Compito del 21 giugno 2004

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Compito del 21 giugno 2004"

Transcript

1 Compito del 1 giugno 00 Una lamina omogenea di massa m è costituita da un quadrato ABCD di lato a da cui è stato asportato il quadrato HKLM avente i vertici nei punti medi dei lati di ABCD. La lamina è posta in un piano verticale e può ruotare attorno al baricentro G, il quale a sua volta è vincolato a traslare lungo l asse delle ascisse. Una molla di costante elastica k congiunge il vertice A della lamina con il punto Q dell asse delle ordinate a distanza a dall origine, mentre una forza costante F = ka e è applicata al vertice opposto C. Scegliendo le coordinate libere s e θ come in figura e prescindendo da ogni attrito, si chiede di determinare 1 La matrice d inerzia della lamina rispetto al baricentro. Le equazioni del moto. 3 Le posizioni di equilibrio e la loro stabilità. La frequenza delle piccole oscillazioni attorno alle posizioni di equilibrio stabile. 5 Il momento angolare della lamina rispetto all origine O delle coordinate. y Q A M A M D D O H θ π θ A G C π θ L x H k G k1 L B F s K C B K C 1

2 1 Matrice d inerzia della lamina rispetto al baricentro. La massa M HKLM del quadrato asportato è uguale, per motivi di simmetria, alla massa m della lamina data: M HKLM = m. La massa M ABCD della lamina completa è la somma della massa m della lamina data e della massa m del quadrato asportato: M ABCD = m. La matrice d inerzia della lamina completa ABCD, rispetto al baricentro G e alla base solidale { k 1, k, k 3 }, è: 1 IG ABCD = M ABCD a diag 1, 1 1, 1 6 = ma diag, 1, 1. Per il teorema di Pitagora applicato al triangolo rettangolo HBK, il lato del quadrato HKLM è: HK = a a a HB + BK = + =. La matrice d inerzia della lamina quadrata asportata HKLM, rispetto al baricentro G e alla base solidale data, è: a 1 IG HKLM = M HKLM diag 1, 1 1, 1 6 = ma diag, 1, 1. La matrice d inerzia I G della lamina data, rispetto al baricentro G e alla base solidale considerata, è la differenza tra la matrice d inerzia della lamina completa e quella della lamina asportata: I G = IG ABCD IG HKLM = ma diag, 1, ma diag, 1, 1 = 1 1 ma diag, 1, 1.

3 Si osservi che la lamina quadrata HKLM e, più in generale, ogni lamina rettangolare ha struttura giroscopica rispetto al baricentro, cioè la sua matrice d inerzia rispetto agli assi principali baricentrali ha due termini diagonali uguali. Da tale proprietà segue che la matrice d inerzia non varia ruotando la base solidale { k 1, k } nel piano della lamina e mantenendo come polo il baricentro. Equazioni del moto. L energia cinetica della lamina data è: T = 1 mv G ω j I G, jh ω h. j,h=1 Il vettore posizione del baricentro G rispetto all origine del sistema di riferimento cartesiano considerato è: x G = G O = s e 1. La velocità di G è la derivata temporale di x G : v G = ṡ e 1. La velocità angolare ω è diretta perpendicolarmente al piano della lamina, pertanto si ha: ω = θ k 3 = ω 1 = ω = 0, ω 3 = θ. Sostituendo i risultati precedenti nell espressione di T, si ottiene: T = 1 mṡ + 1 θ I G, 33 = 1 mṡ ma θ, dove si è posto I G,33 = 1 ma. L energia potenziale del sistema è data dalla somma di tre termini: il primo corrispondente alla forza elastica f el = ka Q, il secondo associato alla forza peso f peso = m g e il terzo dovuto alla forza costante F: V = k A Q + mgy G F x C. Calcoliamo ora ciascun termine che compare nell energia potenziale V. 3

4 Considerando il triangolo rettangolo AA G e osservando che AG = a/, si trova: x A = A O = GO A G e 1 + AA e [ = s a ] cosπ θ e 1 + a sinπ θ e = s + a cosθ e 1 + a sin θ e, dove si sono utilizzate le seguenti proprietà degli archi associati cosπ θ = cos θ, sinπ θ = sin θ. Il vettore posizione del punto Q è x Q = Q O = a e, pertanto il vettore A Q risulta: A Q = A O Q O = s + a a cosθ e 1 + sin θ a e. Il modulo al quadrato di A Q è la somma dei quadrati delle componenti: A Q = s + a a cosθ + sin θ a = s + as cosθ + a cos θ + a sin θ a sin θ + a. Sapendo che sin θ + cos θ = 1 e semplificando i termini simili, si trova: A Q = s + 3 a + as cosθ a sin θ. Considerando il triangolo rettangolo CC G e osservando che GC = a/, si trova: x C = C O = GO + C G e 1 CC e [ = s + a ] cosπ θ e 1 a sinπ θ e = s a cosθ e 1 a sin θ e.

