14/12/2013 CATENA DI TRASPORTO DEGLI ELETTRONI. La riduzione dell ossigeno ad acqua. avviene in diversi passi (2)

Documenti analoghi
Tipi di trasportatori di elettroni nella catena respiratoria

CATENA DI TRASPORTO DEGLI ELETTRONI

CATENA DI TRASPORTO DEGLI ELETTRONI

chiamati NADH-Q ossidoreduttasi, Q-citocromo C ossido-reduttasi e di tre grandi complessi proteici

trasferimento degli elettroni dal donatore di elettroni di una

Fosforilazione ossidativa

Seminario. Ciclo di Krebs 1. La citrato sintasi forma citrato a partire dall ossaloacetato e dall acetilcoenzima A

NADH FADH 2 (trasportatori ridotti di elettroni) Catena respiratoria (trasferimento degli

Catena di trasporto degli elettroni (catena respiratoria) e Fosforilazione ossidativa

Nicotinamide adenin dinucleotide (NAD + ) H - NMN R AMP. Nel NADP + questo gruppo ossidrilico è esterificato con un gruppo fosforico

Modulo 16: La fosforilazione ossidativa

FOSFORILAZIONE OSSIDATIVA

L ossidazione completa del glucosio da parte dell O 2. può essere suddivisa in due semi-reazioni

L ossidazione completa del glucosio da parte dell O 2. può essere suddivisa in due semi-reazioni

CATENA RESPIRATORIA (CR) FOSFORILAZIONE OSSIDATIVA (FO)

Come le cellule traggono energia dal cibo: produzione di ATP

FADH ADP + Pi ATP...29 AG ' = -30,5 kj/mol...29 Resa di ATP per l ossidazione completa del glucosio...31

COME VIENE METABOLIZZATA QUESTA MASSICCIA QUANTITA DI ENERGIA? Trasformazione di energia potenziale di riduzione. energia libera di fosforilazione

La degradazione ossidativa di zuccheri, ac. grassi, e amminoacidi. livello del substrato) Equivalenti riducenti di NADH e FADH 2

L ossidazione completa del glucosio da parte dell O 2. può essere suddivisa in due semi-reazioni

Modulo 16: La fosforilazione ossidativa

fornire energia chimica in vettori attivati ATP e NADH e NADPH e FADH.

fornire energia chimica in vettori attivati ATP e NADH e NADPH e FADH.

Mitocondri 06/12/2012. Biotecnologie_2012. Teoria endosimbiontica.

I Mitocondri Centrale elettrica cellulare

Respirazione cellullare

IL METABOLISMO CELLULARE GLICOLISI E RESPIRAZIONE CELLULARE

ADP + HPO 3, NAD +, NADP +, FAD ATP, NADH, NADPH, FADH 2 ENERGIA CHIMICA

Anatomia biochimica di un mitocondrio

FOSFORILAZIONE OSSIDATIVA

Fosforilazione ossidativa

Respirazione cellulare e fosforilazione ossidativa

CHIMICA BIOLOGICA. Seconda Università degli Studi di Napoli. DiSTABiF. Corso di Laurea in Scienze Biologiche. Insegnamento di. Anno Accademico

I MITOCONDRI: LE CENTRALI ENERGETICHE DELLA CELLULA

Capitolo 6 La respirazione cellulare

Lezione 7. Il metabolismo terminale e la produzione di ATP

Il ciclo di Krebs e la fosforilazione ossidativa

Una panoramica del ciclo dell acido ciclico

Coenzimi. Ioni essenziali. Molti coenzimi hanno come precursori le vitamine.

