AMPL Problemi su Reti
|
|
|
- Bonifacio Poli
- 8 anni fa
- Visualizzazioni
Transcript
1 Dipartimento di Matematica Università di Padova Corso di Laurea Informatica
2 Outline Problemi su Reti
3 Cammino Minimo Molti problemi di ottimizzazione combinatoria possono essere modellati ricorrendo ai grafi. Cammino Minimo: Dato un grafo G = (N, A) con costo c ij, (i, j) A, un nodo origine s N e un nodo destinazione d N. Trovare il cammino P da s a d il cui costo (somma dei c ij : (i, j) P) sia minimo. Introduciamo delle variabili decisionali binarie in corrispondenza degli archi del grafo: { 1, l arco (i, j) è sul cammino minimo; x ij = 0, altrimenti. Introduciamo un vincolo di bilanciamento per ogni nodo del grafo per s archi entranti -archi uscenti =-1 (un arco uscente) per t archi entranti -archi uscenti = 1 (un arco entrante) altri archi entranti -archi uscenti =0
4 Esempio Cammino Minimo min 2x 12 + x 13 + x 34 f.o. x 12 x 13 = 1 nodo 1 + x 12 x 23 x 24 = 0 nodo 2 + x 13 + x 23 x 34 + x 43 = 0 nodo 3 + x 24 + x 34 x 43 = 1 nodo 4
5 Esempio Cammino Minimo min 2x 12 + x 13 + x 34 f.o. x 12 x 13 = 1 nodo 1 + x 12 x 23 x 24 = 0 nodo 2 + x 13 + x 23 x 34 + x 43 = 0 nodo 3 + x 24 + x 34 x 43 = 1 nodo 4
6 Esempio Cammino Minimo min 2x 12 + x 13 + x 34 f.o. x 12 x 13 = 1 nodo 1 + x 12 x 23 x 24 = 0 nodo 2 + x 13 + x 23 x 34 + x 43 = 0 nodo 3 + x 24 + x 34 x 43 = 1 nodo 4
7 Esempio 1 Cammino Minimo Si consideri una rete avente 7 nodi. I cui archi (i, j) A e relativi costi di utilizzo c ij, sono riportati in Tabella 1 Tabella 1 Arco Costo (s, a) 4 (s, b) 2 (a, c) 7 (a, d) 1 (b, d) 1 (b, e) 9 (c, t) 2 (d, c) 3 (d, t) 7 (e, d) 4 (e, t) 9 Calcolare il cammino minimo da s a t.
8 Cammino Minimo Figure: Grafo dell Esempio 1
9 Cammino Minimo Insieme di nodi N; Insieme di archi A; Per ogni arco (i, j) noto costo unitario c ij ; Obiettivo: Minimizzare costi.
10 Cammino Minimo nodi: Insieme nodi; archi: Insieme di archi; x ij : 0 se arco (i,j) non utilizzato, 1 altrimenti.
11 Cammino Minimo: Modello PLI Otteniamo il seguente problema di PLI: min c ij x ij (i,j) A x iv x vj = 1 v = s (i,v) A (v,j) A x iv x vj = 1 v = t (i,v) A (v,j) A x iv x vj = 0 altrimenti (i,v) A (v,j) A (1) x ij {0, 1}
12 Soluzione Cammino Minimo Soluzione: s b d c t Costo totale uguale a 8
13 Da Cammino Minimo a Flusso di Costo Minimo Problema modificato Si consideri una rete avente 7 nodi. I cui archi (i, j) A, relativi costi di utilizzo c ij e capacitá degli archi u ij, sono riportati in Tabella 1 Tabella 1 Arco Costo Capacitá (s, a) 4 5 (s, b) 2 5 (a, c) 7 3 (a, d) 1 2 (b, d) 1 2 (b, e) 9 4 (c, t) 2 6 (d, c) 3 5 (d, t) 7 4 (e, d) 4 2 (e, t) 9 2 Sapendo che bisogna trasportare10 unitá da s a t, calcolare in che modo le unitá devono essere distribuite sulla rete in modo da minimizzare il costo.
14 Problema Modificato: Modello PLI Otteniamo il seguente problema di PLI: min c ij x ij (i,j) A x iv x vj = 10 (i,v) A (v,j) A v = s x iv x vj = 10 v = t (i,v) A (v,j) A x iv x vj = 0 altrimenti (i,v) A (v,j) A (2) x ij u ij x ij Z +
15 Elementi di un Problema di Flusso Figure: Elementi Problema di Flusso
16 Esempio 2 Flusso di costo minimo Si risolva il seguente problema di flusso di costo minimo, assumendo che i flussi non siano divisibili. Figure: Albero dell Esempio 1.
