AUTOMI A STATI FINITI. G. Ciaschetti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "AUTOMI A STATI FINITI. G. Ciaschetti"

Transcript

1 AUTOMI A STATI FINITI G. Ciaschetti

2 CONTENUTI Definizione di sistema Classificazione dei sistemi Definizione di modello Algebra degli schemi a blocchi Sistemi sequenziali Automi a stati finiti Macchina di Turing

3 Definizione di sistema Un sistema è un insieme di elementi che interagiscono tra loro per svolgere una particolare funzione o raggiungere un determinato obiettivo. ESEMPI - il sistema nervoso - il sistema politico - un sistema di equazioni - un sistema di irrigazione - il sistema di elaborazione - un robot NON ESEMPI - una classe - i numeri naturali - le istruzioni del linguaggio C - i voti di uno studente OBIETTIVO?

4 Definizione di sistema La teoria dei sistemi, ossia lo studio quantitativo dei sistemi, nasce dalla necessità di analizzare un sistema per capire quali sono i suoi elementi e quali relazioni intercorrono tra di essi, per - comprenderne meglio il funzionamento - spiegare il verificarsi di fenomeni naturali - intervenire per modificare la risposta del sistema - predire la risposta del sistema in futuro Lo stato di un sistema è l insieme dei valori che assumono tutti i diversi parametri del sistema, cioè le grandezze fisiche o matematiche che descrivono in che situazione esso si trova. Queste prendono il nome di variabili di stato.

5 Definizione di sistema ESEMPIO: Il computer o sistema di elaborazione Obiettivo: archiviare ed elaborare informazioni (giocare, comunicare, ecc ) Elementi - CPU - memoria RAM - Hard Disk - Tastiera - Monitor - Bus - Mouse - Relazione tra gli elementi - la scheda madre, che con i suoi circuiti mette in collegamento le varie parti del sistema - la logica di funzionamento (algebra di Boole, circuiti sommatori, CU, ciclo fetch/decode/execute, ) Parametri del sistema Stati del sistema - Velocità CPU - Spento - Occupazione HD - Acceso, in attesa - - Acceso, in esecuzione

6 Definizione di sistema Un sistema aperto può essere visto come un dispositivo che trasforma gli ingressi del sistema (le cause) nelle uscite del sistema (gli effetti). i Sistema (trasformazione) u ESEMPI: - un computer con stampante trasforma le azioni dell utente, la corrente elettrica e un foglio bianco in una pagina di un libro; - una macchinetta del caffè trasforma il caffè in polvere, l acqua, l energia elettrica, i soldi e l azione di premere un tasto in un prelibato caffè caldo; - un motore trasforma benzina in energia meccanica.

7 Definizione di sistema ESEMPI O: sistema lampada/interruttore Elementi: interruttore, lampada Obiettivo: illuminare (una stanza) Stati: acceso, spento Ingressi: int. chiuso, int. aperto Uscite: luce, buio Tabella di transizione di stato INTERRUTTORE STATO aperto chiuso lampada accesa lampada spenta lampada accesa lampada spenta lampada spenta lampada accesa Tabella di trasformazione INTERRUTTORE STATO aperto chiuso lampada accesa buio luce lampada spenta buio luce

8 Definizione di sistema ESEMPI O: sistema lampada/interruttore Diagramma degli stati aperto, buio chiuso, luce chiuso, luce Tabella di transizione di stato INTERRUTTORE STATO aperto chiuso lampada accesa lampada spenta lampada accesa lampada spenta lampada spenta lampada accesa spenta aperto, buio accesa Tabella di trasformazione INTERRUTTORE STATO aperto chiuso lampada accesa buio luce lampada spenta buio luce

9 Definizione di sistema Un sistema non è necessariamente un entità fisica: esistono sistemi astratti che servono a spiegare fenomeni naturali cercando di identificarne il rapporto causa/effetto. In questa accezione, un sistema può essere visto come un modo, cioè l insieme di regole e/o relazioni tra elementi astratti che trasformano le cause in effetti. ESEMPI - un sistema al totocalcio: come combinare più giocate tra loro - il sistema per fare soldi: le azioni da intraprendere per ottenere un vantaggio economico - il sistema di scaricare la mia donna: senza commento ( )

10 Classificazione dei sistemi naturali vs. artificiali: se presenti in natura o costruiti dall uomo (es. sistema solare, computer) statici vs. dinamici: se cambiano il loro stato nel tempo oppure no (es. sistema dei continenti, pendolo) chiusi vs. aperti: se interagiscono o no con l esterno (es. sistema di telecamere di un museo, sistema digerente) deterministici vs. stocastici: se è possibile prevedere o meno la risposta del sistema (es. computer, sistema atmosferico) combinatori vs. sequenziali: se sono dotati di memoria o meno (es. circuito elettrico, ascensore) stazionari (o invarianti): se la risposta del sistema non dipende dal particolare istante di tempo (es. pipeline) continui: se l evoluzione del sistema dipende dall istante in cui si trova (es. sistema di lluminazione cittadino) discreti: se l evoluzione del sistema avviene a scatti (es. orologio digitale)

11 Classificazione dei sistemi Si noti che la classificazione di un sistema in un modo oppure in un altro dipende dall osservatore, dal livello di dettaglio e dai fini dell analisi che si vuole effettuare. ESEMPI - frigorifero (chiuso per chi deve trasportarlo, aperto per la massaia) - quadro (statico per il visitatore, dinamico per il restauratore) - sistema stellare (statico per un romantico, dinamico per un astrofisico) - ascensore (discreto per l utilizzatore, continuo per il progettista)

12 Definizione di modello Un modello è una rappresentazione di un sistema, e permette di studiare un sistema tralasciandone gli aspetti non essenziali ai fini della sua analisi. ESEMPI ESEMPIO SISTEMA - sistema stradale - ponte sullo stretto - sistema preda/predatore - problema da risolvere - sistema informativo aziendale MODELLO - mappa - plastico/disegno 3D - equazione differenziale - algoritmo - database Un modello può essere matematico, fisico, grafico, logico,

13 Definizione di modello Un modello è in generale un astrazione del sistema che esso rappresenta, cioè risulta semplificato rispetto al sistema stesso. Modelli troppo semplici, però, possono essere poco rappresentativi, mentre modelli troppo complessi possono risultare inutilizzabili. Occorre allora, in fase di modellazione del sistema, trovare un giusto compromesso tra l operatività del modello, cioè la sua fruibilità, e la sua aderenza, cioè quanto precisamente esso rappresenta il sistema. Inoltre, modelli più semplici sono in generale più robusti, ossia tendono a rimanere validi anche a seguito di cambiamenti del sistema e del contesto, mentre modelli troppo complessi possono risultare presto inutilizzabili (es. virus, dinosauri)