Lezione 7. Il metabolismo terminale e la produzione di ATP

Capitolo B2 Il metabolismo energetico: dal glucosio all ATP

Via finale comune per l ossidazione di tutti i combustibili metabolici che entrano nella via come molecola di acetil CoA

DESTINI METABOLICI DEL PIRUVATO

Mitocondri. -sono visibili al MO (Ø 0,5 µ e lunghezza da 1 a 6 µ) -assenti nei batteri e presenti in tutte le cellule eucariotiche

METABOLISMO CELLULARE

Il flusso di elettroni è responsabile, direttamente o indirettamente, di tutto il lavoro prodotto dagli organismi viventi. CITOSOL- MITOCONDRI

Il metabolismo cellulare

Fosforilazione ossidativa

: : H-Cl + H-N: H-N-H + : Cl : H

il valore 3 o 5 dipende dal meccanismo usato per trasportare gli elettroni del NADH dal citosol alla matrice mitocondriale

RESPIRAZIONE CELLULARE (METABOLISMO DEL GLUCOSIO)

Catena Respiratoria e Fosforilazione Ossidativa. glucosio. piruvato H + Ac-CoA O 2. e - NADH. ADP P i H 2 O H + H + ATP NADH

Modulo 14 Il ciclo di Krebs

Trasporto degli elettroni e fosforilazione ossidativa

Cap.19. Ciclo di Krebs. o Ciclo degli acidi Tricarbossilici o Ciclo dell acido Citrico

Energia e metabolismi energetici

Il metabolismo microbico

1. Quale dei seguenti componenti della catena mitocondriale di trasporto degli elettroni non è parte di un complesso lipoproteico di membrana?

Fosforilazione ossidativa

I processi mediante i quali le molecole biologiche vengono scisse e risintetizzate costituiscono una rete di reazioni enzimatiche, complessa e

Aerobiosi C A T A B O L I S M O. Lez 4A. Schema generale del metabolismo dei glucidi

I mitocondri MITOCONDRI

BETA OSSIDAZIONE DEGLI ACIDI GRASSI

Introduzione allo studio del metabolismo Parte I

La respirazione cellulare

2 INCONTRO: LA PRODUZIONE DI ENERGIA NELLA CELLULA

Attività cellulare altamente coordinata svolta da sistemi multienzimatici, con i seguenti scopi: ottenere energia chimica dall ambiente attraverso la

BETA OSSIDAZIONE DEGLI ACIDI GRASSI

I processi metabolici cellulari

Metabolismo fermentativo

MODULO 6 FOSFORILAZIONE OSSIDATIVA REAZIONI DI OSSIDORIDUZIONE

COMBUSTIONE = OSSIDAZIONE SOSTANZA ORGANICA. Legno + O2 -> CO2 + H2O + calore

- utilizzano esclusivamente le reattività chimiche di alcuni residui AA

BIOENERGETICA: Studio dei vari tipi di trasformazione dell energia di cui necessitano i viventi

CICLO DI KREBS (o DELL ACIDO CITRICO)

REGOLAZIONE DEL CICLO TCA

Catena di Trasporto degli elettroni

Energia e metabolismo.

6 H 2. con G=-686 kcal/mole di H 12 O 6 O + 6 CO O 2. glucosio La respirazione avviene in tre stadi principali; ognuno di questi

DESTINI METABOLICI DEL PIRUVATO

Biologia. La cellula al lavoro

L energia negli esseri viventi: fotosintesi e respirazione viste dal punto di vista chimico

Caratteristiche generali dei sistemi viventi

Ossidazione dell α-chetoglutarato: questa reazione porta alla formazione di un legame TIOESTERE ad alta energia e alla produzione di NADH

COMPLESSO IV: CENTRI REDOX

IL METABOLISMO ENERGETICO BIOCHIMICA. GLICOLISI, FERMENTAZIONE E RESPIRAZIONE CELLULARE GSCATULLO

TUTORATO DI BIOLOGIA GENERALE PER BIOTECNOLOGIE ANNO 2018/2019.

INTRODUZIONE AL METABOLISMO

La materia vivente è costituita da molecole, che costruiscono strutture ordinate partendo da materiali disordinati, tramite una spesa energetica

Prof. Maria Nicola GADALETA

Fonte diretta di Energia è l ATP.