5 Il prodotto scalare F x C è la somma dei prodotti delle componenti omonime: F x C = Fa sin θ = ka sin θ, dove si è posto F = F e = ka e. Il vettore posizione del baricentro è x G = s e 1, pertanto risulta y G = 0. L energia potenziale V è quindi V = k s + 3 a + as cosθ a sin θ + ka sin θ. I termini costanti contenuti nell espressione dell energia potenziale possono essere trascurati, in quanto il loro contributo alle equazioni del moto è nullo si tenga presente che la lagrangiana L = T V compare nelle equazioni del moto solo tramite le sue derivate rispetto alle coordinate libere. Sommando inoltre i termini simili, l espressione di V si riduce alla forma: V = k s + as cosθ a sin θ. La lagrangiana del sistema è L = T V = 1 mṡ ma θ k s + as cosθ a sin θ. Per scrivere le equazioni del moto occorre innanzitutto calcolare le seguenti derivate parziali di L: L ṡ = mṡ, L s L θ = 1 ma θ, = ks ka cosθ, L θ = ka s sin θ + ka cos θ. Le derivate totali rispetto al tempo che compaiono nelle equazioni di Lagrange sono: d L d L = m s e dt ṡ dt θ = 1 ma θ. 5

6 Sostituendo le espressioni precedenti nelle equazioni del moto si ha infine: d L L ka = 0 = m s + ks + cos θ = 0 dt ṡ s d L dt θ L θ = 0 = 1 ma θ ka s sin θ ka cos θ = 0. 3 Posizioni di equilibrio e stabilità. Le posizioni d equilibrio sono le soluzioni del sistema di equazioni ottenuto uguagliando a zero le derivate parziali dell energia potenziale V rispetto alle coordinate libere s, θ: V ka = ks + cosθ = 0 s V θ = ka s sin θ ka cos θ = 0, da cui segue V s = k s + a cosθ = 0 V θ = ka s sin θ + a cosθ = 0. Sostituendo nella seconda equazione l espressione di s ottenuta dalla prima equazione si ha: s = a cosθ ka a cosθ sin θ + a cosθ = 0 = ka cos θ Dalla seconda equazione si ottiene: cos θ = 0 = θ = π, θ = 3 π sin θ = 1 = θ = π, θ = 3 π. sin θ 1 = 0. 6

7 Sostituendo tali risultati nella prima equazione del sistema precedente, si hanno le seguenti posizioni d equilibrio: I θ = π, s = 0 ; II θ = 3 π, s = 0 ; III θ = π, s = a ; IV θ = 3 π, s = a. Per studiare la stabilità delle posizioni d equilibrio trovate, scriviamo la matrice hessiana H dell energia potenziale V, cioè la matrice formata dalle derivate seconde parziali di V : V s = k, V s θ = V θ s = ka sin θ, V θ = ka s cosθ a sin θ = ka cos θ + 1 sin θ, avendo sostituito, nell ultimo passaggio, la condizione s = a cos θ ricavata dalla prima equazione del sistema che fornisce le posizioni d equilibrio. La matrice hessiana è quindi H = k ka sin θ ka Il determinante di H è det H = k a cos θ + 1 = k a ka sin θ cos θ + 1 sin θ sin θ k a cos θ + 1 sin θ sin θ. sin θ. 1 Essendo V ss = k > 0 indipendentemente dai valori di s, θ, i casi che possono presentarsi sono solo due: se det H > 0, l equilibrio è stabile; se det H < 0, l equilibrio è instabile. Per ciascuno dei quattro punti stazionari trovati calcoliamo il segno del determinante di H, in modo da studiare la stabilità dei punti d equilibrio. 7

8 I θ = π, s = 0. det H = k a II θ = 3 π, s = 0. det H = k a III θ = π, s = a. 1 1 < 0 = l equilibrio è instabile. 1 1 < 0 = l equilibrio è instabile. det H = k a IV θ = 3π, s = a. det H = k a > 0 = l equilibrio è stabile. > 0 = l equilibrio è stabile. Frequenza delle piccole oscillazioni attorno alle posizioni d equilibrio stabile. Per determinare la frequenza ω delle piccole oscillazioni attorno alle posizioni d equilibrio stabile, risolviamo l equazione secolare detc λa = 0, dove C è la matrice hessiana di V, calcolata nella configurazione d equilibrio considerata, λ = ω e A è la matrice formata dai coefficienti calcolati nella posizione d equilibrio della forma quadratica che esprime l energia cinetica T, a meno di un fattore 1/. In entrambe le posizioni d equilibrio stabile trovate, θ = π, s = a le matrici A e C risultano: e θ = 3 π, s = a, 8

