Dopo la ventilazione alveolare, il passaggio successivo del processo respiratorio consiste nella diffusione dell O2 dagli alveoli al sangue e della

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dopo la ventilazione alveolare, il passaggio successivo del processo respiratorio consiste nella diffusione dell O2 dagli alveoli al sangue e della"

Transcript

1 Dopo la ventilazione alveolare, il passaggio successivo del processo respiratorio consiste nella diffusione dell O2 dagli alveoli al sangue e della CO2 in direzione opposta. R = quoziente respiratorio, è il rapporto tra CO 2 prodotta e O 2 consumato. Dipende dal contenuto nella dieta di lipidi, carboidrati e proteine, che determinano la quantità di CO 2 prodotta per un dato numero di molecole di O 2 consumate. R = 0.8

2 Quoziente respiratorio Indica l O2 necessario per ossidare un macronutriente. È differente per eguale quantità di carboidrati, proteine, grassi. Fornisce indicazioni sul substrato energetico ossidato (utilizzato a fine energetico). È necessario conoscere il volume di ossigeno consumato e di anidride carbonica prodotta. QR = CO 2 / O 2 QR CARBOIDRATI C 6 H 12 O O 2 6CO H 2 O + ATP QR = 6CO 2 / O 2 = 1 QR LIPIDI C 16 H 32 O O 2 16CO H 2 O + ATP QR = 16CO 2 / 23 O 2 = 0.7 QR PROTEINE C 72 H 112 N 2 O 22S + 77 O 2 63 CO H 2 O + SO CO(NH 2 )2 + ATP QR = 63CO 2 / 77 O 2 = 0.82

3 Equivalenti calorici

4 L aria che respiriamo è una miscela di gas, principalmente costituita da O 2, N 2 e CO 2. La velocità di diffusione di ciascuno di questi gas (quantità di gas che diffonde nell unità di tempo) è direttamente proporzionale alla pressione che esso avrebbe se considerato singolarmente, cioè alla pressione parziale del gas.

5 Legge di Dalton Legge dei gas ideali PV=nRT La pressione parziale esercitata da un gas contenuto in una miscela gassosa è direttamente proporzionale alla sua concentrazione percentuale nella miscela stessa. Pgas = %gas. P miscela L aria a livello del mare ha P = 760 mmhg, con la seguente composizione 20.84% O 2 po 2 = 159 mmhg 78.62% N 2 pn 2 = 597mmHg 0.04% CO 2 pco 2 = 0.3 mmhg

6 L aria che entra nelle vie aeree viene umidificata fino a saturazione. Il vapore acqueo, alla temperatura corporea, esercita una pressione parziale di 47 mmhg. Poiché la P totale è sempre 760 mmhg, la pressione parziale degli altri gas diminuisce. Aria inspirata Pgas = %gas. (P miscela-ph 2 O) po 2 = 149 mmhg pn 2 = 563 mmhg pco 2 = 0.3 mmhg

7 Le P dei gas nell aria alveolare sono differenti da quelle dell aria inspirata. Ad ogni atto respiratorio, 350 ml di aria atmosferica si diluiscono in un volume (CFR) di 2300 ml (il lento rinnovamento dell aria alveolare è fondamentale per prevenire improvvisi cambiamenti delle concentrazioni dei gas nel sangue). A livello alveolare l O 2 viene continuamente prelevato dal sangue e CO 2 passa continuamente dal sangue all alveolo Aria alveolare: po 2 = 100 mmhg pco 2 = 40 mmhg

8

9 La po 2 e pco 2 alveolari dipendono dalla ventilazione alveolare Ipoventilazione Iperventilazione P alveolare gas (mmhg) Ventilazione normale 4.2 l/min Ventilazione alveolare l/min

10 Legge di Henry Cgas in soluzione = Pgas x coefficiente di solubilità (α). La CO 2 è 23 volte più solubile dello 2

11 Gli scambi gassosi

12 Sangue venoso Sangue arterioso A = superficie di scambio Secondo la Legge di Fick F = P. A. D d D = coefficiente di diffusione α/ PM d = distanza di diffusione, spessore membrana respiratoria

13 O 2 O 2 O 2 O 2 O 2 O 2 pao 2 = 100 mmhg pvo 2 = 40 mmhg pao 2 = 100 mmhg P v P A L O 2 diffonde dall alveolo al plasma e da qui nel globulo rosso, dove si lega all Hb. La velocità di legame dell O 2 con Hb determina la velocità con cui viene raggiunto l equilibrio tra po 2 alveolare e po 2 nel sangue. 0 Inizio capillare Tempo (sec) Fine capillare La po 2 dipende dall O 2 fisicamente disciolto e non da quello legato all Hb

14 N 2 O P A P v O 2 CO Il raggiungimento dell equilibrio tra aria alveolare e sangue dipende dal legame del gas con Hb ed è tanto più ritardato quanto più alta è l affinità dell Hb per il gas. 0 Inizio capillare Tempo (sec) Fine capillare

15 45 P v Tempo di raggiungimento dell equilibrio tra sangue e aria alveolare per la CO Inizio capillare Tempo (sec) P A Fine capillare

16 La capacità di diffusione polmonare di un gas (Dp) è il volume di gas che diffonde in un minuto per un P di 1 mmhg. Valutata dall equazione di Fick: Vgas = P. A. D/d Dp = A. D/d Dp = Vgas / P Per il P è necessario considerare il P medio (11 mmhg per O 2 e 1mmHg per CO 2 ). DpO 2 = 21 ml/min/mmhg DpCO 2 = 200 ml/min/mmhg Aumenta durante l esercizio fisico perché aumenta area superficie di scambio per: Reclutamento capillari Dilatazione capillari già pervi

17 Sangue venoso Sangue arterioso Emoglobina Globulo rosso Plasma O 2 Endotelio Interstizio Cellula Anche a livello dei tessuti lo scambio dei gas avviene per diffusione: FO 2 = D. A. (po 2 capillari - po 2 tessuto) A = superficie di scambio, d = distanza tra capillare e tessuto Il numero dei capillari perfusi incide su A e d d max varia da organo ad organo: miocardio 13 µm, cervello 18 µm, muscolo 40 µm d

18 La disponibilità di O 2 per un tessuto dipende da: contenuto di O 2 nel sangue arterioso flusso ematico nel tessuto (perfusione) La po 2 del tessuto dipende dall equilibrio tra: disponibilità di O 2 quantità di O 2 utilizzata dai tessuti Il rapporto tra consumo e disponibilità di O 2 è detto: 2 Coefficiente di utilizzazione CaO 2 - CvO 2 CaO 2 po 2 intracellulare media = 23 mmhg Poiché per un normale metabolismo ossidativo è sufficiente una po 2 di 1-3 mmhg, quando po 2 > 1 mmhg, il fattore limitante per il metabolismo cellulare non è l O 2 ma la concentrazione di ADP

