Chiamata di FUNZIONI All interno della funzione P c è una chiamata ad un altra funzione Q (su input diverso).

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Chiamata di FUNZIONI All interno della funzione P c è una chiamata ad un altra funzione Q (su input diverso)."

Transcript

1 Chiamata di FUNZIONI All interno della funzione P c è una chiamata ad un altra funzione Q (su input diverso). Es. Int P(int n) { if(n<=1) return 1 else {m=n-1; return Q(m)} } Int Q(int m) { if(m>0) return m else return 2} }

2 FUNZIONI

3 FUNZIONI

4 FUNZIONI

5 FUNZIONI

6 FUNZIONI

7 FUNZIONI Chiamata

8 Esempio

9

10 Esempio

11

12 Esempio

13 Esempio

14 Esempio

15 Esempio

16 Esempio

17 Esempio

18 FUNZIONI RICORSIVE All interno della funzione P c è una chiamata a P (su input diverso). Es. Calcolo n Int Somma(int n) { if(n<=1) return 1 else return n + Somma(n-1); }

19 FUNZIONI RICORSIVE All interno della funzione P c è una chiamata a P (su input diverso). Es. Calcolo n Int Somma(int n) { if(n<=1) return 1 \* CASO BASE else return n + Somma(n-1); } Nota: serve sempre CASO BASE: valore calcolato direttamente!

20 FUNZIONI RICORSIVE All interno della funzione P c è una chiamata a P (su input diverso). Es. Calcolo di n! = prodotto degli interi da 1 a n Int fact(int n) { if(n<=1) return 1 else return n * fact(n-1); } CASO BASE?

21 Numeri di Fibonacci Nel 1223 a Pisa, si tenne un torneo tra abachisti e algoritmisti, armati soltanto di carta, penna e pallottoliere. In quella gara infatti si dimostrò che col metodo posizionale indiano appreso dagli arabi si poteva calcolare più velocemente di qualsiasi abaco. Il test era il seguente: "Quante coppie di conigli si ottengono in un anno (salvo i casi di morte) supponendo che ogni coppia dia alla luce un'altra coppia ogni mese e che le coppie più giovani siano in grado di riprodursi già al secondo mese di vita?". Un pisano, Leonardo, conosciuto anche col nome paterno di "fillio Bonacci" o Fibonacci, vinse la gara. Leonardo diede al test una risposta così rapida da far persino sospettare che il torneo fosse truccato: Alla fine del primo mese si ha la prima coppia ed una coppia da questa generata; alla fine del secondo mese si aggiunge una terza coppia, ma vi sono due coppie in più, perché anche la seconda coppia ha cominciato a generare, portando il conto a 5 coppie, e così via.

22 Numeri di Fibonacci Alla fine del primo mese si ha la prima coppia ed una coppia da questa generata; alla fine del secondo mese si aggiunge una terza coppia, ma vi sono due coppie in più, perché anche la seconda coppia ha cominciato a generare, portando il conto a 5 coppie, e così via. Il ragionamento prosegue con la seguente progressione: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, Con questo stratagemma fu facile per il Fibonacci trovare la risposta esatta.

23 Numeri di Fibonacci FUNZIONI RICORSIVE Una sequenza di numeri interi ciascun numero della quale è il risultato della somma dei due precedenti. La successione si definisce assegnando i valori dei due primi termini, f 0 = 1 ed f 1 = 1, e chiedendo che per ogni successivo sia f n = f n-1 + f n-2 con n>1.

24 Es. Numeri di Fibonacci FUNZIONI RICORSIVE e con n>1. f 0 = 0, f 1 = 1, f n = f n-1 + f n-2. Int fib(int n) { if(n<=0) return 0 if(n = 1) return 1 else return fib(n-1)+fib(n-2) }

25 SelectionSort RICORSIVO Idea alla base del SelectionSort: Array A diviso in due parti A[0..i-1] ordinato A[i..n-1] elementi più grandi da ordinare 1. Trova min A[i..n-1], sia A[small] Scambia A[i] ed A[small] 2. Ordina la parte non ordinata, cioè A[i+1..n-1]

26 SelectionSort RICORSIVO Idea alla base del SelectionSort: Array A diviso in due parti A[0..i-1] ordinato A[i..n-1] elementi più grandi da ordinare 1. Trova min A[i..n-1], sia A[small] Scambia A[i] ed A[small] 2. Ordina la parte non ordinata, cioè A[i+1..n-1] BASE. Se i=n-1, la parte da ordinare è A[n-1], ok. PASSO. Se i<n-1, trova min A[i..n-1], scambialo con A[i]; ordina (ricorsivamente) A[i+1..n-1]

27 SelectionSort RICORSIVO BASE. Se i=n-1, la parte da ordinare è A[n-1], ok. PASSO. Se i<n-1, trova min A[i..n-1], scambialo con A[i]; ordina (ricorsivamente) A[i+1..n-1] void Rec- SelectionSort(int A[], int i, int n) int j,small,temp; { if (i<n-1) /* Base: i=n-1, Esci*/ { /*Esegui Passo*/ small=i; for(j=i+1, j<n,j++) if (A[j]<A[small]) small=j; /*trova min*/ temp=a[small]; A[small]=A[i]; A[i]=temp; /*scambia*/ Rec-SelectionSort(A,i+1,n) } }

28 Sorting: MERGESORT Esempio di una tecnica generale: Divide and Conquer Sottoproblema 1 (simile, più semplice) Problema Sottoproblema 2 Sottoproblema n Ogni sottoproblema risolto con la stessa tecnica. Finchè non si raggiunge un sottopr. risolvibile direttamente.