14 Algebra degli schemi a blocchi Un semplice modello per rappresentare e studiare i sistemi quello degli schemi a blocchi. Il sistema è visto come un insieme di sottosistemi interconnessi tra loro, ognuno dei quali è rappresentato mediante un blocco o blackbox (scatola nera): si specifica, per ogni blocco, quali sono i suoi ingressi e le sue uscite, e non cosa c è al suo interno. Gli elementi utilizzati in questo modello sono: u 1 i f u i 2 i 1 i 1 +i 2 + i u 2 u 3 blocco di trasferimento u = f(i) nodo sommatore i = i 1 + i 2 diramazione i = u 1 = u 2 = u 3

15 Algebra degli schemi a blocchi ESEMPIO: controllo automatico della temperatura temperatura + cella frigorifera temperatura regola temperatura controllo temperatura

16 Sistemi combinatori Un sistema combinatorio è un sistema che non ha memoria, cioè la risposta del sistema dipende soltanto dall ingresso che ad esso si applica, e non dal suo stato. ESEMPIO: un tubo idraulico (un semplice sistema costituito da un solo elemento, un tubo, che ha lo scopo di far arrivare ad una estremità il flusso d acqua che entra nell altra estremità) è un sistema combinatorio, in quanto la grandezza quantità di flusso in uscita dipende solo dalla grandezza quantità di flusso in entrata. ESEMPIO: un circuito combinatorio formato da porte logiche è un sistema combinatorio che ottiene una uscita booleana che dipende solo dal valore delle variabili booleane in ingresso.

17 Sistemi combinatori flusso in ingresso flusso in uscita x y z ( x y) z

18 Sistemi sequenziali Un sistema sequenziale è un sistema che ha memoria, cioè la risposta del sistema dipende dall ingresso che ad esso si applica, e dal suo stato. ESEMPIO: una vasca da bagno è un sistema sequenziale, in quanto la grandezza quantità di flusso in uscita dipende dalla grandezza quantità di flusso in entrata, e dallo stato della vasca, cioè dal livello dell acqua presente. Maggiore è l acqua presente nella vasca, maggiore è la pressione, e dunque maggiore sarà il flusso in uscita, a parità di flusso in ingresso. ESEMPIO: un ascensore è un sistema sequenziale la cui uscita (il movimento che fa l ascensore), dipende dall ingresso (il tasto premuto) e dallo stato (la posizione dell ascensore).

19 Sistemi sequenziali i stato livello = 0 u = f(i, s) i stato livello = 5 u = f(i, s)

20 Sistemi sequenziali input tasto 3 output sali 2 piani stato piano 1 input tasto 3 output scendi 1 piano stato piano 4

21 Automi a stati finiti Un automa a stati finiti è un sistema dinamico, sequenziale, invariante e discreto. Significa che l azione che l automa intraprende (uscita) dipende solo da uno o più segnali d ingresso e dallo stato dell automa. C è un numero finito di possibili stati. i u = f(i, s) sistema sequenziale continuo i u = f(i, s) sistema sequenziale discreto AUTOMA

22 Automi a stati finiti ESEMPIO: Ascensore start pulsante 0 2 quale pulsante? quale piano? 1 quale piano? quale piano? fermo scendi scendi sali fermo scendi sali sali fermo

23 Automi a stati finiti ESEMPIO: Semaforo start no c è segnale? si timer colore? rosso verde giallo/verde spegni rosso accendi verde accendi giallo spegni verde spegni giallo accendi rosso

24 Automi a stati finiti Un automa a stati finiti è una quintupla A = {I, U, S,, } definito da: - Un insieme finito di valori degli ingressi I - Un insieme finito di valori delle uscite U - Un insieme finito degli stati S - Un insieme di regole di transizione di stato,, che specifica lo stato futuro del sistema noti lo stato attuale e l ingresso : S x I S - Un insieme di regole di trasformazione delle uscite,, che fornisce l uscita noti lo stato attuale e l ingresso : S x I U

25 Automa di Mealy Se l uscita di un automa dipende direttamente dall ingresso, si parla in questo caso di automa improprio o automa di Mealy. Graficamente, può essere rappresentato come segue: I S n S n+1 U S n S n+1 = elemento di ritardo

26 Automa di Moore Se l uscita di un automa non dipende direttamente dall ingresso, si parla in questo caso di automa proprio o automa di Moore. Graficamente, può essere rappresentato come segue: I S n S n+1 U S n S n+1 = elemento di ritardo

27 Diagrama degli stati Le regole di transizione di stato : S x I S e le regole di trasformazione delle uscite : S x I U di un automa possono essere rappresentate in un diagramma degli stati, un grafo orientato in cui i nodi corrispondono agli stati, e gli archi corrispondono alle transizioni da uno stato all altro del sistema. ESEMPI O: sistema lampada/interruttore diagramma degli stati aperto, buio chiuso, luce chiuso, luce spenta accesa aperto, buio

28 Grafo di Mealy Se l automa è l automa di Mealy, il corrispondente diagramma degli stati è detto grafo di Mealy. I nodi del grafo corrispondono agli stati, e le funzioni e sono riportate sugli archi. i 1, u 2 i 2, u 2 s 0 s 1 i 1, u 2 i 1, u 1 s 2 i 2, u 2 i 2, u 2

29 Grafo di Moore Se l automa è l automa di Moore, il corrispondente diagramma degli stati è detto grafo di Moore. Nei nodi del grafo sono indicati gli stati e le uscite (ricordiamo, infatti, che in questo automa le uscite sono direttamente collegate agli stati)e la funzione è riportata sugli archi. i 1 i 2 s 0 /u 0 s 1 /u 1 i 1 i 1 s 2 /u 2 i 2 i 2

30 Diagrama degli stati ESEMPI O: sistema lampada/interruttore Questo sistema può essere rappresentato con entrambi i tipi di automi, in quanto l uscita (buio/luce) dipende direttamente dallo stato della lampada (accesa/spenta) Grafo di Mealy Grafo di Moore aperto, buio chiuso, luce chiuso, luce aperto chiuso chiuso spenta accesa spenta /buio accesa /luce aperto, buio aperto

31 Costruiamo un automa ESEMPI O: vogliamo costruire un automa che riconosca la parla ORO in una stringa. Supponiamo che la seconda O riconosciuta sia da considerare come la fine della sequenza, e non anche l inizio di una nuova sequenza. Ad esempio, se la stringa in ingresso è ORORO verrà riconosciuta una sola parola e non due. Insieme degli ingressi: I = {O, R} Insieme delle uscite: U = {si, no} Insieme degli stati: S = {s 0, s 1, s 2 } dove: s 0 s 1 s 2 : è lo stato di partenza: non è stato ancora riconosciuto nessun carattere della sequenza; : è lo stato in cui è stato riconosciuto il primo carattere della sequenza; : è lo stato in cui è stato riconosciuto il secondo carattere della sequenza.