19 L apporto di O 2 ad un organo viene adattato al fabbisogno di O 2 principalmente tramite variazioni della perfusione. Il contenuto di O 2 nel sangue arterioso non può essere aumentato di molto con l iperventilazione poiché in condizioni normali la saturazione dell Hb è già 97% Estrazione di O 2 dal sangue arterioso Gli squilibri fra le necessità e la disponibilità di O 2 vengono definiti ipossie

20 150 P alveolare O 2 (mmhg) P alveolare CO 2 (mmhg) po 2 alveolare (100 mmhg) Consumo O ml/min Consumo O ml/min Ventilazione alveolare l/min Produzione CO ml/min Produzione CO ml/min pco 2 alveolare (40 mmhg) Ventilazione alveolare l/min po 2 alveolare è: direttamente proporzionale alla ventilazione, fino ad un limite (po 2 aria inspirata) inversamente proporzionale alla velocità di consumo O 2 pco 2 alveolare è: direttamente proporzionale alla velocità di produzione della CO 2 inversamente proporzionale alla ventilazione

21 Il trasporto di gas nel sangue

22 Il 97% dell O 2 trasportato nel plasma si trova chimicamente legato all Hb nei globuli rossi, solo il 3% è fisicamente disciolto Trasporto O 2 nel plasma Trasporto O 2 legato ad Hb Dipende dal Sangue disciolto 0.3 ml/100ml 19.4 ml/100ml Hb saturata al 97% Contenuto totale di O = 19.7 ml/100ml

23 Emoglobina (cromoproteina PM = ) 4 catene polipeptidiche: 2α e 2 non α (β, γ, δ) 4 gruppi eme (protoporfirine, 4 anelli pirrolici + Fe bivalente centrale) Adulto: 95% HbA α 2 β 2, 2-3% HbA 2 α 2 δ 2 Feto: HbF α 2 γ 2 Hb + 4O 2 Hb(O 2 ) 4 O 2 si lega all eme per ossigenazione (senza cambiamenti della valenza ionica): si forma Ossiemoglobina (HbO 2 ) La liberazione dell O 2 avviene per desossigenazione: si forma Desossiemoglobina

24 Concentrazione Hb = 15 gr / 100ml sangue 1 gr Hb lega 1.39 ml di O 2 (condizioni ottimali) 1 gr Hb lega 1.34 ml di O 2 (in condizioni reali, leggera presenza MetHb): Nel sangue arterioso la capacità massima di trasporto di O 2 è 20.4ml/ 100ml di sangue La quantità di O 2 legata all Hb cresce in rapporto alla po 2, seguendo una curva ad andamento sigmoide: Saturazione in O 2 = [HbO 2 ] / Hb totale

25 Curva di dissociazione dell ossiemoglobina Sangue arterioso Saturazione 97.5% = ml/100 5 ml O 2 / 100 ml ceduti ai tessuti in condizioni basali (25% dell intera capacità) Satura azione Hb % Sangue venoso condizioni basali Saturazione 75% = 14.4 ml/100 Sangue venoso intensa attività fisica Saturazione 25% = 4.5 ml/100 Vantaggi relazione Hb + O 2 Garantisce saturazione Hb >90% per riduzioni della po 2 alveolare fino a 60mmHg Permette una maggiore cessione di O 2 ai tessuti con piccole variazioni di po 2 P50 Tessuti Alveoli

26

27 Rilascio di ossigeno da parte dell emoglobina Intensità crescente di lavoro

28 L affinità dell Hb per l O 2 viene influenzata da: Temperatura ph pco 2 2,3-DPG

29 L aumento di T sposta la curva verso Ds (minore affinità dell Hb per O 2 ) La riduzione di T sposta la curva verso Sn (maggiore affinità di Hb per O 2 ) Saturazion ne Hb %

30 La riduzione di ph sposta la curva verso Ds (minore affinità dell Hb per O 2 ) L aumento di ph sposta la curva verso Sn (maggiore affinità di Hb per O 2 ) Saturazione % Hb

31 L aumento di pco 2 sposta la curva verso Ds (minore affinità dell Hb per O 2 ) La riduzione di pco 2 sposta la curva verso Sn (maggiore affinità di Hb per O 2 ) Saturazione % Hb

32 Effetto Bohr Le variazioni di affinità dell Hb per O 2 determinate da variazioni di pco 2 (effetto carbaminico) e di ph, sono alla base dell Effetto Bohr L effetto Bohr ha conseguenze sia sull assunzione di O 2 a livello polmonare che sulla sua cessione a livello tissutale. A livello polmonare l assunzione di O 2 è favorita dalla contemporanea eliminazione di CO 2 A livello tissutale la cessione di O 2 è favorita dalla contemporanea assunzione di CO 2

33 L aumento di 2,3-DPG sposta la curva verso Ds (minore affinità dell Hb per O 2 ) La riduzione di 2,3-DPG sposta la curva verso Sn (maggiore affinità di Hb per O 2 ) 2,3-DPG sintetizzato nei globuli rossi (glicolisi anaerobica). Saturazion ne % Hb Si lega alla catena β dell Hb e varia la sua affinità per O 2. Il suo effetto è legato anche ad un abbassamento del ph (anione indiffusibile con 5 gruppi acidi). La sua formazione è stimolata da bassi livelli di ossiemoglobina (anemia altitudine)

34 HbCO aturazione % Sa HbO 2 Il monossido di carbonio (CO) si lega all Hb sullo stesso sito per O 2 con un legame 250 volte più stabile

35 Contenuto arterioso O 2 O 2 disciolto O 2 legato Hb Influenzato da: % Saturazione Hb Numero totale legami Influenzata da: ph T 2,3-DPG CO 2 Hb/GR n GR Composizione aria inspirata Ventilazione alveolare A Diffusione d Perfusione alveolare Fr e Vc R vie aeree Compliance

36 Trasporto CO 2 Fisicamente disciolta (5-7%) 0.06 ml/100 ml sangue per mmhg Sangue arterioso pco 2 (40 mmhg) 2.4 ml/100 ml Sangue arterioso pco 2 (46 mmhg) 2.7 ml/100 ml Legata alle proteine (legami carbaminici, 20%) Sotto forma di HCO 3- (70%) CO 2 + H 2 O H 2 CO 3 H + + HCO 3 - Anidrasi carbonica nei globuli rossi