C6H12O6 + 6O2 6CO2 + 6H2O + 36/38 molecole di ATP

DESTINI METABOLICI DEL PIRUVATO

Metabolismo batterico

Acetil-CoA. NADH (prodotto nella glicolisi) PIRUVATO. Condizioni anaerobiche. Condizioni. aerobiche

INTRODUZIONE AL METABOLISMO. dal gr. metabolè = trasformazione

16/12/2011. Mitocondri. Biotecnologie_2011

La glicolisi non è l unica via catabolica in grado di produrre energia. Se il suo prodotto viene ulteriormente ossidato si ottiene molta più energia.

CICLO DI KREBS (o DELL ACIDO CITRICO)

ENERGIA LIBERA DI GIBBS (G)

Transcript:

2 Parte, Mitocondri CATENA DI TRASPORTO DEGLI ELETTRONI http://www.ncbi.nlm.nih.gov/books/nbk21063/figure/a2492/?report=objectonly http://www.personal.kent.edu/~cearley/pchem/krebs/etc.png La riduzione dell ossigeno ad acqua avviene in diversi passi (1) La reazione energeticamente favorevole H 2 + ½ O 2 H 2 0 viene fatta svolgere in diversi passi in modo che l energia rilasciata possa essere immagazzinata invece di venire persa nell ambiente sotto forma di calore. Prima gli atomi di idrogeno sono separati in protoni ed elettroni. Gli elettroni passano attraverso una serie di trasportatori di elettroni presenti sulla membrana mitocondriale interna. In diverse occasioni i protoni e gli elettroni sono ricombinati transitoriamente. I protoni ritornano permanentemente alla matrice soltanto alla fine della catena di trasporto degli elettroni; nella matrice possono essere usati per neutralizzare le cariche negative create dall aggiunta finale di elettroni alla molecola di ossigeno. La riduzione dell ossigeno ad acqua avviene in diversi passi (2) Il processo di trasporto degli elettroni inizia quando l ione idruro (ione carico negativamente dell idrogeno: H ) è rimosso dal NADH (per rigenerare NAD + ) ed è convertito in un protone e due elettroni (H H + + 2e ). I due elettroni sono passati al primo di una serie di più di 15 diversi trasportatori di elettroni nella catena respiratoria. Gli elettroni iniziano con energia molto elevata e progressivamente la perdono mentre passano lungo la catena. Nella maggior parte dei passi gli elettroni passano da un ione metallico ad un altro (ciascuno di questi ioni è strettmanete legato ad una molecola proteica che altera l affinità verso gli elettroni del metallo). http://www.ncbi.nlm.nih.gov/books/nbk26904/#a2539 1

La riduzione dell ossigeno ad acqua avviene in diversi passi (3) La maggior parte delle proteine coinvolte sono raggruppate in tre grandi complessi enzimatici respiratori, ciascuno dei quali contiene proteine transmembrana che trattengono i complessi fermamemente nella membrana mitocondriale interna. Ogni complesso della catena ha un affinità verso gli elettroni superiore a quella del suo predecessore, e quindi gli elettroni passano in sequenza da un complesso all altro finchè non sono trasferiti all ossigeno, che ha l affinità per gli elettroni superiore a tutti gli altri. http://www.ncbi.nlm.nih.gov/books/nbk21528/table/a4386/?report=objectonly Mentre gli elettroni si muovono lungo la catena respiratoria, l energia viene immagazzinata sotto forma di gradiente protonico attraverso la membrana interna (1) La fosforilazione ossidativa è possibile dato che i trasportatori di elettroni sono strettamente associati alle molecole proteiche. Le proteine guidano gli elettroni lungo la catena respiratoria in modo che essi si muovano in sequenza da un complesso enzimatico al successivo. Il trasferimento degli elettroni è accoppiato: alla captazione e rilascio orientati di H + a modificazioni allosteriche nelle pompe protoniche coinvolte nella conversione di energia. Il risultato complessivo è il pompaggio di H + attraverso la membrana interna dalla matrice allo spazio intermembrane pilotato dal flusso energeticamente favorevole di elettroni. Mentre gli elettroni si muovono lungo la catena respiratoria, l energia viene immagazzinata sotto forma di gradiente protonico attraverso la membrana interna (2) Il movimento dell H + ha due conseguenze principali: Genera un gradiente di ph attraverso la membrana interna, con ph maggiore nella matrice rispetto allo spazio intermembrana (e al citosol, dato che la membrana esterna è permeabile ). Genera un gradiente di voltaggio (potenziale di membrana) attraverso la membrana interna, in cui l interno è negativo e l esterno positivo (come risultato del flusso netto di ioni positivi). 2

Mentre gli elettroni si muovono lungo la catena respiratoria, l energia viene immagazzinata sotto forma di gradiente protonico attraverso la membrana interna (3) Il gradiente di ph (ΔpH) pilota il ritorno degli H + verso la matrice, così rinforzando l effetto del potenziale di membrana (ΔV), che agisce per attrarre qualsiasi ione positivo verso la matrice e quindi per spingere gli ioni negativi fuori. Complessivamente, il ΔpH e il ΔV costituiscono un gradiente elettrochimico protonico. Il gradiente elettrochimico protonico esercita una forza proton motrice (misurata in millivolts, mv). La catena respiratoria consiste di quattro complessi: tre pompe protoniche e un collegamento fisico con il ciclo dell acido citrico (1) Gli elettroni sono trasferiti dal NADH all O 2 mediante una catena di tre grandi complessi proteici chiamati NADH Q ossidoreduttasi, Q citocromo C ossido reduttasi e citocromo C ossidasi. La catena respiratoria consiste di quattro complessi: tre pompe protoniche e un collegamento fisico con il ciclo dell acido citrico (2) L ubichinone è un chinone idrofobico che diffonde rapidamente all interno della membrana mitocondriale interna. L ubichinone trasporta gli elettroni dal FADH 2, generati dalla succinato deidrogenasi nel ciclo dell acido citrico, alla Q citocromo C ossidoreduttasi, generata mediante la succinato Q reduttasi. Il citocromo C, una piccola proteina solubile nei lipidi, fa da navetta per gli elettroni dalla Q citocromo C ossidoreduttasi alla citocromo C ossidasi, la componente finale della catena e quella che catalizza la riduzione dell O 2 ad H 2 O. http://www.ncbi.nlm.nih.gov/books/nbk22505/ 3

La catena respiratoria consiste di quattro complessi: tre pompe protoniche e un collegamento fisico con il ciclo dell acido citrico (3) La NADH Q ossidoreduttasi, la succinato Q reduttasi, la Q citocromo c ossidoreduttasi e la citocromo c ossidasi sono anche noti come Complessi I, II, III e IV, rispettivamente. La succinato Q reduttasi (complesso II), a differenza degli altri complessi, non pompa elettroni. Eme e citocromi (1) Diversi tipi di eme, un gruppo prostetico contenente ferro simile a quello che si trova nell emoglobinas e mioglobina, sono strettamente legati (covalentemente o non covalentemente) ad un insieme di proteine mitocondriali chiamate citocromi. Ogni citocromo è designato con una lettera: a, b, c o c1. Il flusso di eletroni lungo i citocromi si svolge per ossidazione e riduzione dell atomo di ferro nel centro della molecola di eme: Fe 3+ + e Fe 2+ Lodish et al., 7 ed. Eme e citocromi (2) Struttura del citocromo c di cuore di cavallo Poiché l anello eme dei citocromi consiste in atomi legati alternativamente da legami doppi e singoli, possono esistere un gran numero di forme di risonanza ibride. Ciò permette all elettrone extra consegnato al citocromo di venire delocalizzato fra gli atomi di carbono e di azoto del gruppo eme nonchè sull ione Ferro. I diversi citocromi hanno gruppi eme e atomi vicini (legami assiali) leggermente diversi, il che crea ambienti diversi per l ione Fe. Perciò ogni citocromo ha un un potenziale di riduzione diverso. I citocromi sono emoproteine legate a membrane che contengono gruppi eme e sono coinvolte nel trasporto di elettroni Lodish et al., 7 ed. http://en.wikipedia.org/wiki/cytochrome http://www.ncbi.nlm.nih.gov/books/nbk26904/figure/a2535/?report=objectonly 4

Centri Ferro Zolfo Centri Ferro Zolfo Sono gruppi prostetici contenenti Ferro, ma non legato al gruppo eme. Gli atomi di Ferro sono legati sia ad atomi di zolfo (S) inorganico che ad atomi di S di residui di cisteina di una proteina. Alcuni atomi di Fe nel centro portano una carica +2, altri hanno una carica +3. Tuttavia, la carica netta di ogni atomo di Fe è in realtà tra +2 e +3 dato che gli elettroni delle loro orbitali più esterne insieme agli elettroni extra consegnati nella catena di trasporto di elettroni sono dispersi fra gli atomi di fe e si muovono rapidamente da un atomo all altro. http://www.ncbi.nlm.nih.gov/books/nbk26904/figure/a2536/?report=objectonly I centri Fe S nelle proteine ferro zolfo (dette anche proteine a ferro non emico) giocano un ruolo chiave in una gran diversità di reazioni biologiche di riduzione. Gli elettroni dei centri Fe S della NADH Q ossidoreduttasi sono convogliati al coenzima Q portando al pompaggio di quattro ioni di idrogeno dalla matrice del mitocondrio. La NADH Q ossidoreduttasi contiene clusters di tipo 2Fe 2S e di tipo 4Fe 4S. Gli atomi di ferro di questi complessi passano ciclicamente fra stati Fe 2+ (ridotto) o Fe 3+ (ossidati). Al contrario dei chinoni e delle flavine, i centri Fe S di solito subiscono ossidazione riduzione senza rilasciare o legare protoni. 5

La catena respiratoria consiste di quattro complessi: tre pompe protoniche e un collegamento fisico con il ciclo dell acido citrico (1) La catena respiratoria consiste di quattro complessi: tre pompe protoniche e un collegamento fisico con il ciclo dell acido citrico (2) Il fluire degli elettroni attraverso questi complessi transmembrana porta al trasporto di protoni attraverso la membrana mitocondriale interna. Gli elettroni sono portati dalla NADH-Q ossidoreduttasi alla Q-citocromo C ossidoreduttasi, il secondo complesso della catena, dalla forma ridotta del coenzima Q (Q) anche noto come ubichinone perchè è un chinone ubiquitarii nei sistemi biologici. http://www.columbiamitodiagnostics.org/tests/coen zymeq10.html L ubichinone è un chinone idrofobico che diffonde rapidamente all interno della membrana mitocondriale interna. L ubichinone trasporta gli elettroni dal FADH 2, generati dalla succinato deidrogenasi nel ciclo dell acido citrico, alla Q citocromo C ossidoreduttasi, generata mediante la succinato Q reduttasi. Il citocromo C, una piccola molecola solubile, fa da navetta per gli elettroni dalla Q citocromo C ossidoreduttasi alla citocromo C ossidasi, la componente finale della catena e quella che catalizza la riduzione dell O 2 ad H 2 O. http://www.ncbi.nlm.nih.gov/books/nbk22505/ Coenzima Q (CoQ), ubichinone Unica piccola molecola trasportatrice di elettronic che non è un gruppo prostetico legato irreversibilmente ad una proteina. E un trasportatore sia di protoni che di elettroni. La forma chinonica ossidata di CoQ può accttare un singolo elettrone per formare un semichinone, un radicale libero carico (CoQ ). L aggiunta di un secondo elettrone e di due protoni (ossia un totale di due atomi di H) a CoQ forma la diidroubichinone (CoQH 2 ), la forma totalmente ridotta. Sia CoQ che CoQH 2 sono solubili nei fosfolipidi e diffondo liberamente nel centro idrofobico della membrana mitocondriale: Partecipa alla catena di trasporto di elettroni : traporta elettroni e protoni tra i complessi proteici. Struttura del coenzima Q (CoQ) o ubichinone, illustrante la sua capacità di trasportare due protoni e due elettroni. 6

Il diidroubichinone è il punto di ingresso degli elettroni del FADH 2 delle flavoproteine L enzima del ciclo dell acido citrico succinato deidrogenasi, che genera FADH 2 con l ossidazione del succinato in fumarato, fa parte del complesso succinato Q reduttasi (complesso II) una proteina integrale della membrana mitocondriale interna. Il FADH 2 non lascia il complesso [gruppo prostetico]; invece gli elettroni sono trasferiti a centri Fe S e successivamente al Q per dare entrata nella catena di trasporto degli elettroni. Il complesso succinato Q reduttasi, e altri enzimi che trasferiscono gli elettroni del FADH 2 a Q, al contrario della NADH Q ossidoreduttasi, non trasportano protoni. Perciò, si forma meno ATP dall ossidazione del FADH 2 che non del NADH. Stati di ossidazione delle Flavine La riduzione della flavina mononucleotide (FMN) a FMNH 2 procede mediante un intermediario semichinonico. http://www.ncbi.nlm.nih.gov/books/nbk22505/figure/a2508/?report=objectonly Gli elettroni fluiscono dall ubichinolo al citocromo C tramite la Q citocromo C ossidoreduttasi La seconda delle tre pompe protoniche della catena respiratoria è la Q citocromo c ossidoreduttasi (Complesso III o citocromo ossidasi). Un citocromo è una proteina che contiene un gruppo prostetico eme e che trasferisce elettroni. Il ferro del gruppo prostetico alterna fra uno stadio ridotto ferroso (Fe 2+ ) e uno stato ossidato ferrico (Fe 3+ ) durante il trasporto degli elettroni. La funzione della Q citocromo C ossidoreduttasi è quella di catalizzare la trasferta di elettroni dal QH 2 al citocromo c ossidato (Cyt c), una proteina solubile in acqua, e concomitantemente pompare elettroni fuori dalla matrice mitocondriale. http://www.ncbi.nlm.nih.gov/books/nbk22505/ Trasporto di protoni transmembrana: il ciclo Q Ciclo Q: meccanismo per l accoppiamento del trasporto elettronico da Q al citocromo c al trasporto transmembrana dei protoni. I due elettroni di un QH 2 legato sono trasferiti, uno al citocromo c e l altro a Q legato per formare il semichinone Q. Il Q formato si dissocia e viene sostituito da un secondo QH 2, che anche esso dà i suoi elettroni, uno ad una seconda molecola di citcromo c e l altro per ridurre Q a QH 2. Questo secondo trasferimento di elettroni porta alla captazione di due protoni dalla matrice. I gruppi prostetici sono illustrati nelle loro forme ossidate in blu e forme ridotte in rosso. 7

La citocromo c ossidasi catalizza la riduzione dell ossigeno molecolare ad acqua (1) Lo stadio finale è l ossidazione del citocromo c ridotto generato dal complesso III, che è accoppiata alla riduzione di O 2 a due molecole di H 2 O, catalizzata dalla citocromo C ossidasi (complesso IV). La citocromo c ossidasi bovina consiste di 13 subunità, di cui 3 (subunità I, II e III) sono codificate dal genoma mitocondriale. Contiene due gruppi eme A e tre ioni rame (Cu), disposti come due centri di rame, designati A e B. Uno dei centri, Cu A /Cu A contiene due ioni rame legati da due residui ponti di cisteina. Questo centro accetta inizialmente elettroni dal citocormo c ridotto. Il rimanente ione rame, Cu B, è coordinato da tre residui di istidina, uno dei quali è modificato mediante legame covalente a un residuo di tirosina. L eme A differisce dall eme del citocromo C e C1 in tre modi: (1) un gruppo formile sostituisce un gruppo metile; (2) una catena idrocarburica C 15 sostituisce uno dei gruppi vinilici ; (3) l eme non è covalentemente legato alla proteina. L eme a porta elettroni dal Cu A /Cu A mentre l eme a 3 passa gli elettroni a Cu B al quale è direttamente adiacente. Complessivamente, l eme a 3 e Cu B formano il centro attivo dove l O 2 è ridotto ad H 2 O. http://www.ncbi.nlm.nih.gov/books/nb K22505/figure/A2518/?report=objecto nly Le due molecole di eme a e eme a 3 hanno proprietà diverse perchè sono localizzate in diversi microambienti all interno della citocromo c ossidasi. http://www.ncbi.nlm.nih.gov/books/nbk22505/figure/a2519/?report=objectonly http://www.ncbi.nlm.nih.gov/books/nbk26904/figure/a2540/?report=objectonly 8

Un gradiente protonico fornisce l energia per la sintesi dell ATP (1) Il flusso di elettroni dal NADH all O 2 è un processo esergonico: Questo processo è accoppiato alla sintesi di ATP, un processo endergonico: Mitocondri SINTESI DELL ATP La sintesi dell ATP è svolta da un complesso molecolare presente nella membrana mitocondriale interna: Noto precedentemente come F 1 F 0 ATPase perchè è stato scoperto mediante la sua catalisi del processo inverso, l idrolisi dell ATP. ATP sintasi è il nome preferibile perchè enfatizza il suo ruolo reale nel Viene anche chiamato Complesso V. http://www.ncbi.nlm.nih.gov/books/nbk22388/ Un gradiente protonico fornisce l energia per la sintesi dell ATP (2) In 1961, Peter Mitchell propose che il trasporto degli elettroni e la sintesi dell ATPfosseroaccoppiatimediante un gradiente protonico attraverso la membrana mitocondriale interna, piuttosto che mediante un intermediario covalente ad alta energia. Nel suo modello, il trasferimento di elettroni lungo la catena respiratoria portava al pompaggio di protoni dalla matrice allo spazio fra la membrana mitcondriale interna e quella esterna. La concentrazione di H + diventa minore nella matrice, e viene generato un campo elettrico in cui il lato della matrice è negativo rispetto allo spazio intermembrane. [n protoni inferiore rispetto allo spazio intermembrane] http://www.ncbi.nlm.nih.gov/books/nbk22388/ http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1978/ 9

Structure of ATP Synthase Figure 18.27. Structure of ATP Synthase. A schematic structure is shown along with detailed structures of the components for which structures have been determined to high resolution. The P-loop NTPase domains of the α and β subunits are indicated by purple shading. http://www.ncbi.nlm.nih.gov/books/nbk22388/figure/a2532/?report=object only 10

http://www.stanford.edu/group/hopes/treatmts/ebuffer/j1.html Il gradiente protonico pilota la sintesi dell ATP (1) Il gradiente elettrochimico protonico attraverso la membrana mitocondriale interna è il processo fondamentale della fosforilazione ossidativa. Questa è svolta mediante un enzima legato alla membrana interna, l ATP sintasi. L ATP sintasi crea una via idrofilica attraverso la membrana interna che permette il flusso di protoni lungo il loro gradiente elettrochimico. Mentre i protoni si incanalano lungo l ATP sintasi, essi sono usati per pilotare la reazione energeticamente sfavorevole fra l ADP e il P i che permette il ripristino dell ATP. http://www.ncbi.nlm.nih.gov/books/nbk26904/figure/a2549/?report=objectonly 11

Natura elettrochimica del gradiente protonico CHEMIOSMOSI (1) Dato che i protoni sono carichi positivamente, il gradiente protonico stabilito attraverso la membrana mitocondriale interna ha componenti sia chimiche che elettriche. La componente chimica è la concentrazione di protoni, o gradiente protonico, che corrisponde ad una concentrazione circa dieci volte superiore di protoni nel versante citosolico della membrana mitcondriale interna (differenza di una unità di ph). Inoltre, vi è un potenziale elettrico attraverso la membrana, che deriva dall aumento netto di cariche positive sul versante citosolico. http://www.ncbi.nlm.nih.gov/books/nbk9885/figure/a1647/?report=objectonly CHEMIOSMOSI (2) Il NADH e il FADH 2 trasportano protoni (H + ) ed elettroni (e ) alla catena di trasporto di elettroni localizzata sulla membrane mitocondriale interna. L energia del trasferimento di elettroni lungo la catena trasporta dei protoni attraverso la membrana crea un gradiente elettrochimico. Man mano che i protoni che si accumulano seguono il gradiente elettrochimico di ritorno attraverso la membrane lungo un complesso ATP sintasi, il movimento dei protoni fornisce l energia per sintetizzare ATP a partire dall ADP e fosfato. Alla fine del sistema di trasporto di elettroni, due protoni, due elettroni e una metà di una molecola di ossigeno si combinano per formare acqua. Poichè l ossigeno è l accettore finale degli elettroni, il processo è detto respirazione aerobica. http://www.ncbi.nlm.nih.gov/books/nbk26894/figure/a2512/?report=objectonly 12

The ATP synthase is a reversible coupling device that can convert the energy of the electrochemical proton gradient into chemical-bond energy, or vice versa http://www.ncbi.nlm.nih.gov/books/nbk26894/figure/a2525/?report=objectonly Trasportatori sulla membrana mitocondriale interna Mitocondri TRASPORTATORI E NAVETTE SULLE MEMBRANE MITOCONDRIALI http://www.ncbi.nlm.nih.gov/books/nbk21528/fig ure/a4418/ 13

Trasporto di metaboliti attraverso la membrana mitocondriale interna (1) Trasporto di metaboliti attraverso la membrana mitocondriale interna (2) http://www.ncbi.nlm.nih.gov/books/nbk9885/figure/a1650/ Il trasporto di piccolo molecule attraverso la membrane interna è mediato da proteine di trasporto che attraversano la membrana e guidato dal gradiente elettrochimico. Ad esempio, l ATP viene esportato dai mitocondri verso il citosol da un trasportatore che lo scambia con l ADP. La componente di voltaggio del gradiente elettrochimico guida questo scambio: l ATP porta una maggiore carica negativa ( 4) dell ADP ( 3), e perciò l ATP é esportato dalla matrice mitocondriale al citosol mentre l ADP viene importato verso i mitocondri. Viceversa, il trasporto del fosfato (P i ) e del piruvato é accoppiato ad uno scambio con ioni idrossilici (OH ); in questo caso, la componente di ph del gradiente elettrochimico guida l esportazione degli ioni idrossilici, accoppiata al trasporto di P i e piruvato verso i mitocondri. Mitocondri NAVETTE PER IL NADH FORMATO NEL CITOSOL Glycerol 3-Phosphate Shuttle Electrons from NADH can enter the mitochondrial electron transport chain by being used to reduce dihydroxyacetone phosphate to glycerol 3-phosphate. Glycerol 3-phosphate is reoxidized by electron transfer to an FAD prosthetic group in a membrane-bound glycerol 3-phosphate dehydrogenase. Subsequent electron transfer to Q to form QH 2 allows these electrons to enter the electron-transport chain. http://www.ncbi.nlm.nih.gov/books/nbk22470/figure/a2548/ 14

Tubuli renali Mitocondri ULTRASTRUTTURA Cellule parietali dello stomaco: secernono acido cloridrico Tubuli distali del nefrone: riassorbono sodio dall ultrafiltrato contro gradiente http://lynlaukimdak.wikispaces.com/12.+urology http://www.anatomyatlases.org/microscopicanatomy/section10/plate1019 1.shtml 15

Mitocondri FLUOROCROMI JC 1 Dye Mitchondrial Membrane Potential Probe Membrane mitocondriali JC 1 http://www.invitrogen.com/site/us/en/home/products-and-services/applications/cell-analysis/flow-cytometry/cell- Health-and-Viability-Assays-for-Flow-Cytometry/Apoptosis-Assays-for-Flow-Cytometry/JC-1-Dye-Mitochondrial- Membrane-Potential-Probe.html Potential-dependent staining of mitochondria in CCL64 fibroblasts by JC-1 (T3168). The mitochondria were visualized by epifluorescence microscopy using a 520 nm longpass optical filter. Regions of high mitochondrial polarization are indicated by red fluorescence due to J-aggregate formation by the concentrated dye. Depolarized regions are indicated by the green fluorescence of the JC-1 monomers. The image was contributed by Lan Bo Chen, Dana Farber Cancer Institute, Harvard Medical School. http://www.invitrogen.com/site/us/en/home/support/research-tools/image-gallery/image- Detail.alternateID.g000490.html 16