Operatori di aggregazione per metodi multigrid
|
|
|
- Michele Pizzi
- 9 anni fa
- Visualizzazioni
Transcript
1 Operatori di aggregazione per metodi multigrid Marco Donatelli Dipartimento di Fisica e Matematica Università dell Insubria - Como Collaboratori: M. Bolten, T. Huckle Congresso UMI 2011 Bologna Settembre, 2011
2 Outline 1. Multigrid e Aggregazione 2. Metodi Multigrid con fattore di riduzione maggiore di 2 3. Convergenza con operatori di Aggregazione 4. Aggregazione + Rilassamento (scelta del parametro) 5. Esempi
3 Introduzione Applicazioni: equazioni differenziali, equazioni integrali, ricostruzione di immagini, problemi su grafi, etc. Obiettivo: risolvere sistemi lineari con un costo computazionale proporzionale al prodotto matrice-vettore. Strumenti: metodi multigrid con operatori di proiezione costruiti mediante aggregazione (+ rilassamento). Multigrid Algebrico: Indipendente dall applicazione. Definisce il proiettore a partire dal grafo associato alla matrice dei coefficienti del sistema lineare.
4 Metodi multigrid per sistemi lineari Idea Due Griglie (un iterazione): 1. Pochi passi di un metodo iterativo classico (Jacobi,...). 2. Passare all equazione dell errore (permette di sfruttare informazioni spettrali). 3. Proiettare l equazione dell errore in una griglia piu rada. 4. Calcolare l errore nella griglia rada. 5. Interpolare l errore e correggere l approssimazione precedente. V-cycle (più griglie): Il punto 4. è risolto ricorsivamente.
5 Aggregazione L operatore di proiezione è costruito unendo più nodi vicini. Particolamente semplice ed adatto a discretizzazioni agli elementi finiti ed a problemi su grafi Proprietà: Il metodo a due griglie è ottimale [Napov, Notay, NLAA 2010] Il metodo a più griglie non e ottimale e bisogna ricorrere a combinazioni con metodi di Krylov, cicli più complicati o rafforzare il proiettore [Muresan, Notay, SISC 2008] Aggregazione con rilassamento: permette di potenziare l operatore di aggregazione combinandolo con un metodo iterativo con rilassamento classico (scelta del parametro di rilassamento?) [Vanek, Brezina, Mandel, NM 2001]
6 Metodi Multigrid con riduzione della dimensione arbitraria Caso 1D in [D., Serra-Capizzano, Sesana, BIT in stampa]. m fattore di riduzione in ogni dimensione (multigrid classico m = 2). L insieme di tutti gli spigoli di x R d è { { Ω(x) = y R d y j x j + 2πk }} m (mod2π), k = 0,...,m 1, j = 1,...,d. Questo è l insieme di tutte le frequenze della griglia fine che corrispondono alla stessa frequenza nella griglia rada. L insieme dei punti mirror di x è: M(x) = Ω(x)\{x}.
7 Problema proiettato Condizioni al contorno periodiche: f simbolo della matrice dei coefficienti circolante A n = C n (f). f 0 e si annulla solo in x 0. K m n : down-sampling che seleziona un elemento ogni m. Proiettore: P n (p) = K m n C n(p). La matrice nella griglia più rada A n/m = P n (p)a n P n (p) H è t.c. A n/m = C n/m (f c ) f c (x) = 1 m d y Ω(x/m) p 2 f(y), x [0,2π) d.
8 Convergenza metodo a Due Griglie Proposizione 1 Sia A n = C n (f) la matrice dei coefficienti con f 0 avente un unico zero in x 0. Definendo P n (p) = K m n C n(p), dove p è un polinomio trigonometrico non identicamente nullo e tale che per x [ π,π) d p(y) 2 lim sup x x 0 f(x) = c < +, y M(x), (1a) dove y Ω(x) p(y) 2 > 0, (1b) allora definendo A n/m = P n (p)a n P n (p) H il metodo a due griglie è ottimale.