29 Sorting: MERGESORT Esempio di una tecnica generale: Divide and Conquer Problema Sottoproblema 1 (simile, più semplice) Sottoproblema 2 Sottoproblema n Ogni sottoproblema risolto con la stessa tecnica. Finchè non si raggiunge un sottopr. risolvibile direttamente. soluzione Sottoproblema 1 soluzione Sottoproblema 2 soluzione Problema soluzione Sottoproblema n

30 Sorting: MERGESORT Vogliamo ordinare lista (a1,,an). 1. Dividi lista in 2 sottoliste aventi (quasi) la stessa dimensione: (a1,a3,a5, ) e (a2,a4, ) 2. Ordina le due liste separatamente 3. Fai merge delle due lista ottenute (ordinate) in una unica lista ordinata

31 MERGE (di due liste ordinate L1,L2 M) Es. L1=(1,2,7,7,9), L2=(2,4,7,8) M=(1,2,2,4,7,7,7,8,9) - Trova il minimo tra il primo elemento di L1 e di L2 Rimuovilo dalla lista di appartenenza ed aggiungilo ad M. - Ripeti Es. L1=(1,2,7,7,9), L2=(2,4,7,8), M=(), minimo=1 in L1

32 MERGE (di due liste ordinate L1,L2 M) Es. L1=(1,2,7,7,9), L2=(2,4,7,8) M=(1,2,2,4,7,7,7,8,9) - Trova il minimo tra il primo elemento di L1 e di L2 Rimuovilo dalla lista di appartenenza ed aggiungilo ad M. - Ripeti Es. L1=(1,2,7,7,9), L2=(2,4,7,8), M=(), minimo=1 in L1 L1=(2,7,7,9), L2=(2,4,7,8), M=(1), minimo=2 in L1

33 MERGE (di due liste ordinate L1,L2 M) Es. L1=(1,2,7,7,9), L2=(2,4,7,8) M=(1,2,2,4,7,7,7,8,9) - Trova il minimo tra il primo elemento di L1 e di L2 Rimuovilo dalla lista di appartenenza ed aggiungilo ad M. - Ripeti Es. L1=(1,2,7,7,9), L2=(2,4,7,8), M=(), minimo=1 in L1 L1=(2,7,7,9), L2=(2,4,7,8), M=(1), minimo=2 in L1 L1=(7,7,9), L2=(2,4,7,8), M=(1,2), minimo=2 in L2

34 MERGE (di due liste ordinate L1,L2 M) L1=(1,2,7,7,9), L2=(2,4,7,8), M=(), minimo=1 in L1 L1=(2,7,7,9), L2=(2,4,7,8), M=(1), minimo=2 in L1 L1=(7,7,9), L2=(2,4,7,8), M=(1,2), minimo=2 in L2 L1=(7,7,9), L2=(4,7,8), M=(1,2,2), minimo=4 in L2 L1=(7,7,9), L2=(7,8), M=(1,2,2,4), minimo=7 in L1 L1=(7,9), L2=(7,8), M=(1,2,2,4,7), minimo=7 in L1 L1=(9), L2=(7,8), M=(1,2,2,4,7,7), minimo=7 in L2 L1=(9), L2=(8), M=(1,2,2,4,7,7,7), minimo=8 in L1 L1=(9), L2=(), M=(1,2,2,4,7,7,7,8), L2 vuota Aggiungi L2 ad M. M= =(1,2,2,4,7,7,7,8,9).

35 MERGESORT BASE: Se la lista contiene 0 o 1 elemento, stop Ind.: Split di (a 1,a 2, ) in (a 1,a 3, ) e (a 2,a 4, ) Mergesort delle due liste separatamente Merge delle 2 liste ordinate

36 MERGESORT

37 MERGESORT

38 MERGESORT

39 MERGESORT

40 MERGESORT

41 MERGESORT

42 MERGESORT

43 MERGESORT

44 MERGESORT

45 MERGESORT

46 MERGESORT

47 MERGESORT

48

Programmazione ricorsiva

Programmazione ricorsiva Programmazione ricorsiva Definizione di ricorsione Funzioni ricorsive Una funzione matematica è definita per ricorsione (o per induzione) quando è espressa in termini di se stessa. ESEMPIO il fattoriale

Dettagli

Programmazione dinamica

Programmazione dinamica Programmazione dinamica Primi esempi 29 ottobre 2014 Punto della situazione Abbiamo visto: analisi asintotica relazioni di ricorrenza (vedremo altri esempi) prima tecnica di programmazione: divide-etimpera

Dettagli

ALGORITMI DI ORDINAMENTO E RICERCA BINARIA. Docente: Giorgio Giacinto AA 2008/2009. problema dell ordinamento in modi diversi

ALGORITMI DI ORDINAMENTO E RICERCA BINARIA. Docente: Giorgio Giacinto AA 2008/2009. problema dell ordinamento in modi diversi Università degli Studi di Cagliari Corso di Laurea Specialistica in Ingegneria per l Ambiente ed il Territorio Corso di Laurea Specialistica in Ingegneria Civile - Strutture FONDAMENTI DI INFORMATICA 2