37 Trasporto CO 2 nel sangue Trasporto al polmone Aria alveolare Nutrienti Metabolismo CO2 disciolta CO 2 disciolta

38 Cont tenuto totale CO 2 ml/ Normale variazione Sangue venoso po 2 40mmHg Sangue arterioso po 2 100mmHg pco 2 Effetto Haldane Il legame dell O 2 con Hb favorisce l eliminazione della CO 2, la curva di dissociazione della CO 2 è spostata verso il basso

39 Effetto Haldane Dovuto alla maggiore acidità dell Hb legata all O 2. Questo facilita l eliminazione della CO 2 con due meccanismi: L Hb più acida ha meno tendenza a legarsi alla CO 2 come carbaminoemoglobia, liberando quindi molta della CO 2 sotto questa forma 2 L Hb più acida rilascia un maggior numero di H +, i quali si combinano con HCO 3- riformando CO 2 che passa dal sangue agli alveoli

40 CO 2 + H 2 O H 2 CO 3 H + + HCO 3 - Anidrasi carbonica nei globuli rossi

41

Trasporto di O 2 nel sangue

Trasporto di O 2 nel sangue Trasporto di O 2 nel sangue Il 97% dell O 2 trasportato nel plasma è chimicamente legato all Hb nei globuli rossi, solo il 3% è fisicamente disciolto Trasporto O 2 nel plasma Trasporto O 2 legato ad Hb

Dettagli

Trasporto gas nel sangue

Trasporto gas nel sangue Trasporto gas nel sangue Trasporto O2 97% legato all Hb nei globuli rossi 3% fisicamente disciolto, determina il valore di po 2 97% 3% O 2 disciolto nel plasma O 2 legato ad Hb Saturazione Hb 97% 0.3 ml/100ml

Dettagli

Trasporto dei gas. Pressioni Volumi

Trasporto dei gas. Pressioni Volumi Trasporto dei gas Pressioni Volumi Il 97% dell O 2 trasportato nel plasma si trova chimicamente legato all Hb nei globuli rossi, solo lo 3% è fisicamente disciolto Trasporto O 2 nel plasma Trasporto O

Dettagli

Trasporto O 2 nel sangue

Trasporto O 2 nel sangue Trasporto O 2 nel sangue 97% legato all Hb nei globuli rossi 3% fisicamente disciolto (determina il valore di po 2 ) Trasporto O 2 nel plasma Trasporto O 2 legato ad Hb Saturazione Hb 97% 0.3 ml/100ml

Dettagli

po % O % N % CO 2 = 159 mmhg pn 2 = 597 mmhg pco 2 = 0.3 mmhg

po % O % N % CO 2 = 159 mmhg pn 2 = 597 mmhg pco 2 = 0.3 mmhg Scambi alveolari L aria che respiriamo è una miscela di gas, principalmente costituita da O 2, N 2 e CO 2. La velocità di diffusione di ciascuno di questi gas (quantità di gas che diffonde nell unità di

Dettagli

LEZIONE 25: EMOGLOBINA L EMOGLOBINA ED IL TRASPORTO DI OSSIGENO

LEZIONE 25: EMOGLOBINA L EMOGLOBINA ED IL TRASPORTO DI OSSIGENO LEZIONE 25: EMOGLOBINA L EMOGLOBINA ED IL TRASPORTO DI OSSIGENO Lezione 25_emoglobina 1 Concentrazione di O 2 nel plasma Il contenuto totale di O2 nel sangue è pari alla quantità disciolta più quella legata

Dettagli

O2: % 84, N2: % 62, % CO2:

O2: % 84, N2: % 62, % CO2: Diffusione alveolo-capillare dei gas respiratori La quantità di un gas che diffonde nell unità di tempo (velocità di diffusione) dipende dalla sua pressione parziale (p), che, per la Legge di Dalton è

Dettagli

Trasporto O 2 nel sangue

Trasporto O 2 nel sangue Trasporto O 2 nel sangue 97% legato all Hb nei globuli rossi 3% fisicamente disciolto, determina il valore di po 2 Trasporto O 2 nel plasma Trasporto O 2 legato ad Hb SaturazioneHb 97% 0.3 ml/100ml 19.4

Dettagli

L EMOGLOBINA ED IL TRASPORTO DI OSSIGENO

L EMOGLOBINA ED IL TRASPORTO DI OSSIGENO L EMOGLOBINA ED IL TRASPORTO DI OSSIGENO Lezione 23 1 Concentrazione di O 2 nel plasma Il contenuto totale di O2 nel sangue è pari alla quantità disciolta più quella legata all emoglobina: L O 2 totale

Dettagli

P aria (livello del mare) = 760 mmhg. Composizione: O 2 : 20.84% N 2 : 78.62% CO 2 : 0.04% po 2 = 159 mmhg. pn 2 = 597mmHg. pco 2 = 0.

P aria (livello del mare) = 760 mmhg. Composizione: O 2 : 20.84% N 2 : 78.62% CO 2 : 0.04% po 2 = 159 mmhg. pn 2 = 597mmHg. pco 2 = 0. Scambi alveolari Aria atmosferica = miscela di gas (principalmente O 2, N 2, CO 2 ) La velocità di diffusione di un gas (quantità di gas che diffonde nell unità di tempo) è direttamente proporzionale alla

Dettagli

Scambi gassosi e regolazione del respiro

Scambi gassosi e regolazione del respiro Corso di Laurea Magistrale in Medicina e Chirurgia Biofisica e Fisiologia I Scambi gassosi e regolazione del respiro Ventilazione polmonare Ruolo del Sistema Respiratorio: 1 2 - fornire O 2 - rimuovere

Dettagli

Foto funzioni apparato respiratorio

Foto funzioni apparato respiratorio RESPIRAZIONE ESTERNA Foto funzioni apparato respiratorio RESPIRAZIONE INTERNA GLI SCAMBI GASSOSI QUOZIENTE RESPIRATORIO = CO 2 PRODOTTA O 2 CONSUMATO A riposo: Epitelio alveolare 200 ml/min 250 ml/min

Dettagli

Scambi gassosi e regolazione del respiro

Scambi gassosi e regolazione del respiro Corso di Laurea Magistrale in Medicina e Chirurgia Biofisica e Fisiologia I Scambi gassosi e regolazione del respiro Ruolo del Sistema Respiratorio: - fornire O 2 - rimuovere CO 2 Scaricato da www.sunhope.it

Dettagli

COMPOSIZIONE DELL ARIA ATMOSFERICA SECCA E PRESSIONI PARZIALI DEI GAS - (760 TORR, 15 C)

COMPOSIZIONE DELL ARIA ATMOSFERICA SECCA E PRESSIONI PARZIALI DEI GAS - (760 TORR, 15 C) COMPOSIZIONE DELL ARIA ATMOSFERICA SECCA E PRESSIONI PARZIALI DEI GAS - (760 TORR, 15 C) COMPOSIZIONE ARIA NELL ATMOSFERA = COSTANTE A PARTE LE VARIAZIONI DELLA QUANTITA DI VAPORE ACQUEO A 0 C 1 torr =