9 m 0 A = 0 ma k ka C = ka ka, essendo T = 1 e mṡ + 1 ma θ + 0ṡ θ. La matrice C λa è dunque k ka C λa = λm 0 ka ka 0 λ ma k λm ka =. ka ka λma L equazione secolare detc λa = 0 risulta pertanto k λm ka = a [ ] k λmk λm k = 0, ka ka λma da cui segue m λ 3kmλ + k = 0 = λ 1, = 3km ± 9k m k m = 3 ± 5 k m m. Le frequenze delle piccole oscillazioni attorno alla posizione d equilibrio stabile sono quindi 3 5 ω 1 = k m e ω = k m. 5 Momento angolare della lamina rispetto a O. Il momento angolare di un corpo rigido rispetto al polo non solidale O è: L O = I G ω + G O m v G, dove ω è la velocità angolare del corpo, G il baricentro, m la massa, v G la velocità di G e I G l operatore d inerzia rispetto al baricentro e alla base solidale scelta. 9

10 Nel nostro caso i vettori x G = G O = x e 1 e v G = ẋ e 1 sono paralleli, pertanto il loro prodotto vettoriale è nullo: G O m v G = x e 1 mẋ e 1 = 0. Il momento angolare rispetto al polo non solidale O si riduce quindi alla forma: 3 L O = I G ω = ω j I G, jh kh, j, h=1 dove { k 1, k, k 3 } è la base solidale considerata e I G, jh è la matrice d inerzia rispetto a G. La velocità angolare è ω = θ k 3, pertanto le sue componenti sono Il momento angolare risulta dunque ω 1 = ω = 0 e ω 3 = θ. L O = θi G, 33 k3. Dai risultati ottenuti al punto 1 sappiamo che l elemento I G, 33 della matrice d inerzia della lamina rispetto al baricentro G è: I G, 33 = ma. Il momento angolare richiesto è quindi L O = ma θ k 3 10

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea A di massa m e lunghezza l è libera di ruotare attorno al proprio estremo mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro di

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea OA di massa m e lunghezza l è libera di ruotare attorno al proprio estremo O mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro

Dettagli

Compito di gennaio 2005

Compito di gennaio 2005 Compito di gennaio 2005 In un piano verticale, si consideri il vincolo mobile costituito da una semicirconferenza di raggio R e centro C, i cui estremi A e B possono strisciare lungo l asse delle ascisse:

Dettagli

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema.

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema. Esercizio 1. Un sistema materiale è costituito da una lamina piana omogenea di massa M e lato L e da un asta AB di lunghezza l e massa m. La lamina scorre con un lato sull asse x ed è soggetta a una forza

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Compito di febbraio 2004

Compito di febbraio 2004 Copito di febbraio 004 Una laina oogenea di assa, avente la fora di un disco di raggio da cui è stato asportato il triangolo equilatero inscritto ABC, rotola senza strisciare lungo l asse delle ascisse

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 18 Settembre 27 usare fogli diversi per esercizi diversi) Primo Esercizio In un piano si fissi un sistema di riferimento Oxy. Un

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà)

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà) Foglio di Esercizi 7 Meccanica Razionale a.a. 018/19 Canale A-L P. Buttà Esercizio 1. Sia {O; x, y, z} un sistema di riferimento ortonormale con l asse z diretto secondo la verticale ascendente. Un punto

Dettagli

Soluzione della prova scritta del 18 Aprile 2011

Soluzione della prova scritta del 18 Aprile 2011 Soluzione della prova scritta del 18 Aprile 011 1. Nel sistema di figura, posto in un piano verticale, i due dischi, di peso, sono omogenei e hanno raggio, mentrelalaminaquadratahalato epeso. La lamina

Dettagli

Tutorato 8 - MA/FM210-12/5/2017

Tutorato 8 - MA/FM210-12/5/2017 Tutorato 8 - MA/FM - /5/7 Esercizio. Si calcolino i momenti principali di inerzia dei seguenti corpi rigidi rispetto al loro centro di massa:. Disco sottile omogeneo di massa M e raggio R [Risposta: I

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2012/2013 Meccanica Razionale

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2012/2013 Meccanica Razionale Ancona, 11 gennaio 2013 Corso di Laurea in Ingegneria Meccanica Anno Accademico 2012/2013 Meccanica Razionale 1. Un punto P di massa m si muove senza attrito su una guida verticale. Una molla di costante

Dettagli

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = 1 x + x x > 0 determinare le frequenze delle piccole

Dettagli

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 3 febbraio 2011

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 3 febbraio 2011 1 Università di Pavia Facoltà di Ingegneria orso di Laurea in Ingegneria Edile/rchitettura orrezione prova scritta 3 febbraio 011 1. eterminare il trinomio invariante del seguente sistema di vettori applicati:

Dettagli

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 20 Settembre 2005 PARTE A P O

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 20 Settembre 2005 PARTE A P O LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 0 Settembre 005 PARTE A Esercizio 1. Nel piano cartesiano Oxy con asse y verticale ascendente, un punto materiale P di massa m è

Dettagli

SOLUZIONI. CDEF e Ixx D rispetto all asse x delle tre lamine, separatamente.