Dettagli

RICORSIONE. Informatica B - A.A. 2013/2014

RICORSIONE. Informatica B - A.A. 2013/2014 RICORSIONE Informatica B - A.A. 2013/2014 RICORSIONE Che cos è la ricorsione? Un sottoprogramma P richiama se stesso (ricorsione diretta) Un sottoprogramma P richiama un altro sottoprogramma Q che comporta

Dettagli

Laboratorio di Programmazione Appunti sulla lezione 4: Divide et impera e algoritmi di ordinamento

Laboratorio di Programmazione Appunti sulla lezione 4: Divide et impera e algoritmi di ordinamento Laboratorio di Programmazione Appunti sulla lezione 4: Divide et impera e algoritmi di ordinamento Alessandra Raffaetà Università Ca Foscari Venezia Corso di Laurea in Informatica Ricerca binaria Assunzione:

Dettagli

Ricorsione. Ricorsione. Ricorsione. Walter Cazzola. Dal dizionario Garzanti (www.garzantilinguistica.it).

Ricorsione. Ricorsione. Ricorsione. Walter Cazzola. Dal dizionario Garzanti (www.garzantilinguistica.it). Outline vs Iterazione. Walter Cazzola Dipartimento di Informatica e Comunicazione Università degli Studi di Milano Definizioni La ricorsione come strumento di programmazione implementazione di metodi ricorsivi

Dettagli

Algoritmi di ordinamento

Algoritmi di ordinamento Algoritmi di ordinamento Il problema Vogliamo ordinare un array monodimensionale in modo crescente per il caso decrescente valgono le stesse considerazioni Vari algoritmi possibili Diverse caratteristiche

Dettagli

Ordinamenti ricorsivi

Ordinamenti ricorsivi Ordinamenti ricorsivi Selection Sort ricorsivo Algoritmi di ordinamento I Il metodo del selection sort può essere facilmente realizzato in modo ricorsivo I si definisce una procedura che ordina (ricorsivamente)

Dettagli

Algoritmi di ordinamento

Algoritmi di ordinamento Algoritmi di ordinamento Il problema Vogliamo ordinare un array monodimensionale in modo crescente per il caso decrescente valgono le stesse considerazioni Vari algoritmi possibili Diverse caratteristiche

Dettagli

Laboratorio di Programmazione Appunti sulla lezione 4: Divide et impera e algoritmi di ordinamento

Laboratorio di Programmazione Appunti sulla lezione 4: Divide et impera e algoritmi di ordinamento Laboratorio di Programmazione Appunti sulla lezione 4: Divide et impera e algoritmi di ordinamento Alessandra Raffaetà Università Ca Foscari Venezia Corso di Laurea in Informatica Ricerca binaria Assunzione:

Dettagli

Programmazione dinamica

Programmazione dinamica Programmazione dinamica Primi esempi 6 ottobre 2015 Algoritmi Abbiamo bisogno di algoritmi ogni qual volta vogliamo scrivere un programma per risolvere un problema in maniera automatica. Obiettivo finale:

Dettagli

Calcolo Parallelo e Distribuito

Calcolo Parallelo e Distribuito Calcolo Parallelo e Distribuito 1 Problema Progettare un algoritmo parallelo per l ordinamento di un vettore su un calcolatore MIMD a memoria distribuita con p processori Sorting Bitonico A. Murli Calcolo

Dettagli

LA NATURA DÀ I NUMERI

LA NATURA DÀ I NUMERI LA NATURA DÀ I NUMERI IL video presenta la conclusione di un percorso effettuato dagli alunni della classe 1 B sulla relazione tra numeri e natura. Prof.ssa Marinella Bonaccorsi CLASSE 1 B Nel 1223 a Pisa,

Dettagli

Fondamenti di Programmazione - Prof.ssa Gargano Anno Acc Esercitazioni 2009

Fondamenti di Programmazione - Prof.ssa Gargano Anno Acc Esercitazioni 2009 Fondamenti di Programmazione - Prof.ssa Gargano Anno Acc. 2008-09 Esercitazioni 2009 1. Mostrare per induzione che per ogni intero positivo n 0, la seguente affermazione S(n) é vera: S(n): n i=0 2i = 2

Dettagli

La ricorsione. Sommario. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino

La ricorsione. Sommario. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino La ricorsione Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino Sommario! Definizione di ricorsione e strategie divide et impera! Semplici algoritmi ricorsivi! Merge

Dettagli

Calcolo Parallelo e Distribuito

Calcolo Parallelo e Distribuito Calcolo Parallelo e Distribuito 1 Problema Progettare un algoritmo parallelo per l ordinamento di un vettore su un calcolatore MIMD a memoria distribuita con p processori Sorting Bitonico A. Murli Calcolo

Dettagli

Allora v = v2 =

Allora v = v2 = Problema: a partire da due sequenze ordinate v1 e v2 di elementi vogliamo costruirne una ordinata v con tutti gli elementi di v1 e v2 Algoritmo ricorsivo: Se le due sequenze contengono elementi confronta

Dettagli

Laboratorio di Programmazione Appunti sulla lezione 5: Algoritmi di ordinamento (cont.) Alessandra Raffaetà. Bubblesort