Dettagli

EMOGLOBINA, MIOGLOBINA MIOGLOBINA ED EMOGLOBINA NEL TRASPORTO DELL OSSIGENO

EMOGLOBINA, MIOGLOBINA MIOGLOBINA ED EMOGLOBINA NEL TRASPORTO DELL OSSIGENO EMOGLOBINA, MIOGLOBINA MIOGLOBINA ED EMOGLOBINA NEL TRASPORTO DELL OSSIGENO Trasporto dell ossigeno In tutti gli animali superiori, il metabolismo è aerobico L energia che si può estrarre dal glucosio

Dettagli

Dopo la ventilazione alveolare, il passaggio successivo del processo respiratorio consiste nella diffusione dell O 2 dagli alveoli al sangue e della

Dopo la ventilazione alveolare, il passaggio successivo del processo respiratorio consiste nella diffusione dell O 2 dagli alveoli al sangue e della Dopo la ventilazione alveolare, il passaggio successivo del processo respiratorio consiste nella diffusione dell O 2 dagli alveoli al sangue e della CO 2 in direzione opposta. L aria che respiriamo è una

Dettagli

PORTA AGLI ORGANI E AI TESSUTI: RIMUOVE: OMEOTERMI INTERVIENE NELLA TERMOREGOLAZIONE FUNZIONI DELLA CIRCOLAZIONE SANGUIGNA IL GLOBULO ROSSO

PORTA AGLI ORGANI E AI TESSUTI: RIMUOVE: OMEOTERMI INTERVIENE NELLA TERMOREGOLAZIONE FUNZIONI DELLA CIRCOLAZIONE SANGUIGNA IL GLOBULO ROSSO FUNZIONI DELLA CIRCOLAZIONE SANGUIGNA IL GLOBULO ROSSO PORTA AGLI ORGANI E AI TESSUTI: a. L OSSIGENO (O 2 ), b. LE SOSTANZE NUTRITIZIE ASSORBITE, c. I SECRETI DELLE GHIANDOLE ENDOCRINE. RIMUOVE: a. L ANIDRIDE

Dettagli

Mioglobina ed emoglobina

Mioglobina ed emoglobina Mioglobina ed emoglobina α β Muscolo Deposito di O 2 Alta affinità per O 2 β α Globulo rosso Trasporto di O 2 Bassa affinità per O 2 Cooperativa ed allosterica Animali Mb-knockout (2003) : funzionalità

Dettagli

Lo scambio gassoso negli animali

Lo scambio gassoso negli animali Lo scambio gassoso negli animali Durante la RESPIRAZIONE CELLULARE (mitocondri) le cellule consumano O2 e producono CO2 L approvvigionamento di O2 e la rimozione della CO2 avvengono tramite SCAMBI GASSOSI

Dettagli

P aria (livello del mare) = 760 mmhg. Composizione: O 2 : 20.84% N 2 : 78.62% CO 2 : 0.04% po 2 = 159 mmhg. pn 2 = 597mmHg. pco 2 = 0.

P aria (livello del mare) = 760 mmhg. Composizione: O 2 : 20.84% N 2 : 78.62% CO 2 : 0.04% po 2 = 159 mmhg. pn 2 = 597mmHg. pco 2 = 0. Scambi alveolari Aria atmosferica = miscela di gas (principalmente O 2, N 2, CO 2 ) La velocità di diffusione di un gas (quantità di gas che diffonde nell unità di tempo) è direttamente proporzionale alla

Dettagli

Fisiologia della Respirazione

Fisiologia della Respirazione Fisiologia della Respirazione 8.Trasporto dei gas nel sangue FGE aa.2016-17 Obiettivi Necessità di un sistema di trasporto chimico ad alta capacità dell O 2 nel sangue: l emoglobina Curva di dissociazione

Dettagli

Trasporto di ossigeno. Dr. Emilio D Avino Dip.to Cardioscienze AOSP SCAMILLO-FORLANINI ROMA

Trasporto di ossigeno. Dr. Emilio D Avino Dip.to Cardioscienze AOSP SCAMILLO-FORLANINI ROMA Trasporto di ossigeno Dr. Emilio D Avino Dip.to Cardioscienze AOSP SCAMILLO-FORLANINI ROMA O 2 A B C OBIETTIVI DELLA LEZIONE 1. Comprendere le modalità di trasporto dei gas respiratori nel sangue 2. Comprendere

Dettagli

Fisiologia della Respirazione 8.Trasporto dei gas nel sangue. Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona

Fisiologia della Respirazione 8.Trasporto dei gas nel sangue. Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona Fisiologia della Respirazione 8.Trasporto dei gas nel sangue Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona Obiettivi Necessità di un sistema di trasporto chimico ad alta capacità

Dettagli

FISIOLOGIA DELL APPARATO RESPIRATORIO

FISIOLOGIA DELL APPARATO RESPIRATORIO FISIOLOGIA DELL APPARATO RESPIRATORIO L APPARATO RESPIRATORIO Il cuore è l organo centrale del sistema circolatorio: funge da pompa capace di produrre una pressione sufficiente a permettere la circolazione

Dettagli

Apparato Respiratorio

Apparato Respiratorio Corso di Laurea Magistrale in Medicina e Chirurgia Fisiologia e Biofisica A.A. 2016-2017 Apparato Respiratorio Prof. Clara Iannuzzi Dipartimento di Biochimica, Biofisica e Patologia Generale clara.iannuzzi@unina2.it

Dettagli

DISTRIBUZIONE DELLA PERFUSIONE POLMONARE DISTRIBUZIONE DELLA VENTILAZIONE POLMONARE DEFINIRE LA COMPLIANCE POLMONARE

DISTRIBUZIONE DELLA PERFUSIONE POLMONARE DISTRIBUZIONE DELLA VENTILAZIONE POLMONARE DEFINIRE LA COMPLIANCE POLMONARE VOLUMI POLMONARI DISTRIBUZIONE DELLA PERFUSIONE POLMONARE DISTRIBUZIONE DELLA VENTILAZIONE POLMONARE DEFINIRE LA COMPLIANCE POLMONARE DEFINIRE LE RESISTENZE POLMONARI DEFINIRE IL LAVORO POLMONARE Equazione

Dettagli

il sistema respiratorio

il sistema respiratorio il sistema respiratorio respirazione cellulare (o interna) e respirazione esterna scambio dei gas regolato dalle leggi della diffusione in alcuni organismi la respirazione avviene attraverso la superficie