SOLUZIONI. CDEF e Ixx D rispetto all asse x delle tre lamine, separatamente. Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile e Ambientale/per l Ambiente e il Territorio Esame di Fisica Matematica 11 luglio 2012 SLUZINI Esercizio 1. Un corpo rigido

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 27 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 18 Luglio 7 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. L estremo

Dettagli

Esercizio. di centro l'origine e raggio R nel piano verticale O(x; z). Sia A il punto piu' alto dove la

Esercizio. di centro l'origine e raggio R nel piano verticale O(x; z). Sia A il punto piu' alto dove la Esercizio Due punti materiali P 1 e P, di ugual massa m, sono vincolati a muoversi sulla circonferenza di centro l'origine e raggio R nel piano verticale Ox; z). Sia A il punto piu' alto dove la circonferenza

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 7 Giugno 17 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideriuna lamina triangolareabc omogeneadi massam,

Dettagli

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà)

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà) Foglio di Esercizi 5 Meccanica Razionale a.a. 017/18 Canale A-L (P. Buttà) Esercizio 1. Su un piano orizzontale sono poste due guide immateriali circolari di centri fissi O 1 e O e uguale raggio r; sia

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 16 Febbraio 27 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi un sistema di riferimento Oxy in un piano e

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2018/2019 Meccanica Razionale - Appello del 13/4/2019

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2018/2019 Meccanica Razionale - Appello del 13/4/2019 orso di Laurea in Ingegneria Meccanica Anno Accademico 2018/2019 Meccanica Razionale - Appello del 1/4/2019 Nome... N. Matricola... Ancona, 1 aprile 2019 1. Un asta OA di massa M e lunghezza L si muove

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 10 Gennaio 2017 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideri il sistema di riferimento Oxy. L estremo

Dettagli

MA - Soluzioni della seconda prova pre-esonero ( )

MA - Soluzioni della seconda prova pre-esonero ( ) M - Soluzioni della seconda prova pre-esonero (5-5-15) 1. Una lamina sottile pesante, omogenea, di massa M, ha la forma di un triangolo rettangolo isoscele, i cui cateti B e C hanno lunghezza l. La lamina

Dettagli

Primo compito di esonero Meccanica Razionale

Primo compito di esonero Meccanica Razionale Primo compito di esonero 9 aprile 20 Un punto materiale P di massa m è vincolato a muoversi senza attrito su un profilo descritto dall equazione y = 4 x 2 in un piano verticale soggetto al peso e ad una

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica II parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Università di Pavia Facoltà di Ingegneria Esame di Fisica Matematica (Ingegneria Civile ed Ambientale) Appello del 25 giugno 2015

Università di Pavia Facoltà di Ingegneria Esame di Fisica Matematica (Ingegneria Civile ed Ambientale) Appello del 25 giugno 2015 Università di Pavia Facoltà di Ingegneria Esame di Fisica Matematica (Ingegneria Civile ed Ambientale Appello del 5 giugno 5. Sia assegnata l equazione x ( e x +e y +e z = e x +e y +βe z. Trovare per quale

Dettagli

Esercizio: pendolo sferico. Soluzione

Esercizio: pendolo sferico. Soluzione Esercizio: pendolo sferico Si consideri un punto materiale di massa m vincolato a muoversi senza attrito sulla superficie di una sfera di raggio R e soggetto alla forza di gravita. Ridurre il moto alle

Dettagli

x = λ y = λ z = λ. di libertà del sistema ed individuare un opportuno sistema di coordinate lagrangiane.

x = λ y = λ z = λ. di libertà del sistema ed individuare un opportuno sistema di coordinate lagrangiane. 1 Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Correzione prova scritta Esame di Fisica Matematica 22 febbraio 2012 1. Determinare, per il seguente sistema di vettori

Dettagli

Scritto di Analisi II e Meccanica razionale del

Scritto di Analisi II e Meccanica razionale del Scritto di Analisi II e Meccanica razionale del 06.09.01 Meccanica razionale. Esercizio 1 Un recipiente cilindrico omogeneo, di massa m, area di base A e altezza h, completamente chiuso, poggia sul piano

Dettagli

FM210 - Fisica Matematica 1 Tutorato 11 ( )

FM210 - Fisica Matematica 1 Tutorato 11 ( ) Corso di laurea in atematica - Anno Accademico 3/4 F - Fisica atematica Tutorato (--) Esercizio. Si calcolino i momenti principali di inerzia dei seguenti corpi rigidi rispetto al loro centro di massa:.