17 Flusso di Costo Minimo Insieme di nodi N; Insieme di archi A; Per ogni nodo i noto b i ; Per ogni arco (i, j) noto costo unitario c ij e capacitá u ij ; Obiettivo: Minimizzare costi.
18 Flusso di Costo Minimo nodi: Insieme nodi; archi: Insieme di archi; b i : Quantità di flusso richiesta da nodo i; c ij : Costo unitario lungo arco (i,j); u ij : Capacità massima lungo arco (i,j); x ij : Quantità di flusso lungo arco (i,j).
19 Flusso di Costo Minimo: Modello PLI Otteniamo il seguente problema di PLI: min c ij x ij (i,j) A x iv x vj = b v (i,v) A (v,j) A v N (3) x ij u ij (i, j) A x ij Z +
20 Comandi speciali Grafi possiamo utilizzare node e arc per definire il grafo: node nomenodo {v in insiemenodi}: net_in=b[v]; arc nomearco{(i,j) in insiemearchi} >=0, <= u[i,j], from nomenodo[i], to nomenodo[j], obj nomefunzioneobiettivo c[i,j];
Flusso a Costo Minimo
Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni [email protected] Corso di: Ottimizzazione Combinatoria Dal
Il problema del commesso viaggiatore
Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa [email protected] M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università
UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013
A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 7 giugno 0 Nome: Cognome: Matricola: Orale /06/0 ore aula N Orale 0/07/0 ore aula N
Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33
Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una
Esame di Ricerca Operativa del 11/07/2016
Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte
Problemi di Flusso e Applicazioni
Problemi di Flusso e Applicazioni Andrea Scozzari a.a. 2013-2014 May 20, 2014 Andrea Scozzari (a.a. 2013-2014) Problemi di Flusso e Applicazioni May 20, 2014 1 / 5 Flussi Multiprodotto I problemi presi
Esame di Ricerca Operativa del 16/06/2015
Esame di Ricerca Operativa del 1/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una ditta produce vernici in tre diversi stabilimenti (Pisa, Cascina, Empoli) e le vende a tre imprese edili (A, B, C). Il
Esame di Ricerca Operativa del 03/09/2015
Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una raffineria di petrolio miscela tipi di greggio per ottenere tipi di carburante: senza piombo, diesel e blu diesel.
Esame di Ricerca Operativa del 07/09/2016
Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e
Problemi di Flusso: Il modello del Trasporto
Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su
Analisi interazione domanda/offerta: modelli di assegnazione
Corso di Laurea Ingegneria Civile e Ambientale - AA Corso di: Fondamenti di Trasporti Lezione: Analisi interazione domanda/offerta: modelli di assegnazione Giuseppe Inturri Università di Catania Dipartimento
Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso
Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij
Gestione della produzione e della supply chain Logistica distributiva
Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Struttura delle reti logistiche
Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione
Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani ([email protected])
Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:
Esame di Ricerca Operativa del 08/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x x 0 x + x x x 8 x x 8
Appunti sul Vehicle Routing Problem
Appunti sul Vehicle Routing Problem Marco Pranzo Corso di Ottimizzazione su Reti Anno Accademico 2007/2008 Il Vehicle Routing Problem (VRP) è un tipico problema operativo nelle reti di distribuzione, e
Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi
Università degli Studi di Roma La Sapienza Ottimizzazione nella Gestione dei Progetti - Esercitazione : calcolo degli schedule ottimi di FABIO D ANDREAGIOVANNI Dipartimento di Informatica e Sistemistica
Esame di Ricerca Operativa del 15/01/2015
Esame di Ricerca Operativa del 1/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da calcio e da basket che vende a 1 e 20 euro rispettivamente. L azienda compra ogni settimana
Esame di Ricerca Operativa del 15/01/2015
Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00
Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa
Alberi di copertura Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa [email protected] M. Passacantando TFA 0/ - Corso di Ricerca Operativa Università di Pisa / 9 Definizioni
Esame di Ricerca Operativa del 09/02/2016
Esame di Ricerca Operativa del 0/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una sartoria produce tipi di vestiti: pantaloni, gonne e giacche, utilizzando stoffa e filo. Settimanalmente, la disponibilità
Progettazione di Algoritmi
Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai
Introduzione ai grafi
TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale
2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
. Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,
Grafi e Funzioni di Costo ESERCIZI
Grafi e Funzioni di Costo ESERCIZI Esercizio1 Si determini la matrice di incidenza archi-percorsi ed i costi di percorso per la rete di trasporto rappresentata in figura. 1 4 2 3 5 Ramo Costo Ramo Costo
Ad ogni arco (i,j) del grafo e' associato un valore intero c(i,j) detto capacita' dell'arco
6) FLUSSI Definizione di flusso Si definisce rete di flusso un grafo orientato e connesso con i) un solo vertice con esclusivamente archi uscenti ii) un solo vertice con esclusivamente archi entranti Tradizionalmente
Ricerca Operativa Problemi di ottimizzazione su reti di flusso e cammini minimi
Ricerca Operativa Problemi di ottimizzazione su reti di flusso L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni
GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi!