32 Costruiamo un automa Rappresentiamo ora le funzioni e con il diagramma di Mealy s 0 stato iniziale Nello stato s 0, se l automa riceve in ingresso la lettera R, resta nello stesso stato, se invece riceve in ingresso la lettera O, passa nello stato s 1. R, no s 0 O, no s transizione dallo stato 1 iniziale s 0 allo stato s 1

33 Costruiamo un automa Nello stato s 1, quando cioè l automa ha già riconosciuto il primo carattere, se l automa riceve in ingresso la lettera R passa allo stato s 2, se invece riceve in ingresso la lettera O, resta nello stesso stato. R, no O, no s 0 O, no s transizione dallo stato 1 iniziale s 1 allo stato s 2 R, no s 2

34 Costruiamo un automa Nello stato s 2, quando cioè l automa ha già riconosciuto il primo e il secondo carattere, se esso riceve in ingresso la lettera O torna allo stato s 0 con uscita SI. Se invece riceve in ingresso la lettera R, torna allo stato s 0 ma con uscita NO. R, no O, no s 0 O, no s transizione dallo stato 1 iniziale s 2 allo stato s 0 R, no O, si s 2 R, no ESERCIZIO: qual è l uscita dell automa con la sequenza in ingresso OOORRRORRORO?

35 Costruiamo un automa Ci chiediamo se è possibile costruire un automa di Moore per lo stesso riconoscitore di stringhe. La risposta è affermativa, ma occorre in questo caso aggiungere un ulteriore stato: lo stato finale corrispondente all uscita SI. R O s 0, no O s 1, no R O R R s 3, si O s 2, no ESERCIZIO: costruire un automa che riconosce la sequenza 1111 in una stringa di bit

36 Il modello matematico/logico Se vogliamo effettivamente realizzare un automa, dobbiamo passare dalla sua rappresentazione grafica (il grafo del diagramma degli stati) a una sua rappresentazione matematico/logica, che ci permetterà di costruire i circuiti. Facendo riferimento all esempio precedente, il riconoscitore di sequenze ORO in una stringa, possiamo costruire il seguente modello: ingressi x O 0 R 1 uscite z no 0 si 1 stati s 0 s 1 s 2 -- y 1 y

37 Il modello matematico/logico ingressi x O 0 R 1 uscite z no 0 si 1 R, no s 0 R, no stati s 0 s 1 s 2 -- O, no y 1 y s 1 O, no TABELLA DI HUFFMAN variabili di stato y 1 y variabili di ingresso x=0 x=1 01,0 01,0 00,1 --,- 00,0 11,0 00,0 --,- R, no O, si s 2

38 Il modello matematico/logico SINTESI DI CIRCUITI: Mappe di Karnaugh x 0 1 variabile di stato y 1 y 1 y i 1 i n 1 n n y1 x y1 y2 variabili di stato y 1 y variabili di ingresso x=0 x=1 01,0 01,0 00,1 --,- 00,0 11,0 00,0 --,- variabile di stato y 2 variabile di uscita z x 0 1 y 1 y i 1 i y n 1 n n 2 y1 y2 x y2 x 0 1 y 1 y i i n z x y1

39 Il circuito logico x z y 1 n y 1 n+1 y 2 n y 2 n+1 y 2 n y 1 n y 2 n+1 y 1 n+1 ESERCIZIO: costruire il modello matematico e il circuito per l automa che riconosce la sequenza 1111

40 La macchina di Turing Alla base del concetto di sistema automatico di calcolo, usato da tutti i moderni computer, c è un modello di macchina astratta proposto nel 1936 dal matematico inglese Alan Turing. Si tratta di un automa a stati finiti, che fa riferimento alla normale attività dell uomo quando deve eseguire dei calcoli: il lavoro è controllato dalla mente umana, mentre un foglio di carta e una penna sono usati per segnare i dati e le operazioni, cioè vengono usati come supporto di memoria per l input (dati) e l output (risultati). La macchina di Turing (MdT) può essere definita, intuitivamente, come un dispositivo in grado di operare su un numero finito di simboli, mediante una successione finita di passi e secondo determinate regole (programma), non considerando (astrazione) i tempi di calcolo e i possibili limiti di spazio di memoria.

41 La macchina di Turing La MdT è un dispositivo costituito da: - Un nastro che rappresenta il supporto di memoria, costituito da un numero infinito di caselle, ognuna delle quali può contenere un solo simbolo di un dato alfabeto; - Una testina di lettura/scrittura (TLS) che accede a una singola casella, leggendone il simbolo contenuto o scrivendoci su un nuovo simbolo; - Un meccanismo di controllo (automa) che, in base al proprio stato, alle regole e al simbolo letto, decide di eseguire una delle seguenti operazioni elementari: 1) comandare alla TLS di scrivere un nuovo simbolo 2) spostare a sinistra la TLS di una casella 3) spostare a destra la TLS di una casella 4) fermare la macchina

42 La macchina di Turing Formalmente, la macchina di Turing è definita da una quintupla dove: MdT = {S, IU,,, } S IU : S x IU S insieme degli stati, tra cui lo stato iniziale s 0 e lo stato finale s F insieme dei simboli di input/output funzione di transizione di stato: dato uno stato e un simbolo in input, pone la macchina in un nuovo stato : S x IU IU funzione di trasformazione delle uscite: dato uno stato e un simbolo di input, determina un simbolo di output : S x IU {sx, dx, =} funzione di movimento della TLS (sposta a sinistra di una casella, sposta a destra di una casella, non muovere)

43 La macchina di Turing La parte di controllo della MdT può essere rappresentata mediante un diagramma degli stati, utilizzando il grafo di Mealy, riportando sugli archi del grafo anche gli spostamenti della TLS, oltre agli ingressi e le uscite. Tra i simboli dell insieme IU, c è un simbolo particolare denotato con # che rappresenta il simbolo nullo: è il simbolo che si trova in tutte le caselle del nastro all inizio. Successivamente, su alcune delle caselle del nastro verranno scritti (dall esterno) i simboli di input che la macchina di Turing dovrà leggere. Una volta dato l input, la MdT può cominciare il suo lavoro partendo dallo stato s 0. Il risultato finale dell elaborazione è contenuto nelle caselle del nastro, quando la MdT si trova nello stato finale s F.

