Linguaggi. Claudio Sacerdoti Coen 04/03/ : La struttura dei numeri naturali. Universitá di Bologna

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Linguaggi. Claudio Sacerdoti Coen 04/03/ : La struttura dei numeri naturali. Universitá di Bologna"

Transcript

1 Linguaggi 8: Universitá di Bologna 04/03/2011

2 Outline 1

3 I numeri naturali Wikipedia: L espressione numeri naturali spesso viene usata sia per la sequenza di numeri interi positivi (1, 2, 3, 4,... ) sia per quella dei numeri interi non negativi (0, 1, 2, 3, 4,... ). Questi sono i primi numeri che si imparano da bambini e sono i più semplici da comprendere. Questa definizione fa uso dell ellipsis... Analogamente, la nostra BNF per la logica proposizionale fa uso di ellipsis: F ::= A B... F F F F F F F In entrambi i casi le due definizioni non sono formali.

4 I numeri naturali I bimbi imparano i numeri naturali contando con le dita! Possiamo semplicemente catturare questa idea con una BNF: N ::= 0 S N 0 rappresenta nessun dito S (successore) rappresenta l aggiunta di un dito tale notazione si dice (con abuso di terminologia) in base 1 Esempio: 4 si indica con S S S 0

5 I numeri naturali: assiomi di Peano N ::= 0 S N La nostra BNF cattura i cinque assiomi di Peano: 1 0 è un numero naturale 2 se n è un numero naturale, anche Sn lo è 3 iniettività di S: n m implica Sn Sm 4 non confusione: per ogni n si ha 0 Sn 5 minimalità (o induzione): ogni insieme T tale che 0 T e Sn T ogni qual volta n T coincide con l insieme dei numeri naturali Il quinto assioma altro non è che (un caso particolare del) principio di induzione strutturale!

6 Ricorsione e induzione strutturale sui numeri naturali Questa struttura determina gli usuali principi di ricorsione e induzione: Principio di ricorsione strutturale: f (0) =... f (Sn) =... f (n)... Principio di induzione (strutturale): Sia P un predicato. Supponiamo che P(0) e che per ogni n se P(n) allora P(Sn). Concludiamo che per ogni n vale P(n).

7 Ricorsione e induzione strutturale sui numeri naturali Esercizio: definire la somma di due interi per ricorsione strutturale. Esercizio: provare a dimostrare per induzione strutturale la proprietà commutativa della somma 1 Perchè la dimostrazione non viene? 2 Come possiamo far venire la dimostrazione?

8 Predicati progressivi e recessivi Esercizio: provare a dimostrare per induzione strutturale che per tutti gli n, se n 4 allora n 2 usando solo il fatto che 0 4 e che se n m allora Sn m per ogni m. Attenzione: il predicato da usare nella ricorsione è se n 4 allora n 2 Perchè la dimostrazione non viene? Esercizio: provare a dimostrare che per tutti gli n se n 4 allora n 0 aggiungendo il fatto che se Sn m allora n m per ogni n. Perchè la dimostrazione viene?

9 Predicati progressivi e recessivi Definizione: un predicato P è progressivo quando vale per una formula ogni qual volta esso vale per tutte le sottoformule immediate. Per i naturali: P progressivo se quando vale P(n) allora vale P(Sn). Nota: i predicati progressivi sono quelli che si possono dimostrare valere per ogni n per induzione strutturale.

10 Predicati progressivi e recessivi Definizione: un predicato R è recessivo quando se vale per una formula allora esso vale per tutte le sottoformule immediate. Per i naturali: P progressivo se quando vale P(Sn) allora vale P(n). Nota: i predicati progressivi NON si possono dimostrare valere per ogni n per induzione strutturale. Tuttavia sono utili nelle dimostrazioni per induzione.