Dettagli

Emoglobina e mioglobina

Emoglobina e mioglobina Emoglobina e mioglobina Per molti organismi, l O 2 è una molecola di importanza vitale: l'ossigeno è infatti l'accettore finale degli elettroni, che "fluendo" attraverso i complessi della catena respiratoria,

Dettagli

Mioglobina Emoglobina

Mioglobina Emoglobina Mioglobina Emoglobina RESPIRAZIONE : assunzione di O 2 dall ambiente e rilascio di CO 2 La RESPIRAZIONE CELLULARE è un processo redox attraverso il quale vengono trasferiti atomi di idrogeno da un composto

Dettagli

Sherwood, FISIOLOGIA UMANA. Dalle cellule ai sistemi, Zanichelli editore S.p.A. Copyright

Sherwood, FISIOLOGIA UMANA. Dalle cellule ai sistemi, Zanichelli editore S.p.A. Copyright 13 1 13 2 13 3 Le pleure sono costituite da diversi strati di tessuto connettivo elastico e numerosi capillari. Esse contengono il liquido pleurico e hanno due funzioni fondamentali: 1 - creare una superficie

Dettagli

L APPARATO RESPIRATORIO

L APPARATO RESPIRATORIO Tutte le illustrazioni sono state prese dal seguente testo con l unico proposito di illustrare questi appunti ad uso e consumo degli studenti di Scienze Motorie che a causa del terremoto non hanno potuto

Dettagli

Trasporto dei gas respiratori nel sangue

Trasporto dei gas respiratori nel sangue Trasporto dei gas respiratori nel sangue La soluzione dei gas nei liquidi C Legge di Henry acq P gas S gas C acq = quantità di gas disciolta nella fase acquosa P gas = pressione parziale del gas nella

Dettagli

EMOGLOBINA (Hb) nei globuli rossi e

EMOGLOBINA (Hb) nei globuli rossi e Nel metabolismo aerobio l O 2 è l accettore finale nel mitocondrio degli elettroni liberati dai composti carboniosi Proteine leganti l O 2 sono EMOGLOBINA (Hb) nei globuli rossi e MIOGLOBINA nelle fibre

Dettagli

STRUTTURA E FUNZIONE

STRUTTURA E FUNZIONE STRUTTURA E FUNZIONE O 2 non solubile in acqua Esistono due proteine che permettono il trasporto di O 2 nel corpo emoglobina (Hb) si trova nei globuli rossi Trasporta anche CO 2 and H + Mioglobina (Mb)

Dettagli

L O 2 nel sangue è trasportato: in piccola parte disciolto nel plasma principalmente legato all Hb. Trasporto dell O 2 nel sangue

L O 2 nel sangue è trasportato: in piccola parte disciolto nel plasma principalmente legato all Hb. Trasporto dell O 2 nel sangue L O 2 nel sangue è trasportato: in piccola parte disciolto nel plasma principalmente legato all Hb Trasporto dell O 2 nel sangue L O 2 è poco solubile in H 2 O per cui nella maggior parte degli organismi

Dettagli

Fisiologia della Respirazione 9.Scambi gassosi-ventilazione vent/perf. FGE aa

Fisiologia della Respirazione 9.Scambi gassosi-ventilazione vent/perf. FGE aa Fisiologia della Respirazione 9.Scambi gassosi-ventilazione vent/perf FGE aa.2015-16 Obiettivi Studio delle relazioni quantitative tra ventilazione, flusso di sangue nei polmoni, composizione dell aria

Dettagli

Plasma ph Tamponi: LEC: HCO 3 LIC: Proteine, Emoglobina, Fosfati Urina: Fosfati e ammoniaca

Plasma ph Tamponi: LEC: HCO 3 LIC: Proteine, Emoglobina, Fosfati Urina: Fosfati e ammoniaca Equilibrio acidobase Dieta: Acidi grassi Aminoacidi Assunzione H + CO 2, acido lattico, chetoacidi Plasma ph 7.357.42 Tamponi: LEC: HCO 3 LIC: Proteine, Emoglobina, Fosfati Urina: Fosfati e ammoniaca Ventilazione:

Dettagli

Nel corso dell evoluzione, con il passaggio dalla. progressivamente differenziati due meccanismi. un sistema circolatorio adeguato;

Nel corso dell evoluzione, con il passaggio dalla. progressivamente differenziati due meccanismi. un sistema circolatorio adeguato; PROTEINE RESPIRATORIE EMOGLOBINA & MIOGLOBINA Nel corso dell evoluzione, con il passaggio dalla vita anaerobia alla vita aerobia si sono progressivamente differenziati due meccanismi che sono in grado

Dettagli

- natura riduttiva - richiede energia

- natura riduttiva - richiede energia - natura ossidativa - produce energia - natura riduttiva - richiede energia 1 L O 2 è poco solubile in acqua (10 ml/l a 20 C): se esso fosse semplicemente disciolto, potrebbe diffondere efficacemente solo

Dettagli

Fisiologia della Respirazione 9.Scambi gassosi-ventilazione 1. Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona

Fisiologia della Respirazione 9.Scambi gassosi-ventilazione 1. Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona Fisiologia della Respirazione 9.Scambi gassosi-ventilazione 1 Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona Obiettivi Studio delle relazioni quantitative tra ventilazione, flusso

Dettagli

Fisiologia della Respirazione

Fisiologia della Respirazione Fisiologia della Respirazione Scambi gassosi-ventilazione vent/perf FGE aa.2016-17 Obiettivi Studio delle relazioni quantitative tra ventilazione, flusso di sangue nei polmoni, composizione dell aria ambiente,

Dettagli

FUNZIONI delle PROTEINE

FUNZIONI delle PROTEINE FUNZIONI delle PROTEINE Ha le dimensioni del reciproco di una concentrazione (M -1 ) Ha le dimensioni di una concentrazione (M) La frazione dei siti occupati rispetto ai siti totali è definita come θ FRAZIONE

Dettagli

Anatomia del sistema respiratorio

Anatomia del sistema respiratorio Funzioni del sistema respiratorio 1. Convogliare l aria muovendola verso le vie respiratorie e viceversa. 2. Proteggere le superfici di scambio da danni ambientali e disidratazione. 3. Riscaldare e umidificare

Dettagli

IL GRUPPO EME. PROTOPORFIRINA IX: struttura organica ad anello costituita da 4 anelli pirrolici uniti da ponti metinici.