44 La macchina di Turing ESEMPIO: progettare una MdT checalcola il successivo di un numero binario # # # # # # # # # # # Definiamo la nostra MdT: IU {0, 1, #} Spostamenti della TLS {=, <} S {s 0, s 1, s 2, s F } dove s 0 = stato iniziale: la testina si trova sul bit meno significativo del numero binario s 1 = assenza di riporto: la MdT dovrà copiare i restanti bit muovendosi verso sinistra s 2 = presenza di riporto: la MdT cancella il simbolo 1 e scrive 0, oppure cancella il simbolo 0 e scrive 1, e si muove a sinistra s F = stato finale: la macchina ha finito il suo compito e si ferma

45 La macchina di Turing Per definire le funzioni,,, costruiamo il diagramma degli stati (di Mealy) All inizio, cioè nello stato s 0, se la MdT legge in ingresso il carattere #, passa nello stato finale s F senza scrivere nulla: significa che non è stato dato nessun numero in input. Se invece legge il simbolo 0, passa nello stato s 1 (assenza di riporto), scrive 1 e si muove a sinistra. Se, infine, legge il simbolo 1, passa nello stato s 2 (presenza di riporto), scrive 0 e si muove a sinistra. s 0 s 1 s 0 0,1,< s # # 1 1 # # 1,0,< s 0 s 2 s 2 s F 0 1 # # 0 0 # #

46 La macchina di Turing Quando la MdT si trova nello stato s 1, se legge in ingresso il carattere #, passa nello stato finale s F senza scrivere nulla: significa che ha terminato il proprio lavoro. Se invece legge il simbolo 0 o il simbolo 1, resta nello stato s 1 (assenza di riporto: deve solo ricopiare i restanti simboli), riscrive il simbolo letto e si muove a sinistra. 0,0,< 1,1,< s 1 s 1 s 0 0,1,< s # # 1,0,< #,#,= s 1 s 1 s 2 s F # #

47 La macchina di Turing Quando la MdT si trova nello stato s 2, se legge in ingresso il simbolo #, passa nello stato s 1, scrive 1 e si sposta a sinistra. Se invece legge il simbolo 0, passa nello stato s 1, scrive 1 e si sposta a sinistra. Se invece legge il simbolo 1, resta nello stato s 2, scrive 0 e si sposta a sinistra s 0 0,1,< s 1 0,0,< 1,1,< s 2 # # 1 0 s 1 # ,0,< 1,0,< #,#,= s 2 s F s # s # s 2 s # #

48 La macchina di Turing A titolo di esempio, riportiamo il comportamento della macchina sull input 1011 s 0 # # # # # # # # s 2 # # # # # # # # s 2 # # # # # # # # s 1 # # # # # # # # s 1 # # # # # # # # s F # # # # # # # #

49 ALGORITMI E MACCHINA DI TURING La macchina di Turing Ricordando la definizione e le proprietà di un algoritmo (vedi dispense Le basi della programmazione della classe III), notiamo che esiste una stretta analogia tra un algoritmo e la MdT: ALGORITMO 1) usa un dispositivo di calcolo 2) procede in modo discreto 3) deve essere finito 4) deve essere deterministico 5) non deve essere ambiguo 6) deve essere generale 7) deve essere completo MdT 1) è un dispositivo di calcolo 2) passa da uno stato all altro in modo discreto 3) ha un numero finito di stati e di transizioni di stato, e uno stato finale 4) è deterministica 5) ogni passo è specificato con esattezza 6) è generale 7) se opportunamente progettata, è completa Un algoritmo è una MdT in grado di risolvere una data classe di problemi

50 TESI DI CHURCH-TURING La macchina di Turing L insieme delle funzioni computabili, ossia dei problemi risolvibili con un sistema di calcolo automatico, coincide con l insieme delle funzioni Turing-computabili, ossia l insieme dei problemi per cui è possibile costruire una MdT che li risolve. La tesi di Church-Turing non è dimostrabile: occorrerebbe prendere tutti i possibili problemi per cui è possibile sviluppare un algoritmo che li risolve, e costruire la relativa MdT, il che è impossibile. La tesi di Church-Turing tuttavia è confutabile, ma nessuno finora è riuscito a farlo: è sempre stato possibile costruire una MdT per la risoluzione di un problema computabile. THE END

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,...

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,... Automi Con il termine automa 1 s intende un qualunque dispositivo o un suo modello, un qualunque oggetto, che esegue da se stesso un particolare compito, sulla base degli stimoli od ordini ricevuti detti

Dettagli

Architettura di un computer

Architettura di un computer Architettura di un computer Modulo di Informatica Dott.sa Sara Zuppiroli A.A. 2012-2013 Modulo di Informatica () Architettura A.A. 2012-2013 1 / 36 La tecnologia Cerchiamo di capire alcuni concetti su

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Appunti di Sistemi Elettronici

Appunti di Sistemi Elettronici Prof.ssa Maria Rosa Malizia 1 LA PROGRAMMAZIONE La programmazione costituisce una parte fondamentale dell informatica. Infatti solo attraverso di essa si apprende la logica che ci permette di comunicare

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

un nastro di carta prolungabile a piacere e suddiviso in celle vuote o contenenti al più un unico carattere;

un nastro di carta prolungabile a piacere e suddiviso in celle vuote o contenenti al più un unico carattere; Algoritmi 3 3.5 Capacità di calcolo Il matematico inglese Alan Turing (1912-1954) descrisse nel 1936 un tipo di automi, oggi detti macchine di Turing, e fornì una della prime definizioni rigorose di esecuzione

Dettagli

Hardware, software e periferiche. Facoltà di Lettere e Filosofia anno accademico 2008/2009 secondo semestre

Hardware, software e periferiche. Facoltà di Lettere e Filosofia anno accademico 2008/2009 secondo semestre Hardware, software e periferiche Facoltà di Lettere e Filosofia anno accademico 2008/2009 secondo semestre Riepilogo - Concetti di base dell informatica L'informatica è quel settore scientifico disciplinare

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 4 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: SISTEMI E MODELLI (30 ore)

Dettagli

Reti sequenziali sincrone

Reti sequenziali sincrone Reti sequenziali sincrone Un approccio strutturato (7.1-7.3, 7.5-7.6) Modelli di reti sincrone Analisi di reti sincrone Descrizioni e sintesi di reti sequenziali sincrone Sintesi con flip-flop D, DE, T

Dettagli

Appunti di Sistemi e Automazione

Appunti di Sistemi e Automazione Appunti di Sistemi e Automazione Il modello o macchina di Von Neumann rappresenta un computer con i suoi componenti principali e la sua organizzazione logico-funzionale. Tale progetto risale al 1945/1946.