11 Predicati progressivi e recessivi Teorema: Il predicato costante P(n) = è sia progressivo che recessivo Il predicato costante P(n) = non è ne progressivo ne recessivo Se P è progressivo, P è recessivo e viceversa. La congiunzione di predicati progressivi (recessivi) è ancora progressiva (recessiva) La disgiunzione di predicati progressivi (recessivi) è ancora progressiva (recessiva) R P è progressivo se R è recessivo e P è progressivo P R è recessivo se R è recessivo e P è progressivo

12 Predicati progressivi e recessivi Quando un caso di una formula ha più sottoformule immediate, se al fine della dimostrazione servono solo alcune ipotesi induttive, allora è possibile chiedere la recessività delle premesse solo sulle sottoformule corrispondenti alle ipotesi che servono. Esercizio: dimostrare che ogni formula contradittoria F scritta usando solo, e contiene almeno un. Esercizio: dimostrare che per ogni tautologia F scritta senza usare negazioni e implicazioni e per ogni variabile proposizionale A, si ha F[ /A] Esercizio: perchè il precedente enunciato non è un teorema quando si ammettono anche negazioni in F? Trovare un controesempio e mostrare dove la prova per induzione fallisce.

13 Cambio di strutture Quando la vostra ricorsione non è strutturale, spesso è perchè avete sbagliato struttura. Esempio: definire la funzione ricorsiva (non strutturale) che calcola il logaritmo intero in base 2 di un numero naturale n. Convincersi che una formulazione ricorsiva strutturale non è banale.

14 Cambio di strutture Introduciamo i numeri naturali in base 2: N ::= N0 N1 ɛ Esempio: il numero ɛ01101 rappresenta il numero 14. La divisione per 2 si definisce con una funzione ricorsiva strutturale banale: Idem per is zero: ɛ/2 = ɛ N0/2 = N N1/2 = N is zero(ɛ) = true is zero(n0) = is zero(n) is zero(n1) = false

15 Cambio di strutture Infine, il logaritmo intero in base 2 di n si definisce semplicemente come log 0 (n) dove log k (n) è la seguente funzione ricorsiva strutturale: log k (ɛ) =? log k (N0) = if is zero(n) then? else log k+1 (N) is zero(n0) = is zero(n) is zero(n1) = if is zero(n) then kelse log k+1 (N)

16 Logica proposizionale: sintassi formale Possiamo ora definire formalmente la sintassi della logica proposizionale senza usare ellipsi: F ::= A N F F F F F F F dove N è un numero naturale (in base 1): N ::= 0 SN Le definizioni date in precedenza che distinguevano i casi A e B ora debbono distinguere fra i casi A n e A m per n, m distinti. Esercizio: definire per ricorsione strutturale la funzione che dati n e m restituisce true se n = m e false se n m.

17 Conclusioni Anche i numeri naturali hanno una loro struttura ricorsiva Grazie ad essa possiamo definire la sintassi delle formule in maniera finitaria (senza usare ellipsis) Siamo pronti per definire in Matita la nostra sintassi! Dimostrare asserzioni ipotetiche ( se... allora... ) per induzione strutturale richiede particolare attenzione Se una funzione non è ricorsiva strutturale, può essere che stiamo usando la struttura sbagliata

Linguaggi. Claudio Sacerdoti Coen 29,?/10/ : La struttura dei numeri naturali. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 29,?/10/ : La struttura dei numeri naturali. Universitá di Bologna Linguaggi 5: La struttura dei numeri naturali Universitá di Bologna 29,?/10/2014 Outline La struttura dei numeri naturali 1 La struttura dei numeri naturali I numeri naturali La

Dettagli

Sintassi. Linguaggi. 4: Sintassi. Claudio Sacerdoti Coen. Universitá di Bologna 24/02/2011. Claudio Sacerdoti Coen

Sintassi. Linguaggi. 4: Sintassi. Claudio Sacerdoti Coen. Universitá di Bologna 24/02/2011. Claudio Sacerdoti Coen Linguaggi 4: Universitá di Bologna 24/02/2011 Outline 1 Wikipedia: La sintassi è la branca della linguistica che studia i diversi modi in cui le parole si uniscono tra loro per formare

Dettagli

Linguaggi. Claudio Sacerdoti Coen 13/12/ : I connettivi della logica proposizionale classica. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 13/12/ : I connettivi della logica proposizionale classica. Universitá di Bologna Linguaggi 8: I connettivi della logica proposizionale classica Universitá di Bologna 13/12/2017 Outline I connettivi della logica proposizionale classica 1 I connettivi della logica

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica del Primo Ordine: Motivazioni, Sintassi e Interpretazioni Logica per la Programmazione Lezione 1 Calcolo Proposizionale: sintassi e semantica Tautologie Esempi di Formalizzazione di Enunciati pag.

Dettagli

Esercizi sul Calcolo Proposizionale

Esercizi sul Calcolo Proposizionale Esercizi sul Calcolo Proposizionale Francesco Sborgia Matricola: 459245 December 7, 2015 1 Esercizio 1 Per ogni formula A dimostrare che ρ(a) = min{n A F n } Definizione 1. Ricordiamo che, dato un linguaggio

Dettagli

Sintassi. Logica. Sintassi di Matita. Claudio Sacerdoti Coen. Universitá di Bologna 16,18/10/2017. Claudio Sacerdoti Coen

Sintassi. Logica. Sintassi di Matita. Claudio Sacerdoti Coen. Universitá di Bologna 16,18/10/2017. Claudio Sacerdoti Coen Logica di Matita Universitá di Bologna 16,18/10/2017 Outline 1 dei termini di Matita Termini: t ::= x c t t λx : T.t... x sono variabili (potete usare qualunque identificatore) c

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 12 Sistema di Dimostrazioni per le Triple di Hoare Comando Vuoto, Assegnamento, Sequenza, Condizionale A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 15 Sistema di Dimostrazioni per le Triple di Hoare Comando Vuoto, Assegnamento, Sequenza, Condizionale A. Corradini e F. Bonchi Dip.to Informatica Logica per la Programmazione

Dettagli

Esercizi di Logica Matematica (parte 2)

Esercizi di Logica Matematica (parte 2) Luca Costabile Esercizio 317 Esercizi di Logica Matematica (parte 2) Dimostro per induzione sulla costruzione del termine : - Supponiamo che sia una variabile :, - Supponiamo che sia una variabile diversa

Dettagli

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2 Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2: Logica Indice degli argomenti Introduzione: Motivazioni, Prove,

Dettagli

Linguaggi. Claudio Sacerdoti Coen 04/03/ : Forme normali. Universitá di Bologna. Forme normali e canoniche

Linguaggi. Claudio Sacerdoti Coen 04/03/ : Forme normali. Universitá di Bologna. Forme normali e canoniche Linguaggi 9: Forme normali Universitá di Bologna 04/03/2011 Outline 1 Wikipedia: In matematica la forma canonica di un oggetto à una maniera uniforme utilizzata per descriverlo in

Dettagli

Logica. Claudio Sacerdoti Coen 13-15/11/ : Semantica classica della logica proposizionale. Universitá di Bologna

Logica. Claudio Sacerdoti Coen 13-15/11/ : Semantica classica della logica proposizionale. Universitá di Bologna Logica 6: Semantica classica della logica proposizionale Universitá di Bologna 13-15/11/2017 Outline Semantica classica della logica proposizionale 1 Semantica classica della logica

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 27 febbraio 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano

Dettagli

Fondamenti di Informatica 2

Fondamenti di Informatica 2 Fondamenti di Informatica 2 Linguaggi e Complessità : Lezione 1 Corso Fondamenti di Informatica 2 Marco Schaerf, 2009-2010 Linguaggi e Complessità : Lezione 1 1 Logica proposizionale Linguaggio matematico

Dettagli

INDUZIONE E NUMERI NATURALI

INDUZIONE E NUMERI NATURALI INDUZIONE E NUMERI NATURALI 1. Il principio di induzione Il principio di induzione è una tecnica di dimostrazione molto usata in matematica. Lo scopo di questa sezione è di enunciare tale principio e di

Dettagli

Errata corrige del libro Introduzione alla logica e al linguaggio matematico

Errata corrige del libro Introduzione alla logica e al linguaggio matematico Errata corrige del libro Introduzione alla logica e al linguaggio matematico 28 gennaio 2009 Capitolo 1 Pag. 7, Definizione 6. Il complemento di un sottoinsieme A di I è il sottoinsieme A = {x I : x /

Dettagli

CALCOLO PROPOSIZIONALE

CALCOLO PROPOSIZIONALE CALCOLO PROPOSIZIONALE UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti se andare al cinema. Si sa che: Se Corrado va al cinema, allora ci va anche

Dettagli

Tecniche di prova per induzione

Tecniche di prova per induzione Aniello Murano Tecniche di prova per induzione 3 Lezione n. Parole chiave: Induzione Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009 Riassunto delle lezioni precedenti

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

Logica. 7: Conseguenza ed equivalenza logica in logica classica proposizionale. Claudio Sacerdoti Coen. Universitá di Bologna

Logica. 7: Conseguenza ed equivalenza logica in logica classica proposizionale. Claudio Sacerdoti Coen. Universitá di Bologna Logica 7: Conseguenza ed equivalenza logica in logica classica proposizionale Universitá di Bologna 30/11/2016 Outline Conseguenza logica per la logica proposizionale Wikipedia:

Dettagli

REGOLE DI INFERENZA PER TRIPLE DI HOARE: ASSEGNAMENTO, SEQUENZA E CONDIZIONALE. Corso di Logica per la Programmazione

REGOLE DI INFERENZA PER TRIPLE DI HOARE: ASSEGNAMENTO, SEQUENZA E CONDIZIONALE. Corso di Logica per la Programmazione REGOLE DI INFERENZA PER TRIPLE DI HOARE: ASSEGNAMENTO, SEQUENZA E CONDIZIONALE Corso di Logica per la Programmazione RIASSUNTO Una tripla {P} C {R} è costituita da precondizionecomando-postcondizione La

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2 Linguaggi e Complessità :LogicaIParte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2: Logica } Indice degli argomenti Introduzione: Motivazioni, Prove,

Dettagli

CALCOLO PROPOSIZIONALE. Corso di Logica per la Programmazione Andrea Corradini

CALCOLO PROPOSIZIONALE. Corso di Logica per la Programmazione Andrea Corradini CALCOLO PROPOSIZIONALE Corso di Logica per la Programmazione Andrea Corradini andrea@di.unipi.it UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti

Dettagli

Istituzioni di Logica Matematica

Istituzioni di Logica Matematica Istituzioni di Logica Matematica Sezione 11 del Capitolo 3 Alessandro Andretta Dipartimento di Matematica Università di Torino A. Andretta (Torino) Istituzioni di Logica Matematica AA 2013 2014 1 / 19

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 2 Dimostrazione di Tautologie Tabelle di Verità Dimostrazioni per sostituzione Leggi del Calcolo Proposizionale A. Corradini e F.Levi Dip.to Informatica Logica per

Dettagli

Linguaggi. Claudio Sacerdoti Coen 16/03/ : Teorema di Compattezza. Universitá di Bologna. Teorema di Compattezza

Linguaggi. Claudio Sacerdoti Coen 16/03/ : Teorema di Compattezza. Universitá di Bologna. Teorema di Compattezza Linguaggi 13: Universitá di Bologna 16/03/2011 Outline 1 Compattezza Wikipedia: La compattezza è un concetto centrale della topologia. Intuitivamente, uno spazio compatto è piccolo,

Dettagli

REGOLE DI INFERENZA PER TRIPLE DI HOARE: ASSEGNAMENTO, SEQUENZA E CONDIZIONALE. Corso di Logica per la Programmazione A.A. 2013/14

REGOLE DI INFERENZA PER TRIPLE DI HOARE: ASSEGNAMENTO, SEQUENZA E CONDIZIONALE. Corso di Logica per la Programmazione A.A. 2013/14 REGOLE DI INFERENZA PER TRIPLE DI HOARE: ASSEGNAMENTO, SEQUENZA E CONDIZIONALE Corso di Logica per la Programmazione A.A. 2013/14 RIASSUNTO Una tripla {P} C {R} è costituita da precondizionecomando-postcondizione

Dettagli

Prerequisiti Matematici

Prerequisiti Matematici Prerequisiti Matematici Richiami di teoria degli insiemi Relazioni d ordine, d equivalenza Richiami di logica Logica proposizionale, tabelle di verità, calcolo dei predicati Importante: Principio di Induzione

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 12 Sistema di Dimostrazioni per le Triple di Hoare Comando Vuoto, Assegnamento, Sequenza, Condizionale pag. 1 Tripla di Hoare Soddisfatta: richiamo Data la tripla di

Dettagli

T1: Logica, discorso e conoscenza. Logica classica

T1: Logica, discorso e conoscenza. Logica classica T1: Logica, discorso e conoscenza Primo modulo: Logica classica ovvero Deduzione formale vs verità: un introduzione ai teoremi limitativi Simone Martini Dipartimento di Scienze dell Informazione Alma mater

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 12 Linguaggio di Programmazione Imperativo: Sintassi e Semantica Concetto di Tripla di Hoare Soddisfatta pag. 1 Introduzione Dall inizio del corso ad ora abbiamo introdotto,

Dettagli

Informatica

Informatica Informatica 2019-06-24 Nota: Scrivete su tutti i fogli nome e matricola. Esercizio 1. Si forniscano le regole della semantica delle espressioni di IMP, e si enunci il risultato di determinismo per tale

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 13 Sistema di Dimostrazioni per le Triple di Hoare Comando Vuoto, Assegnamento, Sequenza, Condizionale pag. 1 Tripla di Hoare Soddisfatta: richiamo Data una Tripla

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 02 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 4 Dimostrazione di Implicazioni Tautologiche Principio di sostituzione per l implicazione Occorrenze positive e negative Altre tecniche di dimostrazione Forme Normali

Dettagli

Istituzioni di Logica Matematica

Istituzioni di Logica Matematica Istituzioni di Logica Matematica Sezione 8 del Capitolo 2 Alessandro Andretta Dipartimento di Matematica Università di Torino A. Andretta (Torino) Istituzioni di Logica Matematica AA 2012 2013 1 / 31 Strutture

Dettagli

Cenni di logica e calcolo proposizionale

Cenni di logica e calcolo proposizionale Cenni di logica e calcolo proposizionale Corso di Laurea in Informatica Università degli Studi di Bari (sede Brindisi) Analisi Matematica S.Milella (sabina.milella@uniba.it) Cenni di logica 1 / 10 Proposizioni

Dettagli

ESERCIZI DI LOGICA MATEMATICA A.A Alessandro Combi

ESERCIZI DI LOGICA MATEMATICA A.A Alessandro Combi ESERCIZI DI LOGICA MATEMATICA A.A. 2015-16 Alessandro Combi Esercizio 1.7 Per ogni formula A, dimostrare che ρ(a) = min{n A F n } Soluzione: Chiamo rank(a) = min{n A F n }. Bisogna provare che rank segue

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 2 Dimostrazione di tautologie Proof System pag. 1 Un Problema di Deduzione Logica [da un test di ingresso] Tre amici, Antonio, Bruno e Corrado, sono incerti se andare

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 12 Linguaggio di Programmazione Imperativo: Sintassi e Semantica Tripla di Hoare soddisfatta A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a.

Dettagli

INTRODUZIONE ALLA LOGICA DI HOARE. Corso di Logica per la Programmazione

INTRODUZIONE ALLA LOGICA DI HOARE. Corso di Logica per la Programmazione INTRODUZIONE ALLA LOGICA DI HOARE Corso di Logica per la Programmazione INTRODUZIONE Dall inizio del corso ad ora abbiamo introdotto, un po alla volta, un linguaggio logico sempre più ricco: connettivi

Dettagli

LOGICA DEL PRIMO ORDINE: PROOF SYSTEM. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini

LOGICA DEL PRIMO ORDINE: PROOF SYSTEM. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini LOGICA DEL PRIMO ORDINE: PROOF SYSTEM Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini LOGICA DEL PRIMO ORDINE: RIASSUNTO Sintassi: grammatica libera da contesto (BNF), parametrica rispetto

Dettagli

INTRODUZIONE ALLA LOGICA DI HOARE. Corso di Logica per la Programmazione A.A. 2013/14

INTRODUZIONE ALLA LOGICA DI HOARE. Corso di Logica per la Programmazione A.A. 2013/14 INTRODUZIONE ALLA LOGICA DI HOARE Corso di Logica per la Programmazione A.A. 2013/14 INTRODUZIONE Dall inizio del corso ad ora abbiamo introdotto, un po alla volta, un linguaggio logico sempre più ricco:

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica del Primo Ordine: Motivazioni, Sintassi e Interpretazioni Logica per la Programmazione Lezione 7 Formule Valide, Conseguenza Logica Proof System per la Logica del Primo Ordine Leggi per i Quantificatori

Dettagli

I primi postulati (o assiomi) in : Geometria: Euclide (300 a.c), Elementi. Aritmetica: Peano (1889), Arithmetices Principia, nova methodo exposita

I primi postulati (o assiomi) in : Geometria: Euclide (300 a.c), Elementi. Aritmetica: Peano (1889), Arithmetices Principia, nova methodo exposita Le slide che seguono sono state impiegate durante la conferenza PEANO E L ARITMETICA (Siena, 6 Aprile 2019). Non hanno alcuna autonomia, essendo un semplice supporto visivo ad una lezione parlata, ma possono

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

1 Richiami di logica matematica

1 Richiami di logica matematica Geometria e Topologia I 7 marzo 2005 1 1 Richiami di logica matematica Definire cos è un enunciato, una proposizione (elemento primitivo della logica delle proposizioni). La definizione è data in termini

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 11 Linguaggio di Programmazione Imperativo: Sintassi e Semantica Concetto di Tripla di Hoare Soddisfatta pag. 1 Introduzione Dall inizio del corso ad ora abbiamo introdotto,

Dettagli

Logica. Claudio Sacerdoti Coen 16,23,25,30/10/2017, 06/11/ : Sintassi. Universitá di Bologna.

Logica. Claudio Sacerdoti Coen 16,23,25,30/10/2017, 06/11/ : Sintassi. Universitá di Bologna. Logica 4: Universitá di Bologna 16,23,25,30/10/2017, 06/11/2017 Outline 1 Wikipedia: La sintassi è la branca della linguistica che studia i diversi modi in cui le parole si uniscono

Dettagli

LOGICA FUZZY, I LOGICA DI GÖDEL

LOGICA FUZZY, I LOGICA DI GÖDEL LOICA FUZZY, I LOICA DI ÖDEL SINTASSI, SEMANTICA POLIVALENTE, COMPLETEZZA VINCENZO MARRA 1. Sintassi Si consideri nuovamente l alfabeto A = {(, ), X,, $,,,,, } impiegato per la logica proposizionale classica,

Dettagli

LA LOGICA DI HOARE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella

LA LOGICA DI HOARE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella LA LOGICA DI HOARE Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella INTRODUZIONE Dall inizio del corso ad ora abbiamo introdotto, un po alla volta, un linguaggio logico

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

Ragionamento formalei. Ragionamento formale

Ragionamento formalei. Ragionamento formale Ragionamento formale La necessità e l importanza di comprendere le basi del ragionamento formale, utilizzato in matematica per dimostrare teoremi all interno di teorie, è in generale un argomento piuttosto

Dettagli

Linguaggi. Claudio Sacerdoti Coen 15/04/ : Deduzione naturale per la logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 15/04/ : Deduzione naturale per la logica del prim ordine. Universitá di Bologna Linguaggi 19: Universitá di Bologna 15/04/2011 Outline 1 Semantica Wikipedia: Deduzione naturaler per la logica del prim ordine Abbiamo già dato le regole per la deduzione naturale

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite

Dettagli

Informatica

Informatica Informatica 2019-01-18 Nota: Scrivete su tutti i fogli nome e matricola. Esercizio 1. Si enuncino, senza dimostrarli, i risultati relativi al determinismo e alla totalità della semantica delle espressioni

Dettagli

Logica proposizionale classica. Studia il comportamento dei connettivi proposizionali quali ( And ) e ( Or )

Logica proposizionale classica. Studia il comportamento dei connettivi proposizionali quali ( And ) e ( Or ) Logica proposizionale classica Studia il comportamento dei connettivi proposizionali quali ( And ) e ( Or ) Parte da una famiglia di enunciati atomici di cui non analizziamo la struttura interna, che rappresentiamo

Dettagli

Lo studioso di logica si chiede se la conclusione segue correttamente dalla premesse fornite e se premesse sono buone per accettare la conclusione.

Lo studioso di logica si chiede se la conclusione segue correttamente dalla premesse fornite e se premesse sono buone per accettare la conclusione. Logica binaria La logica è la scienza del corretto ragionamento e consiste nello studio dei principi e dei metodi che consentono di individuare il corretto ragionamento. Lo studioso di logica si chiede

Dettagli

Logica: materiale didattico

Logica: materiale didattico Logica: materiale didattico M. Cialdea Mayer. Logica (dispense): http://cialdea.dia.uniroma3.it/teaching/logica/materiale/dispense-logica.pdf Logica dei Predicati (Logica per l Informatica) 01: Logica

Dettagli

Intelligenza Artificiale. Logica proposizionale: calcolo simbolico

Intelligenza Artificiale. Logica proposizionale: calcolo simbolico Intelligenza Artificiale Logica proposizionale: calcolo simbolico Marco Piastra Logica formale (Parte 2) - 1 Parte 2 Calcolo logico Assiomi Derivazioni Derivazioni e conseguenza logica Completezza Logica

Dettagli

CALCOLO PROPOSIZIONALE: CENNI

CALCOLO PROPOSIZIONALE: CENNI CALCOLO PROPOSIZIONALE: CENNI Francesca Levi Dipartimento di Informatica February 26, 2016 F.Levi Dip.to Informatica Informatica per le Scienze Umane a.a. 15/16 pag. 1 La Logica La logica è la disciplina

Dettagli

Fondamenti di Informatica 2

Fondamenti di Informatica 2 Fondamenti di Informatica 2 Linguaggi e Complessità : Lezione 3 Corso Fondamenti di Informatica 2 Marco Schaerf, 2009-2010 Linguaggi e Complessità : Lezione 3 1 Clausole I letterali sono simboli proposizionali

Dettagli

Nozioni di base (II Parte)

Nozioni di base (II Parte) Nozioni di base (II Parte) 1 Ricorsione [GTG14, Par. 5.1-5.4 and 13.1] Algoritmo Ricorsivo: algoritmo che invoca se stesso (su istanze sempre più piccole) sfruttando la nozione di induzione. La soluzione

Dettagli

REGOLE DI INFERENZA PER TRIPLE DI HOARE. Corso di Logica per la Programmazione A.A. 2012/13

REGOLE DI INFERENZA PER TRIPLE DI HOARE. Corso di Logica per la Programmazione A.A. 2012/13 REGOLE DI INFERENZA PER TRIPLE DI HOARE Corso di Logica per la Programmazione A.A. 2012/13 RIASSUNTO Una