9 Esempio 2D Discretizzazione del Laplaciano con differenze finite su 9 nodi. Simbolo: f(x,y) = 1 1 (cos(x)+cos(y)+cos(x +y)+cos(x y)). 4 Stencil: L 9 = Stencil per operatori di aggregazione di 4 e 9 nodi: G 4 = ; G 9 =
10 Operatori di aggregazione Il simbolo di un operatore di aggregazione in d-dimensioni che aggrega m nodi in ogni dimensione è: a(x) = d m 1 j=1 k=0 e ikx j, x R d. (2) Per x 0 = 0, i.e., f(0) = 0 e f(x) > 0 per x 0 (Laplaciano, etc.), abbiamo che a(x 0 ) = m d a(y s ) = 0, y s M(x 0 ) a(x) = 0, x j = 2πs m, s = 1,...,m.
11 Convergenza per operatori di aggregazione Proposizione 2 Sia a(x) definito in (2), allora esiste 0 < c < + tale che lim sup x 0 a(y) d j=1 xr j = c, y M(x). (3) dove r = d #{y j y j = 0, j = 1,...,d} è il numero di componenti non nulle. Combinando le Proposizioni 2 e 1 si ottiene che per p(x) = a(x) (proiettore = operatore di aggegazione) per r = 2 (Laplaciano,...) il metodo a due griglie è ottimale. Per il V-ciclo p2 f p f non si ha ottimalità.
12 Esempi 2D e m = 3 3D e m = π/ π/ π/3 4π/ blu r = 1, rosso r = 2, verde r = 3.
13 Aggregazione + Rilassamento Nei punti blu dove r = 1 il proiettore mediante aggregazione non è sufficiente per ottenere l ottimalità del V-ciclo. Si combina il proiettore con un passo di un metodo iterativo con rilassamento. Il proiettore diventa P n (p) = K m n C n (a)c n (s ω ), dove C n (s ω ) è la matrice d iterazione del metodo iterativo. Considerando Richardson s ω (x) = 1 ωf(x). ω ottimo determinato in modo tale che s ωopt (y) = 0 per y M(x) con r = 1.
14 Esempi 2D Si considerino le seguenti discretizzazioni del Laplaciano L 5 = , L 9 = m = 2 = s ωopt (0,π) = 0 m = 3 = s ωopt (0, 2 3 π) = s ω opt (0, 4 3 π) = 0 Valori di ω opt = m L 5 L /3 3 4/3 8/9 Per m = 2 indipendentemente dalla f(x,y) si ha che s(x,y) = cos(x)+cos(y) si annulla in (0,π) e (π,0) ( y Ω( π 2) p(y)2 = 0!).
15 Esempio 3D Stencil della discretizzazione del Laplaciano 3D utilizzando elementi finiti trilineari su cubi Simbolo: f(x,y,z) = (cos(x)cos(y)+cos(x)cos(z)+ cos(y)cos(z)+cos(x)cos(y)cos(z)). m = 2 : f(0,0,π) = f(0,π,0) = f(π,0,0) = 3 2 = ω opt = 2 3 In lavori precedenti è stato osservato sperimentalmente che ω = 2 3 è una buona scelta [Vanek, Mandel, Brezina, SISC 1996].
16 Conclusioni Definizione di metodi multigrid con fattori di riduzione maggiori di 2 in ogni dimensione. Analisi di convergenza per proiettori di aggregazione. Criteri di ottimalità per la scelta del parametro di rilassamento per smoothed aggregation.