Dettagli

Esercitazione 5. Esercizio 1. Equilibrio e stabilità ( )

Esercitazione 5. Esercizio 1. Equilibrio e stabilità ( ) Esercitazione 5 (12.11.2012) Esercizio 1 In un piano verticale π, un disco omogeneo di massa m e raggio R è vincolato in modo tale che il punto del suo bordo scorre senza attrito sull asse x di un riferimento

Dettagli

Primo compito di esonero. Meccanica Razionale - Canale A - La. 23 aprile Docente C. Cammarota

Primo compito di esonero. Meccanica Razionale - Canale A - La. 23 aprile Docente C. Cammarota Primo compito di esonero Meccanica Razionale - Canale A - La 23 aprile 2014 Docente C. Cammarota Un punto materiale P di massa m è vincolato a muoversi senza attrito su un profilo descritto dall equazione

Dettagli

Compito di Istituzioni di Fisica Matematica 8 Luglio 2013

Compito di Istituzioni di Fisica Matematica 8 Luglio 2013 Compito di Istituzioni di Fisica Matematica 8 Luglio 203 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi un sistema di riferimento Oxyz, con asse Oz verticale ascendente. Un asta omogenea

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Scritto di fondamenti di meccanica razionale del

Scritto di fondamenti di meccanica razionale del Scritto di fondamenti di meccanica razionale del 17.6.1 Esercizio 1 Nel piano Oxy di una terna solidale Oxyz è collocata una piastra rigida omogenea L, avente la forma di un quadrato di lato a dal quale

Dettagli

SOLUZIONI. (1) M O = m 1(C 1 O)+m 2 (C 2 O)+m 3 (C 3 O) m 1 +m 2 +m 3. e y. e x G F

SOLUZIONI. (1) M O = m 1(C 1 O)+m 2 (C 2 O)+m 3 (C 3 O) m 1 +m 2 +m 3. e y. e x G F Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile e Ambientale/per l Ambiente e il Territorio Esame di Fisica Matematica 22 febbraio 2012 SOLUZIONI Esercizio 1. Un corpo rigido

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica I parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Prova scritta di Meccanica Razionale

Prova scritta di Meccanica Razionale Prova scritta di Meccanica Razionale - 0.07.013 ognome e Nome... N. matricola....d.l.: MLT UTLT IVLT MTLT MELT nno di orso: altro FIL 1 Esercizio 1. Nel riferimento cartesiano ortogonale, si consideri

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 2018 (usare fogli diversi per esercizi diversi) Primo Esercizio In un piano verticale si fissi un sistema di riferimento

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018 Prova teorica - A Nome... N. Matricola... Ancona, 5 aprile 2018 1. Gradi di libertà di

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018 Prova teorica - A Nome... N. Matricola... Ancona, 10 febbraio 2018 1. Un asta AB di lunghezza

Dettagli

Tutorato 6 - FM210. avendo usato la condizione di puro rotolamento r φ = ẏ e. 2) I punti di equilibrio sono i punti critici del potenziale:

Tutorato 6 - FM210. avendo usato la condizione di puro rotolamento r φ = ẏ e. 2) I punti di equilibrio sono i punti critici del potenziale: Tutorato 6 - FM10 Soluzione Esercizio 1 R l = l, applicando il teorema di Koenig abbi- 1 Abbiamo OC = amo T disco = 1 mẏ + 1 mr φ = 1 mẏ avendo usato la condizione di puro rotolamento r φ = ẏ e T asta

Dettagli

Scritto di Analisi II e Meccanica razionale del

Scritto di Analisi II e Meccanica razionale del Scritto di Analisi II e Meccanica razionale del 19.1.212 Esercizio di meccanica razionale Una terna cartesiana Oxyz ruota con velocità angolare costante ω attorno all asse verticale Oy rispetto ad un riferimento

Dettagli

Corsi di Laurea in Ingegneria Meccanica e Informatica Anno Accademico 2015/2016 Meccanica Razionale

Corsi di Laurea in Ingegneria Meccanica e Informatica Anno Accademico 2015/2016 Meccanica Razionale Corsi di Laurea in Ingegneria Meccanica e Informatica Anno Accademico 15/16 Meccanica Razionale Nome... N. Matricola... Ancona, 7 giugno 16 1. Un corpo rigido piano è formato da due aste AC e BC, di ugual

Dettagli

2.10 Equilibri e stabilità

2.10 Equilibri e stabilità 54 CPITOLO. MECCNIC LGRNGIN.10 Equilibri e stabilità Considero le equazioni di Lagrange d T T (q, q) (q, q) = Q(q, q), dt q q per vincoli fissi, cioè T = T = 1 q (q) q, e per forze non dipendenti da t.