IL GRUPPO EME. PROTOPORFIRINA IX: struttura organica ad anello costituita da 4 anelli pirrolici uniti da ponti metinici. IL GRUPPO EME PROTOPORFIRINA IX: struttura organica ad anello costituita da 4 anelli pirrolici uniti da ponti metinici. L inserimento di un atomo di ferro nello stato di ossidazione ferroso (Fe 2+ ) determina

Dettagli

Gli scambi gassosi avvengono per diffusione e sono dovuti esclusivamente a gradienti di pressione parziale dei singoli gas fra sangue ed alveoli

Gli scambi gassosi avvengono per diffusione e sono dovuti esclusivamente a gradienti di pressione parziale dei singoli gas fra sangue ed alveoli Gli scambi gassosi avvengono per diffusione e sono dovuti esclusivamente a gradienti di pressione parziale dei singoli gas fra sangue ed alveoli I gas quindi diffondono dal luogo in cui la pressione è

Dettagli

L apparato respiratorio. In movimento Marietti Scuola 2010 De Agostini Scuola S.p.A. Novara

L apparato respiratorio. In movimento Marietti Scuola 2010 De Agostini Scuola S.p.A. Novara L apparato respiratorio Fasi della respirazione La ventilazione polmonare (o esterna) La diffusione Il trasporto dei gas La respirazione cellulare (o interna) Le vie aeree Le vie aeree I polmoni Il destro

Dettagli

FISIOLOGIA DELLA RESPIRAZIONE

FISIOLOGIA DELLA RESPIRAZIONE FISIOLOGIA DELLA RESPIRAZIONE SCAMBIO E TRASPORTO DEI GAS La composizione dell aria alveolare differisce rispetto all aria ambiente. A livello alveolare si verifica la continua diffusione della del sangue

Dettagli

VENTILAZIONE e PERFUSIONE

VENTILAZIONE e PERFUSIONE VENTILAZIONE e PERFUSIONE VENTILAZIONE Ven2lazione= VE = f x VC f= frequenza VC= volume corrente (500mL nell adulto) =volume di aria inspirato/espirato in ogni singolo alo respiratorio Composizione dell

Dettagli

Anatomia del sistema respiratorio

Anatomia del sistema respiratorio Funzioni del sistema respiratorio 1. Fornire una vasta area per lo scambio gassoso tra sangue e ambiente esterno (aria) per consentire ingresso di ossigeno ed eliminazione di anidride carbonica. 2. Convogliare

Dettagli

Regolazione della pressione arteriosa

Regolazione della pressione arteriosa Regolazione della pressione arteriosa Riflesso barocettivo Controllo riflesso Centro di integrazione: bulbo del troncoencefalico Mantenimento flusso sanguigno a cuore e cervello Risposta veloce Regolazione

Dettagli

Mioglobina Emoglobina

Mioglobina Emoglobina Mioglobina Emoglobina Eventi successivi i alla comparsa dell O 2 Possibilità di ottenere circa 20 volte più energia dalla combustione del glucosio Sviluppo di un sistema circolatorio per la distribuzione

Dettagli

Apparato respiratorio

Apparato respiratorio Apparato respiratorio Anatomia Le vie aeree: di conduzione e di scambio 3 L Trachea, bronchi principali, bronchioli (diametro 1 mm) sono dotati di struttura cartilaginea ad anello incompleto e fibre muscolari

Dettagli

Apparato respiratorio. Anatomia

Apparato respiratorio. Anatomia Apparato respiratorio Anatomia 1 Le vie aeree: di conduzione e di scambio 3 L Trachea, bronchi principali, bronchioli (diametro 1 mm) sono dotati di struttura cartilaginea ad anello incompleto e fibre

Dettagli

Struttura del territorio circolatorio terminale

Struttura del territorio circolatorio terminale Struttura del territorio circolatorio terminale Canale preferenziale passaggio principale Numero complessivo capillari nell uomo 30 40.10 9 Superficie di scambio 1000 m 2. Densità capillare funzionale

Dettagli

Compito A-7 BIOFISICA E FISIOLOGIA I Anno Accademico

Compito A-7 BIOFISICA E FISIOLOGIA I Anno Accademico Compito A-7 1) L ampiezza del potenziale d azione che circola lungo un assone mielinico è 115 mv. Sapendo che, a riposo, il rapporto p Na /p K è 0,015, calcolare di quanto varia p Na nel corso di un potenziale

Dettagli

di Johnny E. Brian jr Chiudi

di Johnny E. Brian jr Chiudi di Johnny E. Brian jr Chiudi La finestra dell ossigeno. La sottosaturazione interna. Il calo di pressione parziale. Molti subacquei interessati alla decompressione hanno incontrato questi termini. Tutte

Dettagli

La struttura di una proteina e ruolo biologico da essa svolto sono strettamente connessi. Alcune funzioni biologiche delle proteine:

La struttura di una proteina e ruolo biologico da essa svolto sono strettamente connessi. Alcune funzioni biologiche delle proteine: La struttura di una proteina e ruolo biologico da essa svolto sono strettamente connessi. Alcune funzioni biologiche delle proteine: Catalizzatori = Enzimi Accumulo e trasporto di ossigeno = mioglobina

Dettagli

Misure di gas disciolti

Misure di gas disciolti Misure di gas disciolti Misura dell ossigeno Elettrodo di ossigeno L elettrodo Clark Misura di anidride carbonica Misurazione transcutanea dei gas nel sangue Monitoraggio transcutaneo di anidride carbonica

Dettagli

Effetti dell altitudine su cuore, polmone e circolazione

Effetti dell altitudine su cuore, polmone e circolazione Effetti dell altitudine su cuore, polmone e circolazione 2.035 metri Marina Tricoli, ASP 6 Palermo Sestriere 28 A livello del mare.. La pressione barometrica è 760 mmhg La pressione parziale di O2 dell

Dettagli

a.a. 2017/18 Prof.ssa Pia Lucidi Laboratorio di Cognizione e Benessere Animale RICEVIMENTO: Lunedì 17:30-18:30

a.a. 2017/18 Prof.ssa Pia Lucidi Laboratorio di Cognizione e Benessere Animale RICEVIMENTO: Lunedì 17:30-18:30 a.a. 2017/18 Prof.ssa Pia Lucidi Laboratorio di Cognizione e Benessere Animale RICEVIMENTO: Lunedì 17:3018:30 Omeostasi acidobasica Gli enzimi operano ad un ph ottimale in un range molto ristretto (7.4

Dettagli

GC = F x Gs. Metodi di misurazione

GC = F x Gs. Metodi di misurazione Gittata Cardiaca: Volume di sangue espulso dal cuore in un minuto. Dipende da esigenze metaboliche dell organismo e quindi dal consumo di O 2 Consumo O 2 condizioni basali 250 ml/min: GC = 5 l/min Consumo

Dettagli

aggiustamenti respiratori durante l esercizio fisico

aggiustamenti respiratori durante l esercizio fisico aggiustamenti respiratori durante l esercizio fisico 1 generalita durante l esercizio fisico aumento consumo O 2 e produzione CO 2 e calore e necessario portare piu O 2 ai tessuti e rimuovere piu CO 2

