esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento



Documenti analoghi
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

B. Vogliamo determinare l equazione della retta

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO x 2, con dominio R (infatti x per ogni ( x) = x 2

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

Corso di ordinamento Sessione straordinaria - a.s ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

b) Il luogo degli estremanti in forma cartesiana è:

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Trasformazioni Geometriche 1 Roberto Petroni, 2011

PROVA N Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

Liceo G.B. Vico Corsico

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

SOLUZIONI D = (-1,+ ).

FUNZIONE REALE DI UNA VARIABILE

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

RETTE, PIANI, SFERE, CIRCONFERENZE

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

Trigonometria: breve riepilogo.

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

15 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

Studio di funzioni ( )

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x x2. 2, x3 +2x +3.

Anno 4 Grafico di funzione

INdAM QUESITI A RISPOSTA MULTIPLA

LE FUNZIONI A DUE VARIABILI

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

MATEMATICA 5 PERIODI

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione suppletiva

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

G6. Studio di funzione

Esempi di funzione. Scheda Tre

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Vademecum studio funzione

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

Massimi e minimi vincolati di funzioni in due variabili

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

~ Copyright Ripetizionando - All rights reserved ~ STUDIO DI FUNZIONE

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S A. Pisani, appunti di Matematica 1

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

Matematica e Statistica

Applicazioni del calcolo differenziale allo studio delle funzioni

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

STUDIO DI UNA FUNZIONE

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

3. Quale affermazione è falsa?

Guida pratica per la prova scritta di matematica della maturità scientifica

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

LIVELLO STUDENT S1. S2. S3. S4. S5. S6.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti.

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

Parte Seconda. Geometria

Consideriamo due polinomi

Studio grafico-analitico delle funzioni reali a variabile reale

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

Elementi di topologia della retta

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

Liceo scientifico Albert Einstein. Anno scolastico Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA

Calcolo differenziale Test di autovalutazione

Soluzione del tema d esame di matematica, A.S. 2005/2006

Il concetto di valore medio in generale

7 - Esercitazione sulle derivate

Geometria analitica di base (prima parte)

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

G3. Asintoti e continuità

Forze come grandezze vettoriali

CORSO DI LAUREA IN INGEGNERIA.

MATEMATICA p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

LA FUNZIONE INTEGRALE

LE FUNZIONI E LE LORO PROPRIETÀ

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

Maturità Scientifica PNI, sessione ordinaria

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel

LE FUNZIONI MATEMATICHE

GEOMETRIA DELLE MASSE

Le applicazioni degli integrali al calcolo di aree e volumi nelle prove di maturità

21. Studio del grafico di una funzione: esercizi

Transcript:

Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f è definita da f ( ) = appartenenti all intervallo chiuso [, 9]. t dt + cos per tutti i numeri reali. Si calcolino f'(p) e f'(p) ove f' indica la derivata di f.. Si tracci, in un sistema di coordinate cartesiane, il grafico S di f'() e da esso si deduca per quale o per quali valori di, f() presenta massimi o minimi. Si tracci altresì l andamento di f() deducendolo da quello di f'().. Si trovi il valor medio di f'() sull intervallo [, p].. Sia R la regione del piano delimitata da S e dall asse per ; R è la base di un solido W le cui sezioni con piani ortogonali all asse hanno, per ciascun, area A ( ) = sen π. Si calcoli il volume di W. Sia f la funzione definita, per tutti gli reali, da f ( ) = + 8. Si studi f e se ne disegni il grafico F in un sistema di coordinate cartesiane O. Si scrivano le equazioni delle tangenti a F nei punti P( ; ) e Q(; ) e si consideri il quadrilatero convesso che esse individuano con le rette OP e OQ. Si provi che tale quadrilatero è un rombo e si determinino le misure, in gradi e primi sessagesimali, dei suoi angoli.. Sia G la circonferenza di raggio e centro (; ). Una retta t, per l origine degli assi, taglia G oltre che in O in un punto A e taglia la retta di equazione = in un punto B. Si provi che, qualunque sia t, l ascissa di B e l ordinata di A sono le coordinate (; ) di un punto di F.. PROBLEMA 9

ARTICOLO Archimede. Si consideri la regione R compresa tra F e l asse sull intervallo [, ]. Si provi che R è equivalente al cerchio delimitato da G e si provi altresì che la regione compresa tra F e tutto l asse è equivalente a quattro volte il cerchio.. La regione R, ruotando attorno all asse, genera il solido W. Si scriva, spiegandone il perché, ma senza calcolarlo, l integrale definito che fornisce il volume W. 9 Questionario. Un triangolo ha area e due lati che misurano e. Qual è la misura del terzo lato? Si giustifichi la risposta.. Si calcoli il dominio della funzione f ( ) =.. Si considerino, nel piano cartesiano, i punti A(; ) e B( 6; 8). Si determini l equazione della retta passante per B e avente distanza massima da A.. Di un tronco di piramide retta a base quadrata si conoscono l altezza h e i lati a e b delle due basi. Si esprima il volume V del tronco in funzione di a, b e h, giustificando il ragionamento seguito. 5. In un libro si legge: «Due valigie della stessa forma sembrano quasi uguali, quanto a capacità, quando differiscono di poco le dimensioni lineari: non sembra che in genere le persone si rendano ben conto che ad un aumento delle dimensioni lineari (lunghezza, larghezza, altezza) del % (oppure del % o del 5%) corrispondono aumenti di capacità (volume) di circa % (oppure 75% o %: raddoppio)». È così? Si motivi esaurientemente la risposta. 6. Con le cifre da a 7 è possibile formare 7! = 5 numeri corrispondenti alle permutazioni delle 7 cifre. Ad esempio i numeri 567 e 567 corrispondono a due di queste permutazioni. Se i 5 numeri ottenuti dalle permutazioni si dispongono in ordine crescente qual è il numero che occupa la settima posizione e quale quello che occupa la 7-esima posizione? 7. Un foglio rettangolare, di dimensioni a e b, ha area m e forma tale che, tagliandolo a metà (parallelamente al lato minore) si ottengono due rettangoli simili a quello di partenza. Quali sono le misure di a e b? 8. La funzione f ha il grafico in figura. Se g( ) = f ( t) dt, per quale valore positivo di, g ha un minimo? Si illustri il ragionamento seguito. sen cos sen 9. Si calcoli: lim.

. Se la figura a lato rappresenta il grafico di f (), quale dei seguenti potrebbe essere il grafico di f'()? Si giustifichi la risposta. f () Archimede ARTICOLO f'() f'() A) C) f'() f'() B) D) Durata massima della prova: 6 ore. È consentito l uso della calcolatrice non programmabile. È consentito l uso del dizionario bilingue (italiano-lingua del paese di provenienza) per i candidati di madrelingua non italiana. Non è consentito lasciare l Istituto prima che siano trascorse ore dalla dettatura del tema. risoluzione del problema. Per il teorema fondamentale del calcolo integrale si ha f '( ) = cos ; + π quindi f '( π) = cos, + = mentre f '( π) = cos π + =. 9

ARTICOLO Archimede. Il grafico S è deducibile da quello di = cos, mediante una dilatazione π orizzontale di rapporto (infatti il periodo di f' è T = = π ), composta con una traslazione di vettore v ; /, come in figura. : = cos + = cos() π 8 p π 5 6 7 = cos 8 9 Figura La funzione f' è definita e continua in R, dunque f è sempre derivabile e continua; perciò f può presentare massimi o minimi locali interni al dominio solo nei valori in cui la derivata prima si annulla: cos da cui k + = = ± π + π e quindi = ± π + kπ, k Z. 8 Soltanto i valori p e p appartengono all intervallo [, 9]. A questi aggiungiamo come punto di minimo e 9 come punto di massimo in quanto, in base al segno di f', la funzione f è crescente in 8, π π, 9. Deduciamo dal grafico S altre proprietà di f(): la funzione è decrescente in 8 π, π, ha un massimo in p ed un minimo in 8 p ; tenendo conto delle aree comprese tra S e l asse, si può affermare che f () =, mentre 8 8 f π f π, e f (9) sono valori positivi, con f π f 9 f π < ( ) <. 9

Archimede Dalla crescenza o decrescenza di f' segue che f ha la concavità rivolta verso il basso in ], p[, verso l alto in ]p, 9] e presenta un flesso a tangente obliqua in = p. Ciò è sufficiente per tracciare il grafico di f (figura ); per essere più accurati, possiamo calcolare le immagini dei punti più significativi: sapendo che ARTICOLO si trova ( ) = f t dt + cos = sen + f 8 f π π π f π π = +,8; ( ) =, ; 9 9 π,6 ; f 9 sen +,5. = + ( ) =,8 p,5,6 f() π 5 6 p 7 8 8 π 9. La funzione f'() è continua in [, p], e dunque il valor medio è m = ( ) = ( ) + Figura Ricordiamo che f ' dt f c ; dunque: π ( ) f ' dt π. m = π ( ) f ' dt π + sen = π π = + π π =. 95

ARTICOLO Archimede. Possiamo calcolare il volume del solido di rotazione W mediante il metodo delle sezioni normali: VW = A( ) d = sen d co π π = π s. = π Il fatto che la base di W sia R non ha alcuna importanza per il calcolo richiesto. risoluzione del problema. La funzione è definita per tutti i reali (D = R), è positiva e continua in tutto il suo dominio, ed è pari in quanto f() = f( ): quindi il suo grafico F è simmetrico rispetto all asse. L unica intersezione con gli assi è il punto M(; ); per quanto riguarda il comportamento agli estremi del dominio, la 8 funzione ha l asse come asintoto orizzontale, essendo lim =. La + 6 derivata prima f '( ) = si annulla in =, è positiva in ], [ + ( ) e negativa in ], + [ ; pertanto M è l unico massimo assoluto di F. La 6( ) derivata seconda f "( ) = si annulla in = ± ( + ), mentre è positiva nell insieme +,,. In questi intervalli la funzione f rivolge la concavità verso l alto, mentre la rivolge verso il basso in, ; nei punti D ; e E ; vi sono flessi a tangente obliqua (figura ). M E D F 5 5 Figura 96

Archimede La retta s tangente a F in Q(; ) ha equazione = f'()( ) +, cioè = + e, analogamente, la retta t tangente in P( ; ) ha equazione = + + ; le due tangenti s intersecano in M(; ). Dunque il quadrilatero convesso da considerare è MPOQ (figura ). ARTICOLO s M t P a Q F t b 5 O 5 Figura Per dimostrare che MPOQ è un rombo possiamo calcolare le lunghezze dei lati e verificare che sono tutte uguali a 5, oppure osservare che i vertici del quadrilatero sono simmetrici rispetto alle rette = ed =, e quindi dedurre la congruenza tra i lati. Per determinare l ampiezza dell angolo acuto a ms mt (figura ) usiamo la formula nota dalla geometria analitica: tg α = ; + ms mt si trova α = arctg '. 5 8 L angolo b è supplementare di a e quindi b 6 5'. In alternativa, possiamo determinare l ampiezza di a mediante la trigonometria applicata al triangolo OQM: OQ + MQ OM α = arccos arccos OQ MQ = 5 8 5 '.. La circonferenza G ha equazione + ( ) =, ovvero + =, mentre la retta t ha equazione = m, con m, oppure =. Nel primo caso determiniamo le coordinate di A ponendo a sistema le equazioni di G 97

ARTICOLO Archimede m m e t, ottenendo A ; + m + m. Analogamente determiniamo le coordinate di B intersecando t ed = : troviamo B ;. m Pertanto il punto cercato è P ;, m m + m ed è facile verificare che le sue coordinate soddisfano l equazione di F, il che significa che P appartiene a F. Se t coincide con l asse, i punti A e B hanno coordinate (; ), e lo stesso il punto P: possiamo nuovamente concludere che P appartiene a F (figura 5). t = B A P G F Figura 5. La circonferenza G ha raggio unitario, e quindi il cerchio corrispondente ha area uguale a p. Determiniamo l area di R mediante l integrale definito di f nell intervallo [, ]: Area R ( ) = 8 + d 8 = + d = arctg = π = π + e la prima affermazione è così dimostrata. Se S è l area della regione compresa tra F e l asse, allora S = 8 + d ; poiché la funzione f è pari risulta S = 8 + + d. Si tratta di un integrale in senso improprio, e il calcolo fornisce il valore 98

b 8 S d = lim = lim arctg b + b + + = = b = π lim arctg b + = π, b Archimede ARTICOLO 8 W + d. pari a volte l area del cerchio.. Per esprimere il volume di W usiamo il metodo dei gusci cilindrici. Consideriamo il cilindro in figura 6, avente raggio di base e altezza f(); la sua superficie laterale è S l = p f(). Il volume del guscio cilindro di spessore d è pertanto dv = p f () d. Quindi il volume del solido di rotazione W è V = π f ( ) d = π f () W F Figura 6 risposte al questionario. Siano a =, b = e c i lati del triangolo, e sia S = la sua area. ab L area S di un triangolo qualsiasi è S = sen γ, ove g è l angolo compreso tra a e b. Sostituendo i dati, otteniamo γ =. Quindi il triangolo è π rettangolo e a e b sono i suoi cateti. Per determinare la misura del terzo lato c basta applicare il teorema di Pitagora: c = a + b =. Si arrivava più rapidamente alla stessa conclusione osservando che l area è la metà del prodotto delle lunghezze dei due lati noti, il che è sufficiente per affermare che i due lati sono i cateti di un triangolo rettangolo. 99

ARTICOLO Archimede ( ) =. Per calcolare il dominio della funzione f consideriamo il sistema formato dalle condizioni di esistenza relative ai tre radicali: e quindi il dominio cercato è D = [, ].. Sia AH la distanza di A di una generica retta r passante per B. Il triangolo AHB è rettangolo in H e quindi l ipotenusa AB è maggiore o uguale ad AH. Pertanto AH è massimo quando H coincide con B e la retta t cercata è la perpendicolare al segmento AB passante per B. A B Il coefficiente angolare di AB è mab = = 7 A B 8 e dunque m t = 8 7. La generica retta r passante per B ha equazione + 8 = m( + 6); concludiamo che l equazione richiesta è 8 + 7 + =.. Consideriamo il tronco di piramide avente per basi il quadrato ABCD di lato a ed il quadrato EFGH di lato b (con b < a), e per altezza il segmento PQ = h (figura 7). Come noto, le piramidi VABCD e VEFGH sono simili e vale la proporzione a : b = VP : VQ. Applicando la proprietà dello scomporre, otteniamo (a b) : b = h : VQ e dunque VQ = bh a b ; in modo ah analogo otteniamo VP = a b. Il volume del tronco di cono è la differenza tra i volumi delle due piramidi, ovvero ah VTronco = VVABCD VVEFGH = VP a VQ b = a b a bh a b b = = h a b a b = h( a + ab + b ). Per una risoluzione per via analitica si veda l articolo sul tema PNI.

V Archimede ARTICOLO E H b Q F G h D P C A a Figura 7 B 5. Immaginando che le valigie abbiano la forma di parallelepipedo rettangolo, siano a, b, c le dimensioni del primo, che dunque ha volume V = abc, ed a', b', c' le dimensioni del secondo, avente volume V'. Aumentando a del K% otteniamo a' = a + K% a = ( + K%)a e analogamente per b' e c'; quindi V' = a'b'c' = ( + K%) V. Dunque l aumento di volume è DV K = V' V = ( + K%) V V = [( + K%) ] V = = [(K% + K% + K% ] V. Sostituiamo i valori indicati nel testo e verifichiamo se le conclusioni sono corrette: ( ) se K% = % otteniamo V = + % V =, V, che corrisponde ad un aumento di capacità di circa il %; ( ) se K% = % otteniamo V = + % V =, 78 V, che corrisponde ad un aumento di capacità di circa il 7%; ( ) se K% = 5% otteniamo V5 = + 5% V, 95 V, che corrisponde a quasi il raddoppio del volume. 6. Tra tutti i 5 numeri che si ottengono permutando le cifre da a 7, il minimo è 567; se fissiamo le prime quattro cifre () e permutiamo le ultime otteniamo! = 6 numeri, che, in ordine crescente, sono i primi 6 ed esauriscono tutte le possibilità che iniziano con. Dunque il 7 numero è quello immediatamente successivo, cioè il minimo tra i numeri che iniziano con

ARTICOLO Archimede la sequenza 5, ovvero 567. Analogamente, i numeri che hanno per cifra iniziale sono esattamente 6! = 7, e quindi quello che occupa la 7-esima posizione è il minimo tra i numeri che iniziano con, cioè 567. D a E a C b A F a B Figura 8 7. Per ipotesi a b = m con a > e b > ; inoltre, con riferimento alla figura 8, i rettangoli ABCD e BCEF sono simili: dunque a : b = b : a. Dalla condizione ab = (in m ) si ricava a = /b. Dalla precedente proporzione segue allora: b a = = e quindi b = b m e a = m. Approssimando, si trovano come dimensioni del foglio a = 89 mm e b = 8 mm. 8. Per determinare il minimo della funzione g, studiamo la sua derivata; per il teorema fondamentale del calcolo integrale g'() = f(). Questa funzione è continua, e dunque il minimo va cercato tra i punti stazionari di g, cioè fra i punti in cui g' = f si annulla: {; ; }, come risulta dal grafico. Sempre dal grafico deduciamo che f è negativa a sinistra di e positiva alla sua destra, cioè g è decrescente a sinistra di e crescente alla sua destra, e tanto basta per affermare che g ha un minimo in. Notiamo altresì che il valore è escluso a priori dal testo, mentre in la funzione g ha un massimo. 9. Il limite proposto si presenta nella forma indeterminata e può essere calcolato mediante l uso di limiti notevoli. Ricordando che lim cos =, otteniamo: sen cos sen cos lim = lim sen = =.

Archimede sen In alternativa è possibile usare i limiti notevoli lim lim cos = e =, ottenendo: ARTICOLO cos lim sen sen = lim sen cos = =.. Studiando il grafico di f(), si osserva che per ], [ ]+, + [ la funzione è crescente, e dunque f'() >, mentre per ], +[ la funzione è decrescente e quindi f'() <. L unico grafico che soddisfa questa condizione è l A. commenti Nel complesso, il tema proposto è alla portata degli studenti del Liceo Scientifico di Ordinamento. Nella prova di quest anno è molto presente il calcolo integrale (integrale definito e in senso improprio, calcolo di superfici e volumi, funzione integrale e teorema fondamentale del calcolo integrale, media integrale), ma vengono toccati molti fra gli argomenti principali del triennio: la geometria analitica del III anno, la trigonometria del IV anno e, naturalmente, lo studio di funzione ed il calcolo differenziale del V anno. I punti più discutibili di questo tema si manifestano nei problemi, nei quali viene chiesto di determinare aree o volumi mediante procedimenti che non sono necessariamente in programma. Viceversa, un aspetto positivo ed interessante è il tentativo di inserire quesiti pratici e concreti, risolvibili anche con ragionamenti abbastanza semplici, alla portata di studenti anche prima del V anno. Vediamo nel dettaglio i problemi e i quesiti. Il primo problema non è molto impegnativo dal punto di vista dei calcoli, ma lo è dal punto di vista teorico, anche solo per il fatto di proporre fin dall inizio una funzione integrale: ciò ha fatto propendere la maggior parte dei maturandi per il secondo problema. A parte la presenza delle funzioni goniometriche, aspetto che spesso intimidisce gli studenti, le richieste vertono sul programma del V anno, in modo originale e completo: calcolo della derivata, studio di funzione, ricerca di massimi e minimi, integrale definito, volume di un solido. In particolare è interessante la richiesta di dedurre il grafico di f da quello di f', anche se f è calcolabile e si potrebbe rappresentare per altra via; ciò rende il punto il più articolato del problema. Il punto è interessante, ma richiede il metodo delle sezioni normali, argomento che spesso non viene approfondito e si incontra solo nello svolgimento di temi già assegnati. Inoltre è completamente slegato dal problema, tanto che poteva costituire un quesito a parte: la risposta rimane invariata se S è una qualunque curva continua in [, ]! A tal proposito si veda il punto del primo problema del tema d Ordinamento, che è invece perfettamente integrato nel problema.

ARTICOLO Archimede Il secondo problema ruota attorno ad una funzione razionale fratta, che rappresenta un caso particolare della «versiera di Agnesi». L esercizio si caratterizza per la richiesta di dimostrare una proprietà specifica della versiera di Agnesi mediante un integrale in senso improprio, argomento spesso non svolto e addirittura assente in alcuni libri di testo. Si sarebbe potuto evitare questa richiesta e pretendere nel quarto punto di calcolare l integrale che rappresenta il volume del solido W, invece di limitarsi a scriverlo: probabilmente questa scelta è stata fatta per aumentare il «tasso teorico» del problema. Come già accennato, i quesiti risultano nel complesso stimolanti e soprattutto vari, in particolare se confrontati con quelli del, maggiormente incentrati sul programma di V. Il quesito, già presente nel tema d Ordinamento in forma quasi identica, e il quesito 6, hanno spiazzato molti studenti che, in preparazione all esame, hanno semplicemente memorizzato formule di geometria solida e di calcolo combinatorio, o si sono esercitati nelle loro applicazioni più dirette. I quesiti 5 e 7 riguardano entrambi le proporzioni e non risultano particolarmente difficili; va sottolineato il loro carattere estremamente pratico, in quanto si parla di oggetti reali (valigie e fogli) e situazioni concrete: nel primo caso la falsa percezione che l uomo comune ha del rapporto tra lunghezza e volume, nel secondo caso la ricerca delle dimensioni del foglio di carta capostipite dei formati della serie A, ovvero l A (per inciso: un problema analogo sul formato dei fogli era stato assegnato pochi mesi prima per i concorsi a cattedra della classe A59; si veda alle pagine 8-8 di questo fascicolo). Il quesito 8 è ridondante, in quanto ricalca il problema : chiede infatti di dedurre informazioni su una funzione integrale a partire dalla sua derivata. I restanti quesiti trattano di argomenti diversi, sono semplici e adatti allo scopo, anche se non presentano aspetti rilevanti. Enrico Menara Istituto Don Bosco Padova emenara76@alice.it