Laboratorio di Programmazione Appunti sulla lezione 5: Algoritmi di ordinamento (cont.) Alessandra Raffaetà. Bubblesort Laboratorio di Programmazione Appunti sulla lezione : Algoritmi di ordinamento (cont.) Alessandra Raffaetà Università Ca Foscari Venezia Corso di Laurea in Informatica Bubblesort Idea: Due elementi adiacenti

Dettagli

Lezione di Laboratorio di Prgrammazione: /05/2019 a.a. 2018/2019 R.Prevete

Lezione di Laboratorio di Prgrammazione: /05/2019 a.a. 2018/2019 R.Prevete Lezione di Laboratorio di Prgrammazione: 19 13/05/2019 a.a. 2018/2019 R.Prevete Ricorsione La struttura di una funzione ricorsiva per un problema P di dimensione n (n è la dimensione dei dati input, ad

Dettagli

Gli algoritmi ricorsivi di ordinamento. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Gli algoritmi ricorsivi di ordinamento. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino ordinamento Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Merge Sort Ricorsivo, divide et impera Stabile Divisione: due sottovettori SX e DX rispetto al centro del vettore. p r A.A.

Dettagli

Laboratorio di Programmazione Appunti sulla lezione 5: Algoritmi di ordinamento (cont.) Alessandra Raffaetà

Laboratorio di Programmazione Appunti sulla lezione 5: Algoritmi di ordinamento (cont.) Alessandra Raffaetà Laboratorio di Programmazione Appunti sulla lezione : Algoritmi di ordinamento (cont.) Alessandra Raffaetà Università Ca Foscari Venezia Corso di Laurea in Informatica Bubblesort Idea: Due elementi adiacenti

Dettagli

Allenamento alle Olimpiadi di Informatica

Allenamento alle Olimpiadi di Informatica Giornata di allenamento alle Olimpiadi di Informatica Allenamento alle Olimpiadi di Informatica Obiettivi di questa sessione Illustrare alcuni siti per lo sviluppo di competenze informatiche, anche in

Dettagli

5. DIVIDE AND CONQUER I

5. DIVIDE AND CONQUER I Divide-et-Impera (Divide and conquer) 5. DIVIDE AND CONQUER I Mergesort e Relazioni di ricorrenza Esempi di progettazione D&I Moltiplicazione di interi Contare inversioni Divide-et-Impera. Definizione

Dettagli

Nozioni di base (II Parte)

Nozioni di base (II Parte) Nozioni di base (II Parte) 1 Ricorsione [GTG14, Par. 5.1-5.4 and 13.1] Algoritmo Ricorsivo: algoritmo che invoca se stesso (su istanze sempre più piccole) sfruttando la nozione di induzione. La soluzione

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare una lista di nomi alfabeticamente, o un

Dettagli

Sommario della lezione:

Sommario della lezione: Sommario della lezione: Metodologie per il progetto di algoritmi: La Tecnica Divide et Impera Esempi di applicazione a: Ricerca del massimo e minimo di una sequenza di numeri Calcolo di potenze di numeri

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

Analisi algoritmi ricorsivi e relazioni di ricorrenza

Analisi algoritmi ricorsivi e relazioni di ricorrenza Analisi algoritmi ricorsivi e relazioni di ricorrenza Punto della situazione Finora abbiamo affrontato: il tempo di esecuzione di un algoritmo, l analisi asintotica con le notazioni asintotiche e la tecnica

Dettagli

Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano. Usa la tecnica del divide et impera:

Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano. Usa la tecnica del divide et impera: MergeSort Usa la tecnica del divide et impera: 1 Divide: dividi l array a metà 2 Risolvi i due sottoproblemi ricorsivamente 3 Impera: fondi le due sottosequenze ordinate 1 Esempio di esecuzione 7 2 4 5

Dettagli

Capitolo 19. Ricorsione

Capitolo 19. Ricorsione Capitolo 19 La ricorsione Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a sé stessa Esempio: Funzione fattoriale su interi non negativi: f(n) = n!

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

FUNZIONI. attribuire un nome ad un insieme di istruzioni parametrizzare l esecuzione del codice

FUNZIONI. attribuire un nome ad un insieme di istruzioni parametrizzare l esecuzione del codice Funzioni FUNZIONI Spesso può essere utile avere la possibilità di costruire nuove istruzioni che risolvono parti specifiche di un problema Una funzione permette di attribuire un nome ad un insieme di istruzioni

Dettagli

Programmazione dinamica Primi esempi

Programmazione dinamica Primi esempi Programmazione dinamica Primi esempi (20 ottobre 2009 e 9 novembre 2010) Programmazione dinamica e Divide et Impera Entrambe le tecniche dividono il problema in sottoproblemi: dalle soluzioni dei sottoproblemi

Dettagli

n n 1 n = > Il calcolo del fattoriale La funzione fattoriale, molto usata nel calcolo combinatorio, è così definita

n n 1 n = > Il calcolo del fattoriale La funzione fattoriale, molto usata nel calcolo combinatorio, è così definita Il calcolo del fattoriale La funzione fattoriale, molto usata nel calcolo combinatorio, è così definita n! = 1 n( n 1)! se se n n = > 0 0 dove n è un numero intero non negativo Il calcolo del fattoriale

Dettagli

Programmi in Assembly

Programmi in Assembly Programmi in Assembly Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano 1/23 Esempio Numeri positivi # Programma che copia tramite

Dettagli

Ricorsione. quindi si può definire n! mediante i seguenti due punti:

Ricorsione. quindi si può definire n! mediante i seguenti due punti: Ricorsione Due definizioni del fattoriale Prima definizione: n! = 1 2 3....(n-1) n Per la seconda definizione notiamo che 1 2 3.... n = (n-1)! n (n-1)! quindi si può definire n! mediante i seguenti due

Dettagli

Assembly V: Procedure annidate e recursive

Assembly V: Procedure annidate e recursive Architettura degli Elaboratori e delle Reti Lezione 15 Assembly V: Procedure annidate e recursive Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Modelli di calcolo e metodologie di analisi Domenico Fabio Savo 1 Notazione asintotica f(n) = tempo di esecuzione / occupazione di memoria di un algoritmo su input di dimensione

Dettagli

I numeri di. Fibonacci

I numeri di. Fibonacci I numeri di Fibonacci Leonardo Pisano detto Il Fibonacci Scheda Storica Leonardo Pisano detto il Fibonacci fu un matematico italiano, nato a Pisa nel 1170 e ivi morto nel 1240 circa. Egli è considerato

Dettagli

Algoritmi di ordinamento: Array e ricorsione

Algoritmi di ordinamento: Array e ricorsione Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Algoritmi di ordinamento: Array e ricorsione 2 1 Indice Algoritmi di ordinamento: Insertion

Dettagli

Ricorsione. DD cap. 5 pp KP cap. 5 pp

Ricorsione. DD cap. 5 pp KP cap. 5 pp Ricorsione DD cap. 5 pp.160-184 KP cap. 5 pp.199-208 Un esempio Problema: prendere in input un intero e calcolarne il fattoriale se n>1 n!=n(n-1)(n-2)(n-3) 1; se n=0 o 1 n!=1. ma (n-1)! la definizione

Dettagli

Record di Attivazione Cenni sulla ricorsione

Record di Attivazione Cenni sulla ricorsione MASTER Information Technology Excellence Road (I.T.E.R.) Cenni sulla ricorsione Maurizio Palesi Salvatore Serrano Master ITER Informatica di Base Maurizio Palesi, Salvatore Serrano 1 Il modello a RUN-TIME

Dettagli

Progetto Corda. Alberto Ferrari. Alberto Ferrari Ingegneria dell'informazione, UniPR. 18/12/2017 Progetto Corda

Progetto Corda. Alberto Ferrari. Alberto Ferrari Ingegneria dell'informazione, UniPR. 18/12/2017 Progetto Corda Progetto Corda Alberto Ferrari Alberto Ferrari Ingegneria dell'informazione, UniPR file:///e:/cordanoweb/lez/array.html#3 1/33 Array (ordinamento) 2/33 file:///e:/cordanoweb/lez/array.html#3 2/33 Sort

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare alfabeticamente lista di nomi, o insieme

Dettagli

Programmazione ricorsiva.

Programmazione ricorsiva. In quasi tutti i linguaggi di programmazione evoluti è ammessa la possibilità di definire funzioni/procedure ricorsive: durante l esecuzione di una funzione F è possibile chiamare la funzione F stessa.

Dettagli

Operativamente, risolvere un problema con un approccio ricorsivo comporta

Operativamente, risolvere un problema con un approccio ricorsivo comporta ! Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a se stessa!! La ricorsione consiste nella possibilità di definire una funzione in termini di se

Dettagli

Programmazione ricorsiva: cenni

Programmazione ricorsiva: cenni In quasi tutti i linguaggi di programmazione evoluti è ammessa la possibilità di definire funzioni/procedure ricorsive: durante l esecuzione di una funzione F è possibile chiamare la funzione F stessa.

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 I conigli di Fibonacci Ricerca Binaria L isola dei conigli

Dettagli

Procedure: esempi. Esempi: ricorsione fattoriale Fibonacci ordinamenti

Procedure: esempi. Esempi: ricorsione fattoriale Fibonacci ordinamenti Procedure: esempi Esempi: ricorsione fattoriale Fibonacci ordinamenti 1 Fattoriale ricorsivo PH p. 83 e A27 main(int argc, char *argv[]) { int n; printf( Inserire un numero intero\n"); scanf("%d", &n);

Dettagli

Ricorsione. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna

Ricorsione. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Definizione informale: la ricorsione è un procedimento mediante il quale

Dettagli

Lezione XII Ricorsione

Lezione XII Ricorsione Lezione XII Ricorsione Scopo della lezione Definire e implementare metodi ricorsivi XII.2 Ricorsione Dal dizionario Garzanti (http://www.garzantilinguistica.it) Lemma Etimologia Definizione ricorsivo Deriv.

Dettagli

Esempio: il fattoriale di un numero fact(n) = n! n!: Z! N n! vale 1 se n " 0 n! vale n*(n-1)! se n > 0. Codifica:

Esempio: il fattoriale di un numero fact(n) = n! n!: Z! N n! vale 1 se n  0 n! vale n*(n-1)! se n > 0. Codifica: ! Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a se stessa!! La ricorsione consiste nella possibilità di definire una funzione in termini di se

Dettagli

Corso di Fondamenti di Programmazione canale E-O. Un esempio. Funzioni ricorsive. La ricorsione

Corso di Fondamenti di Programmazione canale E-O. Un esempio. Funzioni ricorsive. La ricorsione Corso di Fondamenti di Programmazione canale E-O Tiziana Calamoneri Ricorsione DD Cap. 5, pp. 160-184 KP Cap. 5, pp. 199-208 Un esempio Problema: prendere in input un intero e calcolarne il fattoriale

Dettagli

Ricorsione. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna

Ricorsione. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Definizione informale: la ricorsione è un procedimento mediante il quale

Dettagli

Inserimento in una lista ordinata

Inserimento in una lista ordinata Inserimento in una lista ordinata Vogliamo inserire un nuovo elemento in una lista in cui gli elementi sono memorizzati in ordine crescente: Passo 1: creare un nuovo nodo della lista Passo 2: trovare il

Dettagli

INFORMATICA A. Titolo presentazione sottotitolo. Laboratorio n 5 Ing. Gian Enrico Conti Dott. Michele Zanella

INFORMATICA A. Titolo presentazione sottotitolo. Laboratorio n 5 Ing. Gian Enrico Conti Dott. Michele Zanella INFORMATICA A Titolo presentazione sottotitolo A.A. 2017-18 Milano, XX mese 20XX Laboratorio n 5 Ing. Gian Enrico Conti Dott. Michele Zanella Info Logistiche (cont d) Calendario laboratori Data Orario

Dettagli

Ordinamento per inserzione e per fusione

Ordinamento per inserzione e per fusione Ordinamento per inserzione e per fusione Alessio Orlandi 15 marzo 2010 Fusione: problema Problema Siano A e B due array di n A e n B interi rispettivamente. Si supponga che A e B siano ordinati in modo

Dettagli

Università di Roma Tor Vergata L16-1. Ricerca: esaminare una collezione di dati, cercando un particolare valore. nome e cognome

Università di Roma Tor Vergata L16-1. Ricerca: esaminare una collezione di dati, cercando un particolare valore. nome e cognome Università di Roma Tor Vergata L16-1 Ricerca: esaminare una collezione di dati, cercando un particolare valore (per: ) reperire informazione modificarla stamparla cancellarla esempio: archivio studenti

Dettagli

LA RICORSIONE. Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a se stessa

LA RICORSIONE. Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a se stessa LA RICORSIONE Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a se stessa La ricorsione consiste nella possibilità di definire una funzione in termini

Dettagli

Appunti senza pretese di P2+Lab: Pensare ricorsivamente, programmare iterativamente, parte II: Implementazione iterativa di Mergesort

Appunti senza pretese di P2+Lab: Pensare ricorsivamente, programmare iterativamente, parte II: Implementazione iterativa di Mergesort Appunti senza pretese di P2+Lab: Pensare ricorsivamente, programmare iterativamente, parte II: Implementazione iterativa di Mergesort Alessandro Panconesi DSI, La Sapienza via Salaria 113, piano terzo

Dettagli

Informatica Generale Andrea Corradini Algoritmi: ordinamento per inserimento e ricorsione

Informatica Generale Andrea Corradini Algoritmi: ordinamento per inserimento e ricorsione Informatica Generale Andrea Corradini 14 - Algoritmi: ordinamento per inserimento e ricorsione Sommario Un algoritmo iterativo: l'ordinamento per inserimento (insertion sort) La ricorsione: i numeri triangolari

Dettagli

Algoritmi e Strutture Dati. Capitolo 1 Un introduzione informale agli algoritmi

Algoritmi e Strutture Dati. Capitolo 1 Un introduzione informale agli algoritmi Algoritmi e Strutture Dati Capitolo Un introduzione informale agli algoritmi Ancora un esempio di problema e soluzioni algoritmiche: i numeri di Fibonacci verso un modello di calcolo più simile a un computer

Dettagli

Ricerca in una sequenza ordinata

Ricerca in una sequenza ordinata Ricerca su array ordinata Ricerca in una sequenza ordinata Se la sequenza è ordinata posso sfruttare l ordinamento per rendere più efficiente la ricerca, terminando se l elemento corrente risulta maggiore

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Introduzione alla Programmazione in MATLAB: Parte 3 - Esercizi Prof. Arcangelo Castiglione A.A. 2016/17 Esercizio 1 Scrivere un M-File Script MATLAB che generi il seguente output

Dettagli

Ricerca in Array/Lista. Dato un array o lista di n elementi, vogliamo trovarne uno (e.g., un numero x in un array di interi)

Ricerca in Array/Lista. Dato un array o lista di n elementi, vogliamo trovarne uno (e.g., un numero x in un array di interi) Tabelle Hash Ricerca in Array/Lista Dato un array o lista di n elementi, vogliamo trovarne uno (e.g., un numero x in un array di interi) Ricerca in Array/Lista Dato un array o lista di n elementi, vogliamo

Dettagli

Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente

Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente Divide et impera - Schema generale Divide-et-impera (P, n) if n k then risolvi direttamente

Dettagli

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA. INFORMATICA B Ingegneria Elettrica. La ricorsione

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA. INFORMATICA B Ingegneria Elettrica. La ricorsione INFORMATICA B Ingegneria Elettrica La ricorsione Ricorsione Che cos è la ricorsione? Un sottoprogramma P richiama se stesso (ricorsione diretta) Un sottoprogramma P richiama un altro sottoprogramma Q che

Dettagli

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA INFORMATICA B + C

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA INFORMATICA B + C INFORMATICA B + C (sezione L-Z) Ingegneria Elettrica, Chimica e dei Materiali La ricorsione Ricorsione Che cos è la ricorsione? Un sottoprogramma P richiama se stesso (ricorsione diretta) Un sottoprogramma

Dettagli

LA RICORSIONE! Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a se stessa

LA RICORSIONE! Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a se stessa LA RICORSIONE! Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a se stessa La ricorsione consiste nella possibilità di definire una funzione in termini

Dettagli

Come usare la ricorsione

Come usare la ricorsione Laboratorio di Algoritmi e Strutture Dati Aniello Murano www.dia.unisa.it/dottorandi/murano 1 Come usare la ricorsione 2 1 Risolvere un problema per ricorsione 1. Pensa ad un problema piu piccolo (di taglia

Dettagli

LA RICORSIONE LA RICORSIONE

LA RICORSIONE LA RICORSIONE LA RICORSIONE Una funzione matematica è definita ricorsivamente quando nella sua definizione compare un riferimento a se stessa La ricorsione consiste nella possibilità di definire una funzione in termini

Dettagli

ARRAY E STRINGHE. ESERCIZIO 2 Scrivere un programma che calcola il numero di doppie e di dittonghi (2 vocali vicine) presenti in una stringa.

ARRAY E STRINGHE. ESERCIZIO 2 Scrivere un programma che calcola il numero di doppie e di dittonghi (2 vocali vicine) presenti in una stringa. 3 ITI - a.s. 2007-2008 Compiti di Informatica ESTATE 2008 ARRAY E STRINGHE Scrivere una funzione che carica da tastiera un array di n elementi e lo stampa invertendo il primo elemento con l'ultimo, il

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Ricorrenze Maria Rita Di Berardini 2, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 2 Polo di Scienze Università di Camerino ad Ascoli Piceno

Dettagli

Introduzione alla Ricorsione

Introduzione alla Ricorsione Introduzione alla Corso di Informatica A Vito Perrone Indice La formulazione in termini ricorsivi di problemi e algoritmi La ricorsione come strumento di programmazione L esecuzione dei sottoprogrammi

Dettagli

Esercizi di programmazione ricorsiva. Appunti per gli studenti di Programmazione I e Laboratorio (corsi A-B)

Esercizi di programmazione ricorsiva. Appunti per gli studenti di Programmazione I e Laboratorio (corsi A-B) Esercizi di programmazione ricorsiva Appunti per gli studenti di Programmazione I e Laboratorio (corsi A-B) Corso di Laurea in Informatica Università di Pisa A.A. 2008/09 1. Dare il tipo delle funzione

Dettagli

PROGRAMMAZIONE I (A,B) - a.a Primo Appello 19 gennaio 2017

PROGRAMMAZIONE I (A,B) - a.a Primo Appello 19 gennaio 2017 Esercizio 1 PROGRAMMAZIONE I (A,B) - a.a. 2016-17 Primo Appello 19 gennaio 2017 Si scriva una funzione C che, dato un array a di dimensione dim e un numero naturale n tale che 1 n dim, restituisce il valore

Dettagli

ALGORITMI Docente: Prof. Domenico Cantone

ALGORITMI Docente: Prof. Domenico Cantone CORSO SPECILE DI DURT NNULE PER IL CONSEGUIMENTO DELL BILITZIONE LL INSEGNMENTO NELL SCUOL SECONDRI DI I e II GRDO Indirizzo Fisico - Informatico - Matematico a.a. 00/07 - Classe - Informatica LGORITMI

Dettagli

Programmazione I - Laboratorio

Programmazione I - Laboratorio Programmazione I - Laboratorio Esercitazione 6 - Liste Gianluca Mezzetti 1 Paolo Milazzo 2 1. Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ mezzetti mezzetti di.unipi.it 2. Dipartimento

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione informale di algoritmo Insieme di istruzioni, definite

Dettagli

LABORATORIO DI PROGRAMMAZIONE 2 Corso di laurea in matematica. Algoritmi ricorsivi

LABORATORIO DI PROGRAMMAZIONE 2 Corso di laurea in matematica. Algoritmi ricorsivi LABORATORIO DI PROGRAMMAZIONE 2 Corso di laurea in matematica Marco Lapegna Dipartimento di Matematica e Applicazioni Universita degli Studi di Napoli Federico II wpage.unina.it/lapegna Partiamo da un

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino I conigli di Fibonacci Ricerca Binaria L isola dei conigli Leonardo da

Dettagli

Ricorsione. Libro cap. 5 (da 5.14 in poi)

Ricorsione. Libro cap. 5 (da 5.14 in poi) Libro cap. 5 (da 5.14 in poi) Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Definizione informale: la ricorsione è un

Dettagli

Ricorsione: C era una volta un Re

Ricorsione: C era una volta un Re Ricorsione: C era una volta un Re I C era una volta un Re seduto sul sofà che disse alla sua serva raccontami una storia e la serva incominciò: I C era una volta un Re seduto sul sofà che disse alla sua

Dettagli

Problemi di primo grado

Problemi di primo grado Problemi di primo grado 16 16.1 Un po di storia Sin dall antichità l uomo si è trovato di fronte a difficoltà pratiche, legate alla vita quotidiana e ha perciò messo a punto strategie per superarle. Sembra

Dettagli

Algoritmi di ordinamento

Algoritmi di ordinamento Algoritmi e Strutture Dati Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Algoritmi di ordinamento Esempi: ordinare una lista di nomi alfabeticamente, o

Dettagli

In questa lezione. Il Mergesort: primo esempio di applicazione della tecnica divide et impera analisi tempo di esecuzione del Mergesort

In questa lezione. Il Mergesort: primo esempio di applicazione della tecnica divide et impera analisi tempo di esecuzione del Mergesort In questa lezione Il Mergesort: primo esempio di applicazione della tecnica divide et impera analisi tempo di esecuzione del Mergesort [CLRS] par. 2.3. Prof. E. Fachini - Intr. Alg.!1 Progettazione di

Dettagli

n n 1 n = > Il calcolo del fattoriale La funzione fattoriale, molto usata nel calcolo combinatorio, è così definita

n n 1 n = > Il calcolo del fattoriale La funzione fattoriale, molto usata nel calcolo combinatorio, è così definita Il calcolo del fattoriale La funzione fattoriale, molto usata nel calcolo combinatorio, è così definita n! = 1 n( n 1)! se se n n = > 0 0 dove n è un numero intero non negativo Il calcolo del fattoriale

Dettagli

Tipici tempi di esecuzione. Martedì 7 ottobre 2014

Tipici tempi di esecuzione. Martedì 7 ottobre 2014 Tipici tempi di esecuzione Martedì 7 ottobre 2014 Punto della situazione Abbiamo definito il tempo di esecuzione di un algoritmo Scelto l analisi asintotica Abbiamo definito le notazioni asintotiche che

Dettagli

Informatica! Appunti della lezione 8!

Informatica! Appunti della lezione 8! Informatica! Appunti della lezione 8! Palindromia! Una stringa si dice palindroma quando si legge allo stesso modo da destra e da sinistra (es.: itopinonavevanonipoti )! Il problema del riconoscimento

Dettagli

Ricerca. Per ricerca si intende il procedimento di localizzazione di una particolare informazione in un elenco di dati.

Ricerca. Per ricerca si intende il procedimento di localizzazione di una particolare informazione in un elenco di dati. Ricerca Per ricerca si intende il procedimento di localizzazione di una particolare informazione in un elenco di dati. Il problema della ricerca in termini generali : dato un insieme D = {a 1,a 2,...,a

Dettagli

Programmazione a Oggetti e JAVA. Prof. B.Buttarazzi A.A. 2012/2013

Programmazione a Oggetti e JAVA. Prof. B.Buttarazzi A.A. 2012/2013 Programmazione a Oggetti e JAVA Prof. B.Buttarazzi A.A. 2012/2013 Sommario La ricorsione Metodi ricorsivi Esercizi proposti 16/01/2013 2 La ricorsione In Java ogni metodo può chiamare anche se stesso,

Dettagli

Note per la Lezione 2 Ugo Vaccaro

Note per la Lezione 2 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2018 2019 Note per la Lezione 2 Ugo Vaccaro Dati un intero n 1 ed una generica sequenza a = a[0]a[1] a[n 1] di numeri (che possono essere sia positivi o negativi),

Dettagli

I numeri rossi sulla Mole Antonelliana a Natale. Algoritmi e Laboratorio a.a Lezioni. Le regole della riproduzione dei conigli.

I numeri rossi sulla Mole Antonelliana a Natale. Algoritmi e Laboratorio a.a Lezioni. Le regole della riproduzione dei conigli. I numeri rossi sulla Mole Antonelliana a Natale Università di Torino acoltà di Scienze MN Corso di Studi in Informatica Curriculum SR (Sistemi e Reti) Algoritmi e Laboratorio a.a. 29- Lezioni prof. Elio

Dettagli

Algoritmo di ordinamento sul posto che ha tempo di esecuzione :

Algoritmo di ordinamento sul posto che ha tempo di esecuzione : QuickSort Algoritmo di ordinamento sul posto che ha tempo di esecuzione : - O(n 2 ) nel caso peggiore - O(n log n) nel caso medio Nonostante le cattive prestazioni nel caso peggiore, rimane il miglior

Dettagli

Algoritmi e Strutture Dati. Lezione 2

Algoritmi e Strutture Dati. Lezione 2 Algoritmi e Strutture Dati Lezione 2 www.iet.unipi.it/a.virdis Antonio Virdis antonio.virdis@unipi.it 1 Sommario Merge Sort Ordinamento STL Gestione Liste Esercizi 2 A metà Size Size/2 Size/2 3 A metà

Dettagli

ISTRUZIONI A B K A, B, K A<B? SI A<B? SI A<B? SI

ISTRUZIONI A B K A, B, K A<B? SI A<B? SI A<B? SI SECONDA PARTE 6. LA RIPETIZIONE while ISTRUZIONI A B K A, B, K 0 10 0 While A

Dettagli

Algoritmi di ordinamento

Algoritmi di ordinamento Capitolo 7 Algoritmi di ordinamento 7.1 Selection sort L algoritmo di ordinamento per selezione opera nel modo seguente: supponiamo che i primi k elementi siano ordinati; l algoritmo sceglie il minimo

Dettagli

Laboratorio di Informatica I

Laboratorio di Informatica I Struttura della lezione Lezione 6: Array e puntatori Vittorio Scarano Laboratorio di Informatica I Corso di Laurea in Informatica Università degli Studi di Salerno Una funzione per i numeri di Fibonacci

Dettagli