Dettagli

SCOPI DELL EMOGASANALISI

SCOPI DELL EMOGASANALISI EMOGASANALISI SCOPI DELL EMOGASANALISI La funzione principale della respirazione è quella di assicurare ossigeno all organismo e di eliminare l eccesso di anidride carbonica. L emogasanalisi arteriosa

Dettagli

Ripiegamento e stabilità delle proteine

Ripiegamento e stabilità delle proteine Ripiegamento e stabilità delle proteine Ripiegamento e stabilità delle proteine La conformazione nativa di una proteina è quella a cui si associa la sua funzione biologica. Il termine stabilità può essere

Dettagli

L EQUILIBRIO ACIDO-BASE NEL SANGUE

L EQUILIBRIO ACIDO-BASE NEL SANGUE L EQUILIBRIO ACIDO-BASE NEL SANGUE 1 I tamponi fisiologici del ph 1 - Il sistema acido carbonico-bicarbonato: H 2 CO 3 H + + HCO 3 pka = 6.1 ph = 6.1 + log [HCO 3 ] [H 2 CO 3 ] 2 - Il sistema fosfato:

Dettagli

Regolano il metabolismo, sia come enzimi, sia come ormoni (insulina, glucagone, ecc.)

Regolano il metabolismo, sia come enzimi, sia come ormoni (insulina, glucagone, ecc.) Grazie alla elevata dinamicità delle strutture proteiche (gli atomi sono in continuo movimento fluttuante) e per la capacità che hanno di legarsi in modo selettivo ad altre molecole, le proteine svolgono

Dettagli

Sistema cardiovascolare: funzione. Rifornire continuamente i tessuti di O 2 e sostanze indispensabili al metabolismo

Sistema cardiovascolare: funzione. Rifornire continuamente i tessuti di O 2 e sostanze indispensabili al metabolismo Sistema cardiovascolare: funzione Rifornire continuamente i tessuti di O 2 e sostanze indispensabili al metabolismo Rimuovere i prodotti del metabolismo stesso Sistema cardiovascolare: organizzazione Prevede

Dettagli

Prof. Maria Nicola GADALETA

Prof. Maria Nicola GADALETA Prof. Maria Nicola GADALETA E-mail: m.n.gadaleta@biologia.uniba.it Facoltà di Scienze Biotecnologiche Corso di Laurea in Biotecnologie Sanitarie e Farmaceutiche Biochimica e Biotecnologie Biochimiche DISPENSA

Dettagli

Tamponi biologici per il controllo del ph

Tamponi biologici per il controllo del ph Tamponi biologici per il controllo del ph 1 Si definisce una soluzione tampone una soluzione che si oppone alla variazione del ph per aggiunte moderate di acidi o basi Si tratta generalmente di soluzioni

Dettagli

trasporto di O 2 per la legge di Henry, ad una P O2 di 100 mmhg, l O 2 sciolto è ca. 3 ml/l di sangue

trasporto di O 2 per la legge di Henry, ad una P O2 di 100 mmhg, l O 2 sciolto è ca. 3 ml/l di sangue trasporto di O 2 per la legge di Henry, ad una P O2 di 100 mmhg, l O 2 sciolto è ca. 3 ml/l di sangue con una gittata cardiaca normale di 5 L/min potremmo fornire all organismo solo 15 ml/min di O 2 ma

Dettagli

Le proteine che legano ossigeno:

Le proteine che legano ossigeno: Le proteine che legano ossigeno: . I cristalli si ottengono per precipitazione lenta della molecola da una soluzione, in condizioni che non dovrebbero alterare la sua struttura Un cristallo proteico È

Dettagli

COMPITO: assicurare un continuo ed adeguato apporto di O 2 alle cellule ed eliminare l eccesso di CO 2

COMPITO: assicurare un continuo ed adeguato apporto di O 2 alle cellule ed eliminare l eccesso di CO 2 RESPIRAZIONE è l insieme dei meccanismi che permettono lo scambio di gas metabolicamente attivi (O 2 e CO 2 ) tra ambiente esterno e cellule dell organismo vivente COMPITO: assicurare un continuo ed adeguato

Dettagli

Modulo 4. Una proteina in azione

Modulo 4. Una proteina in azione Modulo 4 Una proteina in azione Mioglobina ed emoglobina: un esempio di funzionamento di una proteina La funzione della maggior parte della proteine globulari è mediata dall interazione reversibile con

Dettagli

EQUILIBRIO ACIDO-BASE ED APPLICAZIONE ALL EMOGAS EMOGAS-ANALISIANALISI

EQUILIBRIO ACIDO-BASE ED APPLICAZIONE ALL EMOGAS EMOGAS-ANALISIANALISI EQUILIBRIO ACIDO-BASE ED APPLICAZIONE ALL EMOGAS EMOGAS-ANALISIANALISI SOMMARIO ASPETTI GENERALI DELL EQUILIBRIO EQUILIBRIO ACIDO-BASE EGA (EMOGAS-ANALISI) ANALISI) ASPETTI GENERALI DELL EQUILIBRIO EQUILIBRIO

Dettagli

Il legame dell O 2 con l eme di una subunità determina un cambio conformazionale che facilita l attacco dell O 2 agli altri gruppi eme.

Il legame dell O 2 con l eme di una subunità determina un cambio conformazionale che facilita l attacco dell O 2 agli altri gruppi eme. 1 Forma T Forma R Il legame dell O 2 con l eme di una subunità determina un cambio conformazionale che facilita l attacco dell O 2 agli altri gruppi eme. 2 1 3 La forma sigmoide della curva indica che

Dettagli

L EQUILIBRIO ACIDO-BASE NEL SANGUE

L EQUILIBRIO ACIDO-BASE NEL SANGUE L EQUILIBRIO ACIDO-BASE NEL SANGUE ph fisiologico: 7.35-7.45 ph < 7.35 acidosi ph > 7.45 alcalosi 1 L equazione di Henderson-Hasselbalch HA H + + A - La costante di equilibrio (K) (o costante di dissociazione

Dettagli

L EQUILIBRIO ACIDO-BASE NEL SANGUE

L EQUILIBRIO ACIDO-BASE NEL SANGUE L EQUILIBRIO ACIDO-BASE NEL SANGUE ph fisiologico: 7.35-7.45 ph < 7.35 acidosi ph > 7.45 alcalosi Lezione 24 1 L equazione di Henderson-Hasselbalch HA H + + A - La costante di equilibrio (K) (o costante

Dettagli

Fisiologia della Respirazione 10.Scambi gassosiventilazione. Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona

Fisiologia della Respirazione 10.Scambi gassosiventilazione. Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona Fisiologia della Respirazione 10.Scambi gassosiventilazione 2 Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona Obiettivi Distribuzione zonale della ventilazione e della perfusione