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 00/003 Grandezze cinetiche Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale

Dettagli

Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale:

Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale: Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 3 Meccanica Razionale 1: Scritto Generale: 16.9.211 Cognome e nome:....................................matricola:......... 1.

Dettagli

Prova scritta di fondamenti di meccanica razionale del

Prova scritta di fondamenti di meccanica razionale del Prova scritta di fondamenti di meccanica razionale del 1.1.18 Esercizio 1 Nel piano Oxy di una terna solidale Oxyz = Oê 1 ê ê un sistema rigido è costituito da due piastre quadrate identiche, Q 1 e Q,

Dettagli

Esercizio: pendoli accoppiati. Soluzione

Esercizio: pendoli accoppiati. Soluzione Esercizio: pendoli accoppiati Si consideri un sistema di due pendoli identici, con punti di sospensione posti alla stessa quota in un piano verticale. I due pendoli sono collegati da una molla di costante

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Composizione di stati cinetici Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica III parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Scritto di meccanica razionale 1 A-L del

Scritto di meccanica razionale 1 A-L del Scritto di meccanica razionale 1 A-L del 1.1.6 Esercizio 1 Nel piano Oxy di una terna solidale Oxyz si consideri la lamina rigida D in figura, costituita da una semicorona circolare di centro O, raggio

Dettagli

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata:

1. Siano A e B due punti di un atto di moto rigido piano. Dire quale delle seguenti affermazioni è errata: Università del Salento Facoltà di Ingegneria Corsi di Laurea in Ingegneria Industriale e Civile Prova scritta di Meccanica Razionale 20 giugno 2016 Soluzioni Parte 1: Domande a risposta multipla. 1. Siano

Dettagli

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come:

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come: 9 Moti rigidi notevoli In questo capitolo consideriamo alcuni esempi particolarmente significativi di moto di un sistema rigido. Quelle che seguono sono applicazioni delle equazioni cardinali di un sistema

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 6 Giugno 2017 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. Si

Dettagli

FM210 / MA - Seconda prova pre-esonero ( )

FM210 / MA - Seconda prova pre-esonero ( ) FM10 / MA - Seconda prova pre-esonero (3-5-018) 1. Un sistema meccanico è costituito da due sbarre uguali AB e BC, rettilinee, omogenee, di massa M e lunghezza l, incernierate tra loro in B. Le due sbarre

Dettagli

Esercizi da fare a casa

Esercizi da fare a casa Capitolo Esercizi da fare a casa Dodicesima settimana Per quanto riguarda le domande esse sono: 6 Deduzione delle equazioni di Lagrange dal sistema fondamentale nel caso generale non conservativo Loro

Dettagli

Soluzione della prova scritta di Meccanica Analitica del 30 giugno 2017 a cura di Sara Mastaglio

Soluzione della prova scritta di Meccanica Analitica del 30 giugno 2017 a cura di Sara Mastaglio Soluzione della prova scritta di Meccanica Analitica del 3 giugno 7 a cura di Sara Mastaglio ) Denotiamo con G il baricentro dell asta e con C il centro del disco.. Per determinare la matrice d inerzia

Dettagli

EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE

EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE Equazioni di Lagrange in forma non conservativa Riprendiamo l equazione simbolica della dinamica per un sistema olonomo a vincoli perfetti nella forma

Dettagli

Prova Scritta di di Meccanica Analitica. 3 giugno Un punto di massa unitaria si muove soggetto al potenziale ) V (x) = x exp.

Prova Scritta di di Meccanica Analitica. 3 giugno Un punto di massa unitaria si muove soggetto al potenziale ) V (x) = x exp. Prova Scritta di di Meccanica Analitica 3 giugno 015 Problema 1 Un punto di massa unitaria si muove soggetto al potenziale V x = x exp x a Determinare le posizioni di equilibrio e la loro stabilitá b Tracciare

Dettagli

Meccanica A.A. 2011/12 - Secondo compito d'esonero 11 giugno 2012

Meccanica A.A. 2011/12 - Secondo compito d'esonero 11 giugno 2012 Un asta omogenea di massa M e lunghezza si trova in quiete su di un piano orizzontale liscio e privo di attrito; siano P =(,/ P =(,-/ le coordinate cartesiane degli estremi dell asta in un dato sistema

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 26 settembre 2002 Soluzioni A = B =

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 26 settembre 2002 Soluzioni A = B = Università di Pavia Facoltà di Ineneria Esame di Meccanica Razionale ppello del 6 settembre 00 Soluzioni D1. Un sistema dinamico ha due radi di libertà ed è soetto a forze attive conservative. La laraniana

Dettagli

L 2, L ] L 2. σ(x,y )= m ( (x,y ) [0,L]

L 2, L ] L 2. σ(x,y )= m ( (x,y ) [0,L] Scritto di meccanica razionale del.. Esercizio Un sistema rigido, costituito da una lamina quadrata ABCD di lato L, ruotaconvelocità angolare costante ω attorno all asse Ox di una terna Oxyz, asse passante

Dettagli

ESERCIZI 121. P 1 z 1 y x. a) P 2. Figura 12.25: Sistema discusso nell esercizio 41.

ESERCIZI 121. P 1 z 1 y x. a) P 2. Figura 12.25: Sistema discusso nell esercizio 41. ESERCIZI 121 Esercizio 41 Un sistema meccanico è costituito da 3 punti 0, 1 e 2 di massa m vincolati a muoversi sulla superficie di un cilindro circolare retto di raggio r = 1. Si scelga un sistema di

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Primo Scritto [1-6-018] 1. Si consideri il sistema meccanico bidimensionale per x R. ẍ = ( x 4 1)x, (a) Si identifichino due integrali

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 01/14 FM10 - Fisica Matematica I Seconda Prova di Esonero [1-10-014] 1. (1 punti. Una massa puntiforme m si muove su una guida liscia di equazione y = de

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

a4 dove µ è una costante positiva e a indica la lunghezza dell asta, che coincide con il lato del quadrato.

a4 dove µ è una costante positiva e a indica la lunghezza dell asta, che coincide con il lato del quadrato. Scritto di meccanica razionale 1 del 7.9. Esercizio 1 Solidale ad una terna di riferimento Oxyz si considera un corpo rigido composto dall asta rettilinea OA e dalla lamina quadrata OBCD, rispettivamente

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 26 giugno 2013 1. Un asta di massa m ha il centro vincolato a scorrere su una guida orizzontale. L asta può ruotare. Sulla stessa guida, alla sinistra del centro dell

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Primo compito di esonero. Meccanica Razionale - Canale A - La. 22 aprile Docente C. Cammarota

Primo compito di esonero. Meccanica Razionale - Canale A - La. 22 aprile Docente C. Cammarota Primo compito di esonero Meccanica Razionale - Canale A - La 22 aprile 203 Docente C. Cammarota Un punto materiale P di massa m è vincolato a muoversi senza attrito su un profilo descritto dall equazione

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (21 gennaio 2011)

PROVA SCRITTA DI MECCANICA RAZIONALE (21 gennaio 2011) PRV SRITT DI MENI RZINLE (21 gennaio 2011) Il sistema in figura, posto in un piano verticale, è costituito di un asta rigida omogenea (massa m, lunghezza 2l) i cui estremi sono vincolati a scorrere, senza

Dettagli

Dinamica dei Sistemi Aerospaziali Esercitazione 17

Dinamica dei Sistemi Aerospaziali Esercitazione 17 Dinamica dei Sistemi Aerospaziali Esercitazione 7 9 dicembre 0 M, ft G k, r k, r b z l l y Figura : Sistema a gradi di libertà. Il sistema meccanico rappresentato in Figura è composto da una trave di massa

Dettagli

Prova scritta di fondamenti di meccanica razionale del

Prova scritta di fondamenti di meccanica razionale del Prova scritta di fondamenti di meccanica razionale del.9.15 Esercizio 1 Nel piano Oxy di una terna solidale Oxyz = Oê 1 ê ê 3 un sistema rigido è composto da una piastra quadrata omogenea P = ABCD, di

Dettagli

Meccanica Analitica e Relativistica - I Esonero - 14/12/2016

Meccanica Analitica e Relativistica - I Esonero - 14/12/2016 Meccanica nalitica e Relativistica - I Esonero - 14/12/2016 In un piano verticale è scelto un sistema di riferimento di assi cartesiani ortogonali z di origine e con l asse z orientato verso il basso.

Dettagli

Prova scritta di meccanica razionale 1 A-L del

Prova scritta di meccanica razionale 1 A-L del Prova scritta di meccanica razionale 1 A-L del 6.1.9 Esercizio 1 Un sistema rigido si compone di una lamina quadrata OABC di lato a e di un asta rettilinea OD di lunghezza a. Rispetto ad una terna solidale

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Svincolamento statico Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale

Dettagli

Prova scritta di fondamenti di meccanica razionale del

Prova scritta di fondamenti di meccanica razionale del Prova scritta di fondamenti di meccanica razionale del 1.1.19 Esercizio 1 Nel piano Oxy di una terna cartesiana ortogonale Oxyz = Oê 1 ê ê giacciono, come mostrato in figura, una piastra P e un asta OA.

Dettagli

Prova scritta di fondamenti di meccanica razionale del

Prova scritta di fondamenti di meccanica razionale del Prova scritta di fondamenti di meccanica razionale del 7..13 Esercizio 1 Una piastra quadrata P = OABC, di lato a, giace nel piano Oxy di una terna Oxyz, con i vertici A e C lungo i semiassi positivi Ox

Dettagli

Prova Scritta di di Meccanica Analitica. 4 Luglio ) Si consideri un punto materiale di massa m soggetto al potenziale.

Prova Scritta di di Meccanica Analitica. 4 Luglio ) Si consideri un punto materiale di massa m soggetto al potenziale. Prova Scritta di di Meccanica Analitica 4 Luglio 7 Problema ) Si consideri un punto materiale di massa m soggetto al potenziale V x) ax 4 determinare la dipendenza del periodo dall energia. ) Si scriva

Dettagli

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale Soluzioni Prova Scritta di di Meccanica Analitica 17 aprile 15 Problema 1 Un punto di massa unitaria si muove lungo una retta soggetto al potenziale V x = exp x / a Tracciare il grafico del potenziale

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2010/2011 Meccanica Razionale

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2010/2011 Meccanica Razionale Corso di Laurea in Ingegneria Meccanica Anno Accademico 2010/2011 Meccanica Razionale Nome... N. Matricola... Ancona, 21 gennaio 2011 1. Un disco materiale pesante di massa m e raggio R si muove nel piano

Dettagli

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006 Facoltà d Ingegneria Meccanica Razionale A.A. 2005/2006 - Appello del 04/07/2006 In un piano verticale Oxy, un sistema materiale è costituito da un disco omogeneo, di centro Q, raggio R e massa 2m, e da

Dettagli

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 25 settembre 2003 Soluzioni: parte II

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 25 settembre 2003 Soluzioni: parte II Università di Pavia Facoltà di Ingegneria Esame di Meccanica azionale ppello del 5 settembre 003 Soluzioni: parte II Q1. Dati i tensori = e x e x + e y e z e z e z, B = 3e x e y e y e y + e z e x e C =

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Soluzione Compito di isica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Esercizio 1 1) Scriviamo le equazioni del moto della sfera sul piano inclinato. Le forze agenti sono il peso

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2018/2019 Meccanica Razionale - Appello del 7/2/2019

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2018/2019 Meccanica Razionale - Appello del 7/2/2019 Corso di Laurea in Ingegneria Meccanica Anno Accademico 2018/2019 Meccanica Razionale - Appello del 7/2/2019 Nome... N. Matricola... Ancona, 7 febbraio 2019 1. Una circonferenza di centro C, raggio R e

Dettagli

Tabella 4: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale:

Tabella 4: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale: Tabella 4: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 30 Meccanica Razionale 1: Scritto Generale: 21.09.2011 Cognome e nome:....................................matricola:.........

Dettagli

Prova scritta di meccanica razionale del Esercizio 1 Nel piano Oxy di una terna cartesiana ortogonale

Prova scritta di meccanica razionale del Esercizio 1 Nel piano Oxy di una terna cartesiana ortogonale Prova scritta di meccanica razionale del 1.1.19 Esercizio 1 Nel piano Oxy di una terna cartesiana ortogonale Oxyz = Oê 1 ê ê 3 giacciono, come mostrato in figura, una piastra P e un asta OA. La piastra

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018 Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018 Nome... N. Matricola... Ancona, 13 gennaio 2018 1. Un sistema rigido piano è costituito

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

Parte 1. Fisica Matematica I Compitino 7 Maggio 2015 Durata: 3 ore

Parte 1. Fisica Matematica I Compitino 7 Maggio 2015 Durata: 3 ore Fisica Matematica I Compitino 7 Maggio 015 Durata: 3 ore Scrivete cognome e nome in ogni foglio consegnato. Consegnate lo svolgimento della parte 1 (il FRONTE di questo foglio) nella pila etichettata 1,

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accademico 006-007 Esercizio n.: Un punto materiale di massa m e vincolato a muoversi lungo un binario orizzontale scabro. Siano µ s e µ d i coefficienti

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM10 - Fisica Matematica I Seconda Prova di Esonero [13-01-01] Soluzioni Problema 1 1. Il moto si svolge in un campo di forze centrale in assenza di attrito. Pertanto si avranno due integrali primi del

Dettagli

FM210 / MA - Secondo scritto ( )

FM210 / MA - Secondo scritto ( ) FM10 / MA - Secondo scritto (6-7-017) Esercizio 1. Un asta rigida omogenea di lunghezza l e massa M è vincolata a muoversi su un piano verticale di coordinate x-y (con l asse x orizzontale e l asse y verticale,

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 015-16 7/9/016 Nome Cognome Matricola: 1) Si consideri il sistema di equazioni del primo ordine ẋ = y, ẏ = η y sin x, determinando i punti di equilibrio, il loro

Dettagli