G R A F I 1 GRAFI Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! 2 cip: cip: Pallogrammi Pallogrammi GRAFI: cosa sono I grafi sono una struttura matematica fondamentale: servono
Problema del trasporto
p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. p. 1/1 Problema del trasporto Supponiamo di avere m depositi in
x 1 x x 1 2 x 2 6 x 2 5 Indici di base Vettore Ammissibile Degenere (si/no) (si/no)
Esercitazione di Ricerca Operativa Esercizio. Completare la seguente tabella: max x x x x x x x x x x Indici di base Vettore Ammissibile Degenere, x =, y = Esercizio. Effettuare due iterazioni dell algoritmo
Progettazione di Algoritmi
Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 29/01/2016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via
11.4 Chiusura transitiva
6 11.4 Chiusura transitiva Il problema che consideriamo in questa sezione riguarda il calcolo della chiusura transitiva di un grafo. Dato un grafo orientato G = hv,ei, si vuole determinare il grafo orientato)
Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:
Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x
COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04
COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 Esercizio 1 Si risolva con il metodo branch-and-bound il seguente problema di PLI max x 1 + x 4x 1 + x + x = 0 x 1 + x + x 4 = x 1, x, x, x 4 0 x 1, x,
Possibile applicazione
p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile
4.1 Localizzazione e pianificazione delle base station per le reti UMTS
esercitazione Ottimizzazione Prof E Amaldi Localizzazione e pianificazione delle base station per le reti UMTS Consideriamo il problema di localizzare un insieme di stazioni radio base, base station (BS),
Grafi e reti di flusso
Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui
COMPITO DI RICERCA OPERATIVA. (5 punti) Sia dato il seguente problema di PL: min x 1 + x 2 x 1 + x 2 3 x 1 + x 2 2 2x 1 + x 2 3.
COMPITO DI RICERCA OPERATIVA ESERCIZIO 1. (5 punti) Sia dato il seguente problema di PL: min x 1 + x 2 x 1 + x 2 x 1 + x 2 2 2x 1 + x 2 x 1 0 x 2 0 Si trasformi questo problema in forma standard e lo si
Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design
Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Network Design È data una rete rappresentata su da un grafo G = (V, A) e un insieme di domande K, ciascuna
Modelli decisionali su grafi - Problemi di Localizzazione
Modelli decisionali su grafi - Problemi di Localizzazione Massimo Paolucci ([email protected]) DIST Università di Genova Percorso Minimo tra tutte le coppie di vertici 2 Si può applicare n volte Dijstra
Problemi di flusso a costo minimo
p. 1/7 Problemi di flusso a costo minimo È data una rete (grafo orientato e connesso) G = (V,A). (i,j) A c ij, costo di trasporto unitario lungo l arco (i, j). i V b i interi e tali che i V b i = 0. p.
Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici);
Algoritmi e Strutture di Dati II 2 Grafi diretti Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove V è u n i n s i e m e d i nodi (o vertici); E µ V V è u n i n s i e m e d i archi. Denotiamo
ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I
ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si
Claudio Arbib Università di L Aquila. Ricerca Operativa. Reti di flusso
Claudio Arbib Università di L Aquila Ricerca Operativa Reti di flusso Sommario Definizioni di base Flusso di un campo vettoriale Divergenza Integrale di Gauss-Greene Flusso in una rete Sorgenti, pozzi
Macchine sequenziali. Automa a Stati Finiti (ASF)
Corso di Calcolatori Elettronici I Macchine sequenziali Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione Corso
Esame di Ricerca Operativa del 19/01/2016
Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse
Problema del cammino minimo
Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento
Progettazione di Algoritmi
Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 06/07/2016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Modelli per la Logistica Distributiva: Single Commodity Minimum Cost Flow Problem Multi Commodity Minimum Cost Flow Problem Fixed Charge
Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:
Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base
Esame di Ricerca Operativa del 19/01/2016
Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse
Progettazione di Algoritmi
Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 1/01/016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai
METODI DELLA RICERCA OPERATIVA
Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco ([email protected]) i i Dott.ing. Maria Ilaria Lunesu ([email protected])
«Sciente e Tecnologie dei Beni Culturali»
5 Informatica CdS in «Sciente e Tecnologie dei Beni Culturali» AA 2014-2015 Mini-sito dell insegnamento: http://www.unife.it/scienze/beni.culturali/insegnamenti/informatica Prof. Giorgio Poletti [email protected]
Appunti lezione Capitolo 15 Ricerca locale
Appunti lezione Capitolo 15 Ricerca locale Alberto Montresor 03 Giugno, 016 1 Introduzione alla ricerca locale Un approccio miope, ma talvolta efficace è quello della ricerca locale. L idea è la seguente:
Fondamenti di Internet e Reti 097246
sul livello di Rete Instradamento. o Si consideri la rete in figura.. Si rappresenti, mediante un grafo, la rete per il calcolo dei cammini minimi (solo i nodi e gli archi no reti). Si calcoli il cammino
Gestione della produzione e della supply chain Logistica distributiva
Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non
Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015
1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)
Esercizi proposti nel Cap. 2 - Soluzioni. Esercizio 2.1
M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 2 - Soluzioni Esercizio 2.1 x i, chili di prodotto venduti settimanalmente del composto
Problemi, istanze, soluzioni
lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un
Ricerca Operativa. Docente. 1. Introduzione
1 Ricerca Operativa 1. Introduzione Docente Luigi De Giovanni Dipartimento di Matematica (Torre Archimede) uff. 427 Tel. 049 827 1349 email: [email protected] www.math.unipd.it/~luigi Ricevimento: giovedì,
LA PROGRAMMAZIONE MATEMATICA (p.m.)
LA PROGRAMMAZIONE MATEMATICA (p.m.) Un problema di programmazione matematica è un problema di ottimizzazione riconducibile alla seguente espressione generale: ricercare i valori delle variabili x 1, x
Soluzioni degli esercizi di formulazione di PL{0, 1}
Soluzioni degli esercizi di formulazione di PL{0, 1} Salvatore Nocella 12 febbraio 2007 1 Al lavoro Due operai devono eseguire un certo numero di lavori J = {1,..., n}, ciascuno della durata di un ora.
4c. Esercizi sul livello di Rete Instradamento in Internet
c. sul livello di Rete Instradamento in Internet c- o Si consideri la rete in figura. Si rappresenti, mediante un grafo, la rete per il calcolo dei cammini minimi (solo i nodi e gli archi no reti). Si
Introduzione ai grafi. Introduzione ai grafi p. 1/2
Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte
Progettazione di algoritmi
Progettazione di algoritmi Discussione dell'esercizio [vincoli] Prima di tutto rappresentiamo il problema con un grafo G: i nodi sono le n lavorazioni L 1, L 2,, L n, e tra due nodi L h, L k c'è un arco
Introduzione alla Ricerca Operativa. Cos è la Ricerca Operativa? Modellazione di problemi decisionali Fasi di uno studio di RO Applicazioni della RO
Introduzione alla Ricerca Operativa Cos è la Ricerca Operativa? Modellazione di problemi decisionali Fasi di uno studio di RO Applicazioni della RO Cos è la Ricerca Operativa? La Ricerca Operativa è la
COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2
COMPITO DI RICERCA OPERATIVA ESERCIZIO. ( punti) La riformulazione di un problema di PL rispetto alla base B = {x, x, x } è la seguente: max 2x + x 2 x = 2 + x x 2 x = + x 2 x = 2 + x + x 2 x, x 2, x,
Management Sanitario. Modulo di Ricerca Operativa
Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. La variabile Uniforme Continua Data una scheda telefonica da 5 euro di cui non si sa se sia
Alberi e alberi binari I Un albero è un caso particolare di grafo
Alberi e alberi binari Un albero è un caso particolare di grafo È costituito da un insieme di nodi collegati tra di loro mediante archi Gli archi sono orientati (ogni arco esce da un nodo origine ed entra
Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei
Alberi Alberi: definizioni Alberi Binari Esercizi su alberi binari: metodi ricorsivi Struttura dati per alberi generici 1 Alberi Gli alberi sono strutture dati naturalmente ricorsive Un albero è un particolare