Dettagli

Dinamica dei fluidi viscosi

Dinamica dei fluidi viscosi a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Dinamica dei fluidi viscosi 14/3/2006 Ripartizione del sangue portata totale NQ diametro iniziale D diametro d dei rami secondari

Dettagli

FISIOLOGIA ILLUSTRATA

FISIOLOGIA ILLUSTRATA FISIOLOGIA ILLUSTRATA RESPIRAZIONE La funzione della respirazione è quella di portare ossigeno ai tessuti e di rimuoverne l anidride carbonica RESPIRAZIONE EVENTI COINVOLTI NEL PROCESSO DI SCAMBIO GASSOSO

Dettagli

METABOLISMO CELLULARE

METABOLISMO CELLULARE METABOLISMO CELLULARE Struttura dell ATP (Adenosintrifosfato) Adenina (base azotata), Ribosio (zucchero) e un gruppo fosforico ATP Il legame covalente tra i gruppi fosforici si spezza facilmente liberando

Dettagli

LO SCAMBIO GASSOSO. Corso di Fisiologia Speciale Veterinaria PROF. ALESSANDRO MALFATTI

LO SCAMBIO GASSOSO. Corso di Fisiologia Speciale Veterinaria PROF. ALESSANDRO MALFATTI (Da Aguggini et al., Fisiologia degli animali domestici con elementi di etologia e Ruckebush et al., Physiology of small and large animals) LA CONCENTRAZIONE DI UN GAS SI ESPRIME COME PRESSIONE PARZIALE

Dettagli

Apparato respiratorio

Apparato respiratorio Apparato respiratorio La respirazione esterna consiste nello scambio di gas (O 2 e CO 2 ) tra ambiente esterno e cellule. Comprende 4 processi: 1) Scambio di aria tra atmosfera e polmoni (ventilazione,

Dettagli

[H + ] X [A - ] [ HA ]

[H + ] X [A - ] [ HA ] Equazione di Handerson-HasselbalchHasselbalch [H + ] X [A - ] [ HA ] = K [H + ]X[HCO3 - ] [H2C03] = K 1 Composizione aria O 2 = 20.93% CO 2 = 0.03% N 2 + gas nobili = 79.04% Pressione esercitata dai gas

Dettagli

Fisiologia della Respirazione 1.Introduzione-Leggi dei Gas. FGE aa.2015-16

Fisiologia della Respirazione 1.Introduzione-Leggi dei Gas. FGE aa.2015-16 Fisiologia della Respirazione 1.Introduzione-Leggi dei Gas FGE aa.2015-16 Obiettivi Trasporto ventilatorio convettivo dei gas integrato con trasporto convettivo circolatorio e respirazione cellulare Cenni

Dettagli

Ventilazione non-invasiva e. EPA cardiogeno: CPAP vs BPAP. Dott. Andrea Bellone. UOC di PS - Medicina d Urgenza

Ventilazione non-invasiva e. EPA cardiogeno: CPAP vs BPAP. Dott. Andrea Bellone. UOC di PS - Medicina d Urgenza Ventilazione non-invasiva e EPA cardiogeno: CPAP vs BPAP Dott. Andrea Bellone UOC di PS - Medicina d Urgenza ASST Grande Ospedale Metropolitano Niguarda INSUFFICIENZE RESPIRATORIA Tipo 1 «Parenchimale»:

Dettagli

Funzioni dell apparato respiratorio

Funzioni dell apparato respiratorio Funzioni dell apparato respiratorio -Scambi di O2 e CO2 -Regolazione ph -Protezione da patogeni inalati -Vocalizzazione respirazione Ventilazione Scambi gassosi polmonari Trasporto dei gas respiratori

Dettagli

Esempi di proteine: Mioglobina ed Emoglobina

Esempi di proteine: Mioglobina ed Emoglobina Corso di Laurea Magistrale in Ingegneria Biomedica Complementi di Chimica e Biochimica per le Tecnologie Biomediche Esempi di proteine: Mioglobina ed Emoglobina Mioglobina: caratteristiche generali, funzione

Dettagli

FISIOLOGIA dell ALLENAMENTO. dai processi fisiologici alle metodiche di allenamento

FISIOLOGIA dell ALLENAMENTO. dai processi fisiologici alle metodiche di allenamento FISIOLOGIA dell ALLENAMENTO dai processi fisiologici alle metodiche di allenamento Introduzione alla fisiologia Metabolismo cellulare Il sistema cardiovascolare: funzione cardiaca vasi, flusso, pressione

Dettagli

Esempi di proteine: Mioglobina ed Emoglobina

Esempi di proteine: Mioglobina ed Emoglobina Corso di Laurea Magistrale in Ingegneria Biomedica Complementi di Chimica Organica e Biochimica Esempi di proteine: Mioglobina ed Emoglobina Francesca Anna Scaramuzzo, PhD Dipartimento di Scienze di Base

Dettagli

MEMBRANE. MEMBRANE equilibri gas-liquido. elio giroletti

MEMBRANE. MEMBRANE equilibri gas-liquido. elio giroletti UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via Bassi 6, 27100 Pavia, Italy tel. 0382/98.7905 - girolett@unipv.it - www.unipv.it/webgiro 1 elio giroletti MEMBRANE equilibri gas- FISICA

Dettagli

INSUFFICIENZA RESPIRATORIA

INSUFFICIENZA RESPIRATORIA INCAPACITA VENTILATORIA (flussi e/o volumi alterati alle PFR) INSUFFICIENZA RESPIRATORIA (compromissione dello scambio gassoso e/o della ventilazione alveolare) Lung failure (ipoossiemia) Pump failure

Dettagli

2.Controllo dell equilibrio acido-base - II. Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona

2.Controllo dell equilibrio acido-base - II. Carlo Capelli Fisiologia Facoltà di Scienze Motorie- Università di Verona 2.Controllo dell equilibrio acidobase II Carlo Capelli Fisiologia Facoltà di Scienze Motorie Università di Verona 1. Tampone bicarbonatoco 2 E il sistema tampone fisiologico più importante [ CO 2] = PCO

Dettagli

Le reazioni metaboliche sono estremamente sensibili alla concentrazione degli ioni H + nel liquido in cui avvengono, perché gli ioni H + influenzano

Le reazioni metaboliche sono estremamente sensibili alla concentrazione degli ioni H + nel liquido in cui avvengono, perché gli ioni H + influenzano EQUILIBRIO ACIDOBASE Le reazioni metaboliche sono estremamente sensibili alla concentrazione degli ioni H + nel liquido in cui avvengono, perché gli ioni H + influenzano il funzionamento degli enzimi.

Dettagli