condizionamenti ed errori di inversione, si possono avere casi in cui il e quindi S sarebbe
Analisi delle Serie Storiche con R
Università di Bologna - Facoltà di Scienze Statistiche Laurea Triennale in Statistica e Ricerca Sociale Corso di Analisi di Serie Storiche e Multidimensionali Prof.ssa Marilena Pillati Analisi delle Serie
Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill
Statistica - metodologie per le scienze economiche e sociali /e S Borra, A Di Ciaccio - McGraw Hill Es 6 Soluzione degli esercizi del capitolo 6 In base agli arrotondamenti effettuati nei calcoli, si possono
Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO
Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima Liceo Artistico e Musicale - Numeri naturali, interi, razionali
Convergenza non condizionata
Economia Internazionale Economia dello Sviluppo Lezione 5 La convergenza nelle dinamiche di crescita A.A 2007-2008 Stefano Usai Convergenza non L ipotesi di convergenza non e basata sull assunzione che
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria [email protected] Il concetto di interpolazione In matematica, e in particolare in
L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%
UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico
Il Valore Aggiunto. Il Valore Aggiunto
Il Valore Aggiunto Il Valore Aggiunto Secondo la definizione adottata dal Sistema Europeo dei Conti SEC95, il prodotto interno lordo ai pressi di mercato viene definito come il risultato finale dell attività
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare
Determinazione dell azoto totale e ammoniacale in spettrofotometria: modalità di calibrazione e confrontabilità nel tempo
UNIVERSITÀ DEGLI STUDI DI PAVIA CORSO DI LAUREA INTERFACOLTÀ IN BIOTECNOLOGIE Determinazione dell azoto totale e ammoniacale in spettrofotometria: modalità di calibrazione e confrontabilità nel tempo Relatore:
Modelli Log-lineari Bivariati
Modelli Log-lineari Bivariati Luca Stefanutti Università di Padova Dipartimento di Psicologia Applicata Via Venezia 8, 35131 Padova L.Stefanutti (Università di Padova) Modelli Log-lineari 1 / 71 Contenuti
La multicollinearità sorge quando c è un elevata correlazione tra due o più variabili esplicative.
Lezione 14 (a cura di Ludovica Peccia) MULTICOLLINEARITA La multicollinearità sorge quando c è un elevata correlazione tra due o più variabili esplicative. In un modello di regressione Y= X 1, X 2, X 3
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 35 Il modello di regressione
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è
Dispensa di Statistica
Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
I 5 principi dell estimo
La stima del valore di mercato Prof. Arch. ALESSIO D AURIA, PhD DIPARTIMENTO DI CONSERVAZIONE DEI BENI ARCHITETTONICI E AMBIENTALI [email protected] I 5 principi dell estimo 1. Il valore dipende dallo
STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
Elementi di Economia Elasticità
Elementi di Economia Elasticità D o t t. s s a M i c h e l a M a r t i n o i a m i c h e l a. m a r t i n o i a @ u n i m i b. i t C o r s o d i l a u r e a i n S c i e n z e d e l T u r i s m o e C o
Il campionamento e l inferenza. Il campionamento e l inferenza
Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento
La sintesi delle distribuzioni
Dip. di Scienze Umane e Sociali [email protected] Outline 1 Introduzione 2 3 4 Outline 1 Introduzione 2 3 4 Introduzione Analisi descrittiva monovariata: segue la raccolta dei dati e il calcolo
Analisi descrittiva: calcolando medie campionarie, varianze campionarie e deviazioni standard campionarie otteniamo i dati:
Obiettivi: Esplicitare la correlazione esistente tra l altezza di un individuo adulto e la lunghezza del suo piede e del suo avambraccio. Idea del progetto: Il progetto nasce dall idea di acquistare scarpe
STIME SECONDO IL METODO DI ARGELANDER
STIME SECONDO IL METODO DI ARGELANDER La stima della magnitudine di una variabile con il metodo di Argelander si basa, come per gli altri metodi (metodo frazionario, metodo di Pogson) sul confronto della
GRAFICI DI PROBABILITÀ Prof. Antonio Lanzotti
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 GRAFICI DI PROBABILITÀ Prof. Antonio Lanzotti A cura di: Ing. Giovanna
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)
CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON
STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A. 2003 / 04 ESERCITAZIONE 1.
STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A. 2003 / 04 ESERCITAZIONE 1 Analisi Classica di Daniele Toninelli NB: HO EVIDENZIATO IN GIALLO LE PROCEDURE
Elementi di Epidemiologia per la Valutazione Comparativa di Esito
Elementi di Epidemiologia per la Valutazione Comparativa di Esito La valutazione della qualità dell assistenza: quali domande? L incidenza di alcuni esiti negativi dell assistenza ospedaliera (come la
L A B C di R. Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010
L A B C di R 0 20 40 60 80 100 2 3 4 5 6 7 8 Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010 La scelta del test statistico giusto La scelta della analisi
10 Quasi esperimenti. Giulio Vidotto Raffaele Cioffi
10 Quasi esperimenti Giulio Vidotto Raffaele Cioffi Indice: 10.1 La differenza principale tra quasi esperimenti e veri esperimenti 10.2 Disegni con gruppo di controllo non equivalenti 10.3 Disegni senza
Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a
Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a
s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;
1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema
Capitolo 6. La distribuzione normale
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università
PREZZI DEI PRODOTTI AGRICOLI
4 marzo 2016 IV trimestre 2015 PREZZI DEI PRODOTTI AGRICOLI Dati definitivi Nel quarto trimestre 2015, l'indice dei prezzi dei prodotti acquistati dagli agricoltori diminuisce dello 0,1% rispetto al trimestre
Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto
Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti
Corso di Psicometria Progredito
Corso di Psicometria Progredito 5. La correlazione lineare Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario 1 Tipi di relazione
Controlli Automatici I
Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE V Sommario LEZIONE V Proprietà strutturali Controllabilità e raggiungibilità Raggiungibilità nei sistemi lineari Forma