Dettagli

DAL PROBLEMA AL PROGRAMMA

DAL PROBLEMA AL PROGRAMMA DAL PROBLEMA AL PROGRAMMA Scopo del modulo Conoscere alcuni concetti fondamentali dell informatica:algoritmo, l automa, linguaggio formale Essere in grado di cogliere l intreccio tra alcuni risultati della

Dettagli

Macchine a stati finiti G. MARSELLA UNIVERSITÀ DEL SALENTO

Macchine a stati finiti G. MARSELLA UNIVERSITÀ DEL SALENTO Macchine a stati finiti 1 G. MARSELLA UNIVERSITÀ DEL SALENTO Introduzione Al più alto livello di astrazione il progetto logico impiega un modello, la cosiddetta macchina a stati finiti, per descrivere

Dettagli

All interno del computer si possono individuare 5 componenti principali: SCHEDA MADRE. MICROPROCESSORE che contiene la CPU MEMORIA RAM MEMORIA ROM

All interno del computer si possono individuare 5 componenti principali: SCHEDA MADRE. MICROPROCESSORE che contiene la CPU MEMORIA RAM MEMORIA ROM Il computer è un apparecchio elettronico che riceve dati di ingresso (input), li memorizza e gli elabora e fornisce in uscita i risultati (output). Il computer è quindi un sistema per elaborare informazioni

Dettagli

Contatti 2. Testo. Contatti. Maria Chiara Laghi, Ph.D Dip. Ingegneria dell Informazione. tel. 0521 905712 e-mail laghi@ce.unipr.it

Contatti 2. Testo. Contatti. Maria Chiara Laghi, Ph.D Dip. Ingegneria dell Informazione. tel. 0521 905712 e-mail laghi@ce.unipr.it Contatti 2 Maria Chiara Laghi, Ph.D Dip. Ingegneria dell Informazione tel. 0521 905712 e-mail laghi@ce.unipr.it Pagina web del corso http://www.ce.unipr.it/people/laghi/informaticasg2012 a.a. 2011/2012

Dettagli

SISTEMA DI CONTROLLO ORIENTAMENTO PANNELLI SOLARI

SISTEMA DI CONTROLLO ORIENTAMENTO PANNELLI SOLARI SISTEMA DI CONTROLLO ORIENTAMENTO PANNELLI SOLARI Lezione 1: User Requirements, Modellizzazione e Identificazione. 1.1 Introduzione: Un cliente ha chiesto la realizzazione di un sistema per l'orientamento

Dettagli

Calcolatori Elettronici A a.a. 2008/2009. RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin

Calcolatori Elettronici A a.a. 2008/2009. RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin Calcolatori Elettronici A a.a. 2008/2009 RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin 1 Esercizio 1: implementazione di contatori Un contatore è un dispositivo sequenziale che aggiorna periodicamente

Dettagli

la "macchina" universale di Turing

la macchina universale di Turing la "macchina" universale di Turing Nel 1854, il matematico britannico George Boole (1815-1864), elaborò una matematica algebrica che da lui prese il nome. Nell'algebra booleana le procedure di calcolo

Dettagli

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^ Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione Elettronica ed Elettrotecnica - Classe 3^ Elettrotecnica Tipologie di segnali Unità di misura delle grandezze elettriche Simbologia

Dettagli

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI Scienza ed industria hanno oggi costituito legami molto forti di collaborazione che hanno portato innovazione tecnologica sia a livello organizzativo-amministrativo

Dettagli

Istituto tecnico commerciale e per geometri Enrico Fermi

Istituto tecnico commerciale e per geometri Enrico Fermi Istituto tecnico commerciale e per geometri Enrico Fermi Argomenti: Il modello logico funzionale i componenti dell'elaboratore; i bus; Relazione svolta dall'alunno/a : GARUFI CARLA della 3 B progr 2011/2012.

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 9 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it a.a. 2007-2008 http://digilander.libero.it/rosario.cerbone Sintesi di Reti Sequenziali Sincrone

Dettagli

I Sistemi di numerazione e la rappresentazione dei dati

I Sistemi di numerazione e la rappresentazione dei dati I Sistemi di numerazione e la rappresentazione dei dati LA RAPPRESENTAZIONE DELLE INFORMAZIONI (1) Per utilizzare un computer è necessario rappresentare in qualche modo le informazioni da elaborare e il

Dettagli

Macchine sequenziali

Macchine sequenziali Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali Lezione 14 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Automa a Stati Finiti (ASF) E una prima astrazione di

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007 Sommario Macchine a stati finiti M. Favalli 5th June 27 4 Sommario () 5th June 27 / 35 () 5th June 27 2 / 35 4 Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante: Sommario Macchine a stati finiti M. Favalli Engineering Department in Ferrara 4 Sommario (ENDIF) Analisiesintesideicircuitidigitali / 35 (ENDIF) Analisiesintesideicircuitidigitali 2 / 35 4 Le macchine

Dettagli

IL COMPUTER APPUNTI PER LEZIONI NELLE 3 CLASSI LA MACCHINA DELLA 3 RIVOLUZIONE INDUSTRIALE. A CURA DEL Prof. Giuseppe Capuano

IL COMPUTER APPUNTI PER LEZIONI NELLE 3 CLASSI LA MACCHINA DELLA 3 RIVOLUZIONE INDUSTRIALE. A CURA DEL Prof. Giuseppe Capuano IL COMPUTER LA MACCHINA DELLA 3 RIVOLUZIONE INDUSTRIALE APPUNTI PER LEZIONI NELLE 3 CLASSI A CURA DEL Prof. Giuseppe Capuano LA TRASMISSIONE IN BINARIO I computer hanno un loro modo di rappresentare i

Dettagli

Specializzazione Elettronica ed Elettrotecnica Articolazione Elettrotecnica. Elettronica ed Elettrotecnica - Classe 3^

Specializzazione Elettronica ed Elettrotecnica Articolazione Elettrotecnica. Elettronica ed Elettrotecnica - Classe 3^ Specializzazione Elettronica ed Elettrotecnica Articolazione Elettrotecnica Elettronica ed Elettrotecnica - Classe 3^ 1- Reti elettriche in corrente continua Grandezze elettriche fondamentali e loro legami,

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

ALGEBRA DELLE PROPOSIZIONI

ALGEBRA DELLE PROPOSIZIONI Università di Salerno Fondamenti di Informatica Corso di Laurea Ingegneria Corso B Docente: Ing. Giovanni Secondulfo Anno Accademico 2010-2011 ALGEBRA DELLE PROPOSIZIONI Fondamenti di Informatica Algebra

Dettagli

23/02/2014. Dalla scorsa lezione. La Macchina di Von Neumann. Uomo come esecutore di algoritmi

23/02/2014. Dalla scorsa lezione. La Macchina di Von Neumann. Uomo come esecutore di algoritmi Dalla scorsa lezione LABORATORIO DI PROGRAMMAZIONE Corso di laurea in matematica LA MACCHINA DI VON NEUMANN Marco Lapegna Dipartimento di Matematica e Applicazioni Universita degli Studi di Napoli Federico

Dettagli

MONIA MONTANARI. Appunti di Trattamento Testi. Capitolo 1 Il Computer

MONIA MONTANARI. Appunti di Trattamento Testi. Capitolo 1 Il Computer MONIA MONTANARI Appunti di Trattamento Testi Capitolo 1 Il Computer 1. Introduzione La parola informatica indica la scienza che rileva ed elabora l informazione, infatti : Informatica Informazione Automatica