Marco Donatelli. 14 Febbraio 2004
Proprietà regolarizzanti dei metodi Multigrid Marco Donatelli Dipartimento di Fisica e Matematica Università dell Insubria www.mat.unimi.it/user/donatel 14 Febbraio 2004 Outline 1 Ricostruzione di immagini
Risoluzione di sistemi lineari sparsi e di grandi dimensioni
Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica
Corso di Analisi Numerica
Corso di Laurea in Ingegneria Informatica Corso di 4 - DERIVAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Calcolo numerico delle derivate 2 3 Introduzione Idea di base L idea di base
Autovalori ed autovettori di una matrice
Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo
Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari
Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le
Corso di Analisi Numerica
Corso di Laurea in Ingegneria Informatica Corso di 5 - INTEGRAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Integrazione numerica: formule di Newton-Cotes semplici 2 3 Introduzione
Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico
Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere
0.1 Spazi Euclidei in generale
0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo
Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia
Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto
Equazioni, funzioni e algoritmi: il metodo delle secanti
Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,
Approssimazione di dati e funzioni
Approssimazione di dati e funzioni Richiamiamo i principali metodi di approssimazione polinomiale di un insieme di dati (x i, y i ), i = 0,..., n. Le ordinate y i possono essere i valori assunti nei nodi
Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.
Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,
Claudio Estatico Equazioni non-lineari
Claudio Estatico ([email protected]) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.
Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni
Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)
3.6 Metodi basati sui piani di taglio
3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una
ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB
Calcolo Numerico ed Elementi di Analisi - Allievi AEROSPAZIALI Proff. S. Micheletti, S. Perotto A.A. 20/202, Appello 28 Gennaio 203 NOME... COGNOME... MATRICOLA... DOCENTE... AULA... PC... Ver.A I seguenti
Esercizio 1. Esercizio 2
Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)
Corso di Laurea in Ingegneria Informatica Analisi Numerica
Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]
8 Metodi iterativi per la risoluzione di sistemi lineari
8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,
RISOLUZIONE DI SISTEMI LINEARI
RISOLUZIONE DI SISTEMI LINEARI Algebra lineare numerica 1 La risoluzione di un sistema lineare è il nucleo principale del processo di risoluzione di circa il 70% di tutti i problemi reali Per la risoluzione
Laboratorio di Calcolo Numerico
Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 Equazioni non lineari Data una funzione consideriamo il problema
ESERCIZI SULLE EQUAZIONI DIFFERENZIALI
ESERCIZI SULLE EQUAZIONI DIFFERENZIALI 1. Generalità 1.1. Verifica delle soluzioni. Verificare se le funzioni date sono soluzioni delle equazioni differenziali. xy = 2y, y = 5x 2. y = x 2 + y 2, y = 1
y 3y + 2y = 1 + x x 2.
Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere
Esercizi svolti sugli integrali
Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:
Note sulle Catene di Markov
Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo
Corso di Analisi Numerica
Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione
Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie
Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I
Reti nel dominio delle frequenze. Lezione 10 2
Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio
Metodi computazionali per i Minimi Quadrati
Metodi computazionali per i Minimi Quadrati Come introdotto in precedenza si considera la matrice. A causa di mal condizionamenti ed errori di inversione, si possono avere casi in cui il e quindi S sarebbe
Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di
Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione
2. Costruire un M function file di Matlab che calcola il valore del
Esercizi. 1. Costruire un M function file di Matlab che calcola il valore del polinomio di Chebyshev di grado n in un vettore di punti, usando la formula di ricorrenza a tre termini. Costruire il grafico
A.A Prof. R. Morandi
Svolgimento di alcuni esercizi del corso di Calcolo Numerico A.A. - Prof. R. Morandi Versione in aggiornamento ( gennaio ): ogni segnalazione di imprecisioni è gradita Aritmetica Finita Esercizio : Assegnati
3.4 Metodo di Branch and Bound
3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land
ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011
esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si
Gestione della produzione e della supply chain Logistica distributiva
Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non
Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente
1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Nel Piano
Equazioni algebriche di terzo grado: ricerca delle soluzioni
Equazioni algebriche di terzo grado: ricerca delle soluzioni 1 Caso particolare: x 3 + px + q = 0....................... Caso generale: x 3 + bx + cx + d = 0..................... 4 3 Esercizi.....................................
05 - Funzioni di una Variabile
Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016
Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari
Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema
Funzione di trasferimento
Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: [email protected] URL: www-lar.deis.unibo.it/~crossi Definizione
Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.
Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.
Annamaria Mazzia. Corso di Metodi Numerici per l Ingegneria dispense e altro materiale su
Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione degli angoli conico di taglio ed elicoidale di taglio di una cremagliera Annamaria Mazzia Dipartimento di Metodi
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di PS-Probabilità P.Baldi Tutorato 9, 19 maggio 11 Corso di Laurea in Matematica Esercizio 1 a) Volendo modellizzare l evoluzione della disoccupazione in un certo ambito
Programmazione Lineare: problema del trasporto Ing. Valerio Lacagnina
Problemi di trasporto Consideriamo un problema di programmazione lineare con una struttura matematica particolare. Si può utilizzare, per risolverlo, il metodo del simplesso ma è possibile realizzare una
Parte V: Rilassamento Lagrangiano
Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice
1 Massimi e minimi per funzioni di n variabili
Corso di laurea in Fisica A.A. 2008/09 Contenuto sintetico del corso di Analisi Matematica II-B 1 Massimi e minimi per funzioni di n variabili 1.1 Massimi e minimi relativi 1.1.1 Condizioni al primo ordine
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
Metodi a più passi. Esempi
. Esempi Metodo del punto medio y(t n+1 ) = y(t n 1 ) + t n+1 t n 1 f (t, y(t)) dt = y(t n 1 ) + 2hf (t n, y(t n )) + O(h 3 ) u n+1 = u n 1 + 2hf (t n, u n ) Metodo di Simpson y(t n+1 ) = y(t n 1 ) + t
1 Schemi alle differenze finite per funzioni di una variabile
Introduzione In questa dispensa vengono forniti alcuni elementi di base per la soluzione di equazioni alle derivate parziali che governano problemi al contorno. A questo scopo si introducono, in forma
A. Quarteroni, R. Sacco, F. Saleri, Matematica Numerica 3a Edizione. Springer, Milano Errata Corrige 16 aprile 2013
A. Quarteroni, R. Sacco, F. Saleri, Matematica umerica 3a Edizione. Springer, Milano 2008 1 Errata Corrige 16 aprile 2013 pag. 29: suggerimento per lo svolgimento dell Es. 4. Osservare che I + B = 2I (I
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
MECCANICA COMPUTAZIONALE
MECCANICA COMPUTAZIONALE Capitolo 1 Introduzione Rev. 21 aprile 2008 (rev. 21/04/2008) Capitolo 1: 1/28 Argomenti trattati nel capitolo 1 Esempi di problemi strutturali complessi Limiti degli approcci
Calcolo Numerico con elementi di programmazione
Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni
ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx
ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....
Complemento ortogonale e proiezioni
Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali
Esercizi per il corso di Algebra e Geometria L.
Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo
Applicazioni lineari e diagonalizzazione. Esercizi svolti
. Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)
Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011
Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono
Problemi, istanze, soluzioni
lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un
Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo
Capitolo Esercizi a.a. 206-7 Esercizi Esercizio. Dimostrare che il metodo iterativo x k+ = Φ(x k ), k = 0,,..., se convergente a x, deve verificare la condizione di consistenza x = Φ(x ). Ovvero, la soluzione
Corso di Calcolo Numerico
Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 6 Equazioni differenziali ordinarie: metodi impliciti 3 Novembre 26 Esercizi di implementazione Un equazione differenziale
Flusso a Costo Minimo
Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni [email protected] Corso di: Ottimizzazione Combinatoria Dal
Teorema di Thevenin generalizzato
Teorema di Thevenin generalizzato Si considerino due reti elettriche lineari, A e B, aventi rispettivamente N A e N B nodi interni. Esse si interfacciano attraverso n (n 3) fili di collegamento, in cui
RENDITE. Ricerca del tasso di una rendita
RENDITE Ricerca del tasso di una rendita Un problema che si presenta spesso nelle applicazioni è quello di calcolare il tasso di interesse associato a una rendita quando siano note le altre grandezze 1
Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)
Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo
Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =
Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.
Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.
1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3
ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1
Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell
