10. Regolatori standard PID

Documenti analoghi
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica

REGOLATORI STANDARD PID + _ +

REGOLATORI STANDARD PID

Corso di Laurea in Ingegneria Meccatronica REGOLATORI STANDARD PID

Regolatori standard LT-Cap. 11/ Appendice B

REGOLATORI PID. Modello dei regolatori PID. Realizzazione dei regolatori PID. Metodi di taratura automatica

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo

Controllori Standard PID. Prof. Laura Giarré

Progetto di regolatori standard

REGOLATORI STANDARD PID

Regolatori PID. Gianmaria De Tommasi 1. Ottobre 2012 Corsi AnsaldoBreda

Controlli Automatici T Regolatori PID

buona efficacia nel controllo di molti processi industriali, in relazione a specifiche di prestazione poco stringenti

REGOLATORI STANDARD PID

09. Luogo delle Radici

Ingegneria e Tecnologie dei Sistemi di Controllo Laurea Specialistica in Ingegneria Meccatronica REGOLATORI STANDARD

CONTROLLO IN RETROAZIONE

Presentazione dell'edizione italiana...xi

I CONTROLLORI PID. Sono controllori molto utilizzati in applicazioni industriali. Elaborazione del segnale di ingresso attraverso 3 blocchi:

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona

CONTROLLO IN RETROAZIONE

Analisi dei sistemi in retroazione

Controllo in retroazione e Specifiche. Prof. Laura Giarré

14. Reti Correttrici. Controlli Automatici

SOLUZIONE. Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

Controllare un sistema vuol dire effettuare una regolazione su di esso, regolazione che può essere effettuata con tecniche diverse.

Tecnologie dei Sistemi di Automazione

Parte 11, 1. Prof. Thomas Parisini. Parte 11, 3. Rete anticipatrice Compensazione con rete anticipatrice. asintotico reale. Prof.

Esercizi di Controlli Automatici

CONTROLLI AUTOMATICI Ingegneria Gestionale LUOGO DELLE RADICI

Parte 11, 1 REGOLATORI STANDARD. Reti correttrici Regolatori PID. Prof. Thomas Parisini. Fondamenti di Automatica

Controlli Automatici L-B - Cesena Compito del 28 maggio Domande teoriche

Corso di Laurea in Ingegneria Meccatronica. CA 08 - ControlloInRetroazione

Schema a campionamento dell uscita

Controllo a retroazione

Controllo dei Processi

CONTROLLI AUTOMATICI Ingegneria Meccatronica. Prof. Cesare Fantuzzi. Cristian Secchi

PID. P(s) + I(s) + + D(s)

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

Regolatori PID: funzionamento e taratura

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

a.a. 2016/2017 Docente: Stefano Bifaretti

I Controllori PID (ver. 1.0)

Controlli Automatici

Lezione 10. Schemi di controllo avanzati parte seconda. F. Previdi - Controlli Automatici - Lez. 10 1

a.a. 2014/2015 Docente: Stefano Bifaretti

Progetto del controllore

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Controlli Automatici LB Regolatori PID

Prof. Carlo Rossi DEIS-Università di Bologna Tel URL: www-lar.deis.unibo.it/~crossi

Sistemi di Controllo

REGOLATORI STANDARD PID

Metodi di Taratura Approssimata dei Sistemi di Controllo in Retroazione con Controllori PID

Regolazione e Controllo dei Sistemi Meccanici 23 Novembre 2005

Controlli Automatici - Parte A

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004

Progetto del controllore

Nome: Nr. Mat. Firma:

FONDAMENTI DI AUTOMATICA II LAUREA TRIENNALE IN INGEGNERIA (DM 509/99)

08. Analisi armonica. Controlli Automatici

rapporto tra ingresso e uscita all equilibrio.

Nome: Nr. Mat. Firma:

Corso di Laurea in Ingegneria Meccatronica PROGETTO DEL CONTROLLORE. CA 9 - LuogoDelleRadici

Controllori PID, metodi di taratura e problemi d implementazione

Applicando le leggi di Kirchhoff e le formule di base dei componenti RLC, si ottiene il seguente modello matematico:

Regolatori PID digitali

INTRODUZIONE. In caso contrario occorre procedere per via empirica.

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)

INGEGNERIA INFORMATICA

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta

INGEGNERIA DELLE TELECOMUNICAZIONI

Analisi dei Sistemi di Controllo PID

CORSO di AUTOMAZIONE INDUSTRIALE

Prova TIPO C per: ESERCIZIO 1.

In conduzione continua si ottiene una tensione sul carico v c proporzionale al valore desiderato v i.

Regolazione e controllo

Controlli Automatici LA Prova del 11/01/2005 Gruppo a

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

Esercizi di Controlli Automatici - 7 A.A. 2016/2017

COMPITO DI CONTROLLI AUTOMATICI Ingegneria dell Energia Elettrica e Aerospaziale 1 Febbraio 2016

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione

Regolazione e controllo

SOLUZIONE della Prova TIPO F per:

Fondamenti di Automatica Prof. Paolo Rocco. Soluzioni della seconda prova scritta intermedia 6 luglio 2017

Controllo Digitale - A. Bemporad - A.a. 2007/08

Sistemi Elementari. Prof. Laura Giarré

Cognome Nome Matricola Corso

Sistemi di controllo

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Prova scritta di Controlli Automatici - Compito A

Transcript:

Controlli Automatici 10. Regolatori standard PID Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Caratteristiche desiderate dei regolatori da inserire nel loop Controllori standard Semplicità di tuning Basso costo Standardizzazione Semplicità della legge (algoritmi complessi non servono, le limitazioni maggiori sono imposte dalla tecnologia) Controlli Automatici PID 2

Regolatore PID Un regolatore in retroazione Riceve informazioni sul riferimento e uscita controllata Manipola la differenza tra i due valori (segnale errore) Calcola ed attua l azione di controllo Cosa vogliamo conoscere sul segnale errore e(t)? Presente e(t) e(t) Passato e τ dτ Futuro de(t) dt presente futuro passato now t Controlli Automatici PID 3

Regolatore PID Regolatore Proporzionale Integrale Derivativo - PID Regolatore standard con tre azioni di controllo combinate: azione proporzionale all errore azione proporzionale all integrale dell errore azione proporzionale alla derivata dell errore Standard industriale ed utilizzabile per moltissimi impianti. Implementabile con molte tecnologie: elettriche (analogiche e digitali) meccaniche pneumatiche oleodinamiche Spesso, sui sistemi di controllo industriale sono già disponibili moduli software che li implementano. Controlli Automatici PID 4

Motivazioni del successo del PID Notevole efficacia nella regolazione di un ampia gamma di processi industriali Tecniche di taratura semplici ed automatiche applicabili anche quando il modello dell impianto è poco noto Importanza e convenienza economica della standardizzazione Possono essere usati come elementi base di schemi di controllo articolati (es: controllo in cascata) portando notevolissimi miglioramenti delle prestazioni Consente di ottenere prestazioni accettabili anche con una scarsa conoscenza del modello del sistema I PID hanno successo perché rappresentano una soluzione non facilmente superabile, in generale, nel rapporto efficacia/costo Controlli Automatici PID 5

Regolatore PID K p y ref (t) + e(t) + + u(t) _ K i /s y(t) K d s + Azione proporzionale all errore Azione proporzionale all integrale dell errore Azione proporzionale alla derivata dell errore Se e(t) è il segnale di errore, l azione di controllo del PID è definita come u t = K p e t + K i t 0 te τ dτ + K d de(t) dt K p : coefficiente dell azione proporzionale K i : coefficiente dell azione integrale K d : coefficiente dell azione derivativa Controlli Automatici PID 6

Funzione di trasferimento u t = K p e t + K i t 0 te τ dτ + K d de(t) G PID s = K p + K i s + K ds = K ds 2 + K p s + K i s Rappresentazione alternativa: G PID s = K p 1 + 1 T i s + T T i T d s 2 + T i s + 1 ds = K p T i s in cui T i = K p K i : tempo integrale (o di reset) T d = K d K p : tempo derivativo Funzione di trasferimento Controlli Automatici PID 7 dt 2 zeri a parte reale negativa, 1 polo nell origine Il PID nella sua forma ideale è un sistema improprio, non fisicamente realizzabile

Il PID è un sistema improprio per la presenza del termine derivativo. Per questo motivo nella pratica si utilizza la seguente approssimazione: T d s 1 + T d N s dove la costante positiva N è scelta in modo che il polo s = N aggiunto per la T d T ds realizzabilità, sia all esterno della banda di frequenze controllo. Tipicamente N = 5 20 PID in forma reale di interesse nel N Il polo reale modifica anche la posizione degli zeri. T d Nel seguito si farà comunque riferimento alla forma ideale, ricordando poi di aggiungere il polo reale fuori banda. Controlli Automatici PID 8

Significato delle tre azioni di controllo Azione proporzionale Maggiore è l errore, maggiore è l azione di controllo Vantaggi Accelera il sistema Riduce l errore a regime (non fino ad azzerarlo) Svantaggi Tende a destabilizzare il sistema Controlli Automatici PID 9

Significato delle tre azioni di controllo 1.4 Step Response 1.2 1 Increasing K p Amplitude 0.8 0.6 Kp=3 Kp=5 Kp=4 0.4 Kp=2 Kp=1 0.2 0 0 1 2 3 4 5 6 7 8 Time (sec) Controlli Automatici PID 10

Significato delle tre azioni di controllo Azione integrale Permette di annullare asintoticamente l errore a fronte di segnali di riferimento o disturbi additivi costanti Vantaggi Annulla l errore a regime in presenza di riferimenti costanti Svantaggi Destabilizza il sistema Controlli Automatici PID 11

Significato delle tre azioni di controllo Azione derivativa Anticipa l andamento dell errore negli istanti futuri evitando che il sistema scappi lontano dal riferimento a causa dell accelerazione data dal proporzionale. Azione di controllo «preventiva». Vantaggi Stabilizza il sistema Svantaggi Tende a rallentare il sistema Controlli Automatici PID 12

Significato delle tre azioni di controllo 1.4 Step Response 1.2 1 Amplitude 0.8 0.6 Increasing T d 0.4 0.2 0 0 2 4 6 8 10 12 14 16 18 Time (sec) Controlli Automatici PID 13

Significato delle tre azioni di controllo Non tutte le azioni devono essere presenti contemporaneamente: in particolare è possibile impiegare soltanto una di esse o combinazioni di due. Trascurando i regolatori caratterizzati unicamente dalla presenza dell azione derivativa, o delle azioni integrale e derivativa soltanto, dal generico PID si possono ottenere come casi particolari: Regolatore P Regolatore I Regolatore PI Regolatore PD Controlli Automatici PID 14

Taratura automatica dei parametri Quando la funzione di trasferimento del sistema da controllare è nota, i parametri del PID possono essere tarati per mezzo di tecniche di sintesi classiche (ad esempio tecniche basate sul luogo delle radici). A volte, però, la costruzione di un modello del plant a partire dalle leggi fisiche che lo governano può richiedere un impegno sproporzionato rispetto alle esigenze di progetto. In questi casi esistono delle strategie per tarare i parametri del PID a partire da prove sul campo effettuate sul plant. Esistono svariati metodi, alcuni dei quali già implementati su alcuni controllori industriali commercializzati su larga scala. Controlli Automatici PID 15

Metodi in anello chiuso Metodo di Ziegler e Nichols in anello chiuso L algoritmo è il seguente: Si attiva inizialmente solo l azione proporzionale Si innalza il coefficiente K p finchè il sistema retroazionato raggiunge il limite di stabilità, cioè fino a quando, a fronte di variazioni a scalino imposte al segnale di riferimento, l uscita del sistema è in oscillazione permanente di periodo T Controlli Automatici PID 16

Metodi in anello chiuso Il corrispondente valore di K p è chiamato guadagno critico Una volta determinati K p e T i parametri del PID vengono tarati secondo la seguente tabella Ziegler-Nichols anello chiuso P K p T i T d 0.5 K p PI 0.45 K p 0.8 T PID 0.6 K p 0.5 T 0.125 T Controlli Automatici PID 17

Metodi in anello aperto I metodi di taratura automatica ad anello aperto valgono per i plant stabili, la cui risposta al gradino non è oscillante. Ciò può essere testato sul campo semplicemente eccitando il plant con un gradino. Una volta testato che il plant risponde a un gradino in ingresso senza oscillazioni, è necessario approssimare il sistema da controllare come un sistema del primo ordine con ritardo del tipo G s = K 1 + τs e θs Esistono svariati metodi per ottenere G s a partire dalla risposta al gradino del plant. Verrà illustrato il metodo delle aree. Controlli Automatici PID 18

Si considera la risposta del plant ad un gradino di ampiezza A Metodo delle aree Valore di regime dell uscita y K = y A Guadagno statico y S 1 θ + τ = S 1 y S 2 τ = es 2 y Costante di tempo θ + τ t θ = (S 1 yτ) y Ritardo Controlli Automatici PID 19

Metodo delle aree L algoritmo da seguire per trovare il modello approssimato è il seguente: Eccitare il sistema con un gradino di ampiezza A e graficare la risposta Ottenere il guadagno statico K mediante K = y A Trovare, anche in via approssimata, l area S 1 Ottenere l ascissa θ + τ mediante θ + τ = S 1 y e tracciare una retta verticale passante per θ + τ Trovare, anche in via approssimata, l area S 2 Ottenere la costante di tempo τ e il ritardo θ mediante τ = es 2 y θ = (S 1 yτ) y Controlli Automatici PID 20

Una volta approssimato il plant come G s = K 1 + τs e θs Esistono diversi metodi di taratura del PID. Metodi in anello aperto Metodo di Ziegler e Nichols in anello aperto Il metodo è lo stesso descritto in precedenza. Tuttavia, in questo caso si utilizza la seguente tabella Ziegler-Nichols anello aperto P PI PID K p T i T d τ Kθ 0.9τ Kθ 1.2τ Kθ Controlli Automatici PID 21 3 θ 2 θ 0.5 θ

Metodi in anello aperto Metodo di ottimizzazione Alcuni metodi di taratura consistono nel determinare i parametri del regolatore in modo da minimizzare opportune funzioni obiettivo caratterizzanti le risposte del sistema in anello chiuso a fronte di andamenti a scalino del segnale di riferimento o dei disturbi IAE = 0 e(t) dt Integral Absolute Error Penalizza il modulo dell errore ITAE = 0 t e(t) dt Integral Time Absolute Error Poco penalizzato il modulo dell errore nei primi istanti del transitorio ISE = 0 e 2 (t) dt Integral Square Error Penalizza l integrale del quadrato dell errore ISTE = 0 t 2 e 2 (t) dt Integral Square Time Error Sono accettabili errori anche elevati nei primi istanti della risposta Controlli Automatici PID 22

Metodi in anello aperto Sono state proposte regole empiriche di taratura di regolatori PI o PID ottenute interpolando i risultati di specifiche prove di ottimizzazione. Ad esempio, per il funzionale ITAE si possono utilizzare le seguenti formule ITAE K p T i T d PI 0.586 K PID 0.965 K τ θ τ θ 0.916 τ 2 1.03 τ 0.165 θ 0.855 τ 2 0.796 τ 0.147 θ 0.308 τ θ τ 0.929 Controlli Automatici PID 23