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it Automazione Industriale (scheduling+mms) scheduling+mms adacher@dia.uniroma3.it Introduzione Sistemi e Modelli Lo studio e l analisi di sistemi tramite una rappresentazione astratta o una sua formalizzazione

Dettagli

Esame di INFORMATICA

Esame di INFORMATICA Università di L Aquila Facoltà di Biotecnologie Esame di INFORMATICA Lezione 4 MACCHINA DI VON NEUMANN Anni 40 i dati e i programmi che descrivono come elaborare i dati possono essere codificati nello

Dettagli

Architettura di un calcolatore

Architettura di un calcolatore 2009-2010 Ingegneria Aerospaziale Prof. A. Palomba - Elementi di Informatica (E-Z) 7 Architettura di un calcolatore Lez. 7 1 Modello di Von Neumann Il termine modello di Von Neumann (o macchina di Von

Dettagli

Laurea Specialistica in Informatica

Laurea Specialistica in Informatica Corso di Laurea in FISICA Laurea Specialistica in Informatica Fisica dell informazione 1 Elementi di Architettura degli elaboratori Prof. Luca Gammaitoni Informazioni sul corso: www.fisica.unipg unipg.it/gammaitoni/fisinfoit/gammaitoni/fisinfo

Dettagli

1.4b: Hardware. (Memoria Centrale)

1.4b: Hardware. (Memoria Centrale) 1.4b: Hardware (Memoria Centrale) Bibliografia Curtin, Foley, Sen, Morin Informatica di base, Mc Graw Hill Ediz. Fino alla III : cap. 3.11, 3.13 IV ediz.: cap. 2.8, 2.9 Questi lucidi Memoria Centrale Un

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

Architettura hardware

Architettura hardware Ricapitolando Architettura hardware la parte che si può prendere a calci Il funzionamento di un elaboratore dipende da due fattori principali 1) dalla capacità di memorizzare i programmi e i dati 2) dalla

Dettagli

Fondamenti di Informatica. Allievi Automatici A.A. 2014-15 Nozioni di Base

Fondamenti di Informatica. Allievi Automatici A.A. 2014-15 Nozioni di Base Fondamenti di Informatica Allievi Automatici A.A. 2014-15 Nozioni di Base Perché studiare informatica? Perché l informatica è uno dei maggiori settori industriali, e ha importanza strategica Perché, oltre

Dettagli

CORSO DI LAUREA IN SCIENZE ERBORISTICHE E DEI PRODOTTI NUTRACEUTICI

CORSO DI LAUREA IN SCIENZE ERBORISTICHE E DEI PRODOTTI NUTRACEUTICI CORSO DI LAUREA IN SCIENZE ERBORISTICHE E DEI PRODOTTI NUTRACEUTICI Informatica con esercitazioni Prof. Onofrio Greco Modulo 1 Concetti di base dell ICT Modulo 2 Uso del Computer e Gestione dei File Modulo

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

IL SISTEMA OPERATIVO IL SISTEMA OPERATIVO INTERFACCE TESTUALI INTERFACCE TESTUALI FUNZIONI DEL SISTEMA OPERATIVO INTERFACCE GRAFICHE

IL SISTEMA OPERATIVO IL SISTEMA OPERATIVO INTERFACCE TESTUALI INTERFACCE TESTUALI FUNZIONI DEL SISTEMA OPERATIVO INTERFACCE GRAFICHE IL SISTEMA OPERATIVO Insieme di programmi che opera al di sopra della macchina fisica, mascherandone le caratteristiche e fornendo agli utenti funzionalità di alto livello. PROGRAMMI UTENTE INTERPRETE

Dettagli

E possibile modificare la lingua dei testi dell interfaccia utente, se in inglese o in italiano, dal menu [Tools

E possibile modificare la lingua dei testi dell interfaccia utente, se in inglese o in italiano, dal menu [Tools Una breve introduzione operativa a STGraph Luca Mari, versione 5.3.11 STGraph è un sistema software per creare, modificare ed eseguire modelli di sistemi dinamici descritti secondo l approccio agli stati

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone Sintesi di Reti Sequenziali Sincrone Maurizio Palesi Maurizio Palesi 1 Macchina Sequenziale Una macchina sequenziale è definita dalla quintupla (I,U,S,δ,λ) dove: I è l insieme finito dei simboli d ingresso

Dettagli

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio Il Concetto Intuitivo di Calcolatore Fondamenti di Informatica A Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini I Problemi e la loro Soluzione Problema: classe

Dettagli

Varianti Macchine di Turing

Varianti Macchine di Turing Varianti Macchine di Turing Esistono definizioni alternative di macchina di Turing. Chiamate Varianti. Tra queste vedremo: MdT a più nastri e MdT non deterministiche. Mostriamo: tutte le varianti ragionevoli

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

Cenni di logica & algebra booleana

Cenni di logica & algebra booleana Cenni di algebra booleana e dei sistemi di numerazione Dr. Carlo Sansotta - 25 2 Parte Cenni di logica & algebra booleana 3 introduzione L elaboratore elettronico funziona secondo una logica a 2 stati:

Dettagli

INTERAZIONE CON L UTENTEL

INTERAZIONE CON L UTENTEL IL SISTEMA OPERATIVO Insieme di programmi che opera al di sopra della macchina fisica, mascherandone le caratteristiche e fornendo agli utenti funzionalità di alto livello. PROGRAMMI UTENTE INTERPRETE

Dettagli

Nozione di algoritmo. Gabriella Trucco

Nozione di algoritmo. Gabriella Trucco Nozione di algoritmo Gabriella Trucco Programmazione Attività con cui si predispone l'elaboratore ad eseguire un particolare insieme di azioni su particolari informazioni (dati), allo scopo di risolvere

Dettagli

Esercizio su MT. Svolgimento

Esercizio su MT. Svolgimento Esercizio su MT Definire una macchina di Turing deterministica M a nastro singolo e i concetti di configurazione e di transizione. Sintetizzare una macchina di Turing trasduttore che trasformi un numero

Dettagli

Informazione analogica e digitale

Informazione analogica e digitale L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica

Dettagli

Appunti di informatica. Lezione 6 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 6 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 6 anno accademico 2015-2016 Mario Verdicchio RAM disco La RAM è basata su dispositivi elettronici, che funzionano con tempi molto rapidi, ma che necessitano di alimentazione

Dettagli

INFORMATICA, IT e ICT

INFORMATICA, IT e ICT INFORMATICA, IT e ICT Informatica Informazione automatica IT Information Technology ICT Information and Communication Technology Computer Mini Computer Mainframe Super Computer Palmare Laptop o Portatile

Dettagli

I componenti di un Sistema di elaborazione. Memoria centrale. È costituita da una serie di CHIP disposti su una scheda elettronica

I componenti di un Sistema di elaborazione. Memoria centrale. È costituita da una serie di CHIP disposti su una scheda elettronica I componenti di un Sistema di elaborazione. Memoria centrale Memorizza : istruzioni dati In forma BINARIA : 10001010101000110101... È costituita da una serie di CHIP disposti su una scheda elettronica

Dettagli

TECNOLOGIE INFORMATICHE DELLA COMUNICAZIONE ORE SETTIMANALI 2 TIPO DI PROVA PER GIUDIZIO SOSPESO PROVA DI LABORATORIO

TECNOLOGIE INFORMATICHE DELLA COMUNICAZIONE ORE SETTIMANALI 2 TIPO DI PROVA PER GIUDIZIO SOSPESO PROVA DI LABORATORIO CLASSE DISCIPLINA MODULO Conoscenze Abilità e competenze Argomento 1 Concetti di base Argomento 2 Sistema di elaborazione Significato dei termini informazione, elaborazione, comunicazione, interfaccia,

Dettagli

Linguaggi e Paradigmi di Programmazione

Linguaggi e Paradigmi di Programmazione Linguaggi e Paradigmi di Programmazione Cos è un linguaggio Definizione 1 Un linguaggio è un insieme di parole e di metodi di combinazione delle parole usati e compresi da una comunità di persone. È una

Dettagli

Flip-flop, registri, la macchina a stati finiti

Flip-flop, registri, la macchina a stati finiti Architettura degli Elaboratori e delle Reti Lezione 9 Flip-flop, registri, la macchina a stati finiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell nformazione Università degli Studi di

Dettagli

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell

Dettagli

Programmazione. Dipartimento di Matematica. Ing. Cristiano Gregnanin. 25 febbraio 2015. Corso di laurea in Matematica

Programmazione. Dipartimento di Matematica. Ing. Cristiano Gregnanin. 25 febbraio 2015. Corso di laurea in Matematica Programmazione Dipartimento di Matematica Ing. Cristiano Gregnanin Corso di laurea in Matematica 25 febbraio 2015 1 / 42 INFORMATICA Varie definizioni: Scienza degli elaboratori elettronici (Computer Science)

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 3 ISC Esercizi per il recupero del debito formativo: Disegnare il diagramma e scrivere la matrice delle transizioni di stato degli automi a stati finiti che rappresentano

Dettagli

Richiami di informatica e programmazione

Richiami di informatica e programmazione Richiami di informatica e programmazione Il calcolatore E una macchina usata per Analizzare Elaborare Collezionare precisamente e velocemente una grande quantità di informazioni. Non è creativo Occorre

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2015/2016 ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016 CLASSE 4 H Disciplina: Sistemi automatici Docenti: Linguanti Vincenzo Gasco Giovanni PROGETTAZIONE DIDATTICA ANNUALE OBIETTIVI

Dettagli

01/05/2014. Dalla precedente lezione. Ruolo dei sistemi operativi. Esecuzione dei programmi

01/05/2014. Dalla precedente lezione. Ruolo dei sistemi operativi. Esecuzione dei programmi Marco Lapegna Laboratorio di Programmazione Dalla precedente lezione 6. I sistemi operativi LABORATORIO DI PROGRAMMAZIONE Corso di laurea in matematica I Sistemi Operativi Il linguaggi di programmazione

Dettagli

Gli algoritmi: definizioni e proprietà

Gli algoritmi: definizioni e proprietà Dipartimento di Elettronica ed Informazione Politecnico di Milano Informatica e CAD (c.i.) - ICA Prof. Pierluigi Plebani A.A. 2008/2009 Gli algoritmi: definizioni e proprietà La presente dispensa e da

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2006/2007 Docente Ing. Andrea Ghedi IL FUNZIONAMENTO BASE DI UN COMPUTER HW e SW Lezione 1 1 Il

Dettagli

Macchine a Stati finiti

Macchine a Stati finiti Macchine a Stati finiti Prof. Alberto Borghese Dipartimento di Scienze dell nformazione borghese@di.unimi.it Università degli Studi di Milano Riferimento al Patterson: Sezione B.0 /3 Sommario Macchine

Dettagli

Obiettivi del corso: Fornire le nozioni di base sull architettura dei sistemi di calcolo Fornire i primi strumenti di descrizione e di analisi dei sistemi digitali Descrivere in modo verticale il funzionamento

Dettagli

Funzionalità di un calcolatore

Funzionalità di un calcolatore Funzionalità di un calcolatore Il calcolatore: modello concettuale 1. Elaborazione 2. Memorizzazione Interconnessione 3. Comunicazione (interfaccia) Architettura di un computer componenti per elaborare

Dettagli

4-1 DIGITARE IL TESTO

4-1 DIGITARE IL TESTO Inserimento testo e Correzioni 4-1 DIGITARE IL TESTO Per scrivere il testo è sufficiente aprire il programma e digitare il testo sulla tastiera. Qualsiasi cosa si digiti viene automaticamente inserito

Dettagli

Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE. Lez2 Informatica Sc. Giuridiche Op. aritmetiche/logiche arch.

Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE. Lez2 Informatica Sc. Giuridiche Op. aritmetiche/logiche arch. Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE Comunicazione importante dalla prossima settimana, la lezione del venerdì si terrà: dalle 15:00 alle 17.15 in aula 311 l orario

Dettagli

La macchina universale

La macchina universale La macchina universale Una immediata conseguenza della dimostrazione è la seguente Corollario il linguaggio L H = {M (w) M rappresenta una macchina di Turing che si ferma con input w} sull alfabeto {0,1}*

Dettagli

IL PLC 1/9. permanente, la memoria volatile e i pin di I/O, oltre ad eventuali altri blocchi specializzati.

IL PLC 1/9. permanente, la memoria volatile e i pin di I/O, oltre ad eventuali altri blocchi specializzati. IL PLC 1/9 Storia Il motivo per il quale nacque il PLC fu la necessità di eliminare i costi elevati per rimpiazzare i sistemi complicatissimi basati su relè. Nel anni 70 la società Beadford Associates

Dettagli

IL COMPUTER. Nel 1500 Leonardo Da Vinci progettò una macchina sui pignoni dentati in grado di svolgere semplici calcoli. Nel 1642 Blase Pascal

IL COMPUTER. Nel 1500 Leonardo Da Vinci progettò una macchina sui pignoni dentati in grado di svolgere semplici calcoli. Nel 1642 Blase Pascal IL COMPUTER. Nel 1500 Leonardo Da Vinci progettò una macchina sui pignoni dentati in grado di svolgere semplici calcoli. Nel 1642 Blase Pascal realizzò la prima macchina da calcolo con un principio meccanico

Dettagli

CHE COS È L INFORMATICA

CHE COS È L INFORMATICA CHE COS È L INFORMATICA Prof. Enrico Terrone A. S. 2011/12 Definizione L informatica è la scienza che studia il computer sotto tutti i suoi aspetti. In inglese si usa l espressione computer science, mentre

Dettagli

MODULO 01. Come è fatto un computer

MODULO 01. Come è fatto un computer MODULO 01 Come è fatto un computer MODULO 01 Unità didattica 03 Conosciamo i tipi di computer e le periferiche In questa lezione impareremo: a conoscere le periferiche di input e di output, cioè gli strumenti

Dettagli

PLC Sistemi a Logica Programmabile

PLC Sistemi a Logica Programmabile PLC Sistemi a Logica Programmabile Prof. Nicola Ingrosso Guida di riferimento all applicazione applicazione dei Microcontrollori Programmabili IPSIA G.Ferraris Brindisi nicola.ingrosso @ ipsiaferraris.it

Dettagli

Architettura dei computer

Architettura dei computer Architettura dei computer In un computer possiamo distinguere quattro unità funzionali: il processore (CPU) la memoria principale (RAM) la memoria secondaria i dispositivi di input/output Il processore

Dettagli

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Docente: Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi 089-963334 ALGEBRA DI COMMUTAZIONE Lo scopo di questa algebra

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica L elaboratore elettronico (ovvero, il computer ) Monitor Unità centrale Casse acustiche Mouse Tastiera PREMESSA Insegnare con l'ausilio dei multimedia è una tecnica che giunge agli

Dettagli

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it Lezione 2 Circuiti logici Mauro Piccolo piccolo@di.unito.it Bit e configurazioni di bit Bit: una cifra binaria (binary digit) 0 oppure 1 Sequenze di bit per rappresentare l'informazione Numeri Caratteri

Dettagli

3. Gestione di un sistema operativo a interfaccia grafica (elementi di base) 3.1 Software

3. Gestione di un sistema operativo a interfaccia grafica (elementi di base) 3.1 Software Pagina 29 di 47 3. Gestione di un sistema operativo a interfaccia grafica (elementi di base) 3.1 Software Come abbiamo già detto in precedenza, l informatica si divide in due grandi mondi : l hardware

Dettagli

Fondamenti di informatica: un po di storia

Fondamenti di informatica: un po di storia Fondamenti di informatica: un po di storia L idea di utilizzare dispositivi meccanici per effettuare in modo automatico calcoli risale al 600 (Pascal, Leibniz) Nell ottocento vengono realizzati i primi

Dettagli

Struttura del Calcolatore Corso di Abilità Informatiche Laurea in Fisica. prof. Corrado Santoro

Struttura del Calcolatore Corso di Abilità Informatiche Laurea in Fisica. prof. Corrado Santoro Struttura del Calcolatore Corso di Abilità Informatiche Laurea in Fisica prof. Corrado Santoro La prima macchina programmabile Conoscete queste macchine? Telai Jacquard (primi anni del 1800) Macchina per

Dettagli

TECNOLOGIE INFORMATICHE

TECNOLOGIE INFORMATICHE I.I.S.S. FOSSATI DA PASSANO LA SPEZIA PROGRAMMA di TECNOLOGIE INFORMATICHE A.S. 2012/2013 CLASSE : 1^ INDIRIZZO: Tecnologico Argomenti richiesti per sostenere l Esame Integrativo per l ammissione alla

Dettagli

Dispense di Informatica Anno Scolastico 2008/2009 Classe 3APS. Dal Problema all'algoritmo

Dispense di Informatica Anno Scolastico 2008/2009 Classe 3APS. Dal Problema all'algoritmo stituto Tecnico Statale Commerciale Dante Alighieri Cerignola (FG) Dispense di nformatica Anno Scolastico 2008/2009 Classe 3APS Dal Problema all'algoritmo Pr.: 001 Ver.:1.0 Autore: prof. Michele Salvemini

Dettagli

Articolazione Elettronica. Specializzazione Elettronica ed Elettrotecnica Articolazione Elettronica. Elettronica ed Elettrotecnica - Classe 3^

Articolazione Elettronica. Specializzazione Elettronica ed Elettrotecnica Articolazione Elettronica. Elettronica ed Elettrotecnica - Classe 3^ Articolazione Elettronica Specializzazione Elettronica ed Elettrotecnica Articolazione Elettronica Elettronica ed Elettrotecnica - Classe 3^ Elettrotecnica Tipologie di Segnali Unità di misura delle grandezze

Dettagli

Il software. Il software. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Il software. Il software. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Il software Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Outline 1 Il software Outline Il software 1 Il software Algoritmo Sequenza di istruzioni la cui esecuzione consente di risolvere uno

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione

Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione Università Roma Tre Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

ISTITUTO d IstruzIone Superiore A. righi

ISTITUTO d IstruzIone Superiore A. righi I.T.S. A. Righi M. I. U. R. Unione Europea ISTITUTO d IstruzIone Superiore A. righi Istituto Tecnico Statale Attività Sociali M.Guerrisi PROGRAMMA SVOLTO TECNOLOGIE INFORMATICHE CLASSI: PRIMA SEZ: B PROF:

Dettagli

Sistemi di Controllo per l Automazione Industriale

Sistemi di Controllo per l Automazione Industriale 10 marzo 2015 Ing. foglietta.chiara@gmail.com Università degli Studi di Cassino e del Lazio Meridionale Agenda Eventi Esempi di Eventi 2 Ing. Università degli Studi Roma TRE Email: foglietta.chiara@gmail.com

Dettagli

FlukeView Forms Documenting Software

FlukeView Forms Documenting Software FlukeView Forms Documenting Software N. 5: Uso di FlukeView Forms con il tester per impianti elettrici Fluke 1653 Introduzione Questa procedura mostra come trasferire i dati dal tester 1653 a FlukeView

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 2 Algoritmi e diagrammi di flusso

Appunti del corso di Informatica 1 (IN110 Fondamenti) 2 Algoritmi e diagrammi di flusso Università Roma Tre Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 2 Algoritmi e diagrammi di flusso Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

Fondamenti di Informatica. Computabilità e Macchine di Turing. Prof. Franco Zambonelli Gennaio 2011

Fondamenti di Informatica. Computabilità e Macchine di Turing. Prof. Franco Zambonelli Gennaio 2011 Fondamenti di Informatica Computabilità e Macchine di Turing Prof. Franco Zambonelli Gennaio 2011 Letture Consigliate: Roger Penrose, La Mente Nuova dell Imperatore, Sansoni Editrice. Martin Davis, Il

Dettagli

HARDWARE. Relazione di Informatica

HARDWARE. Relazione di Informatica Michele Venditti 2 D 05/12/11 Relazione di Informatica HARDWARE Con Hardware s intende l insieme delle parti solide o ( materiali ) del computer, per esempio : monitor, tastiera, mouse, scheda madre. -

Dettagli

Macchine a stati finiti sincrone

Macchine a stati finiti sincrone Macchine a stati finiti sincrone Modulo 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Macchine a stati finiti Dall

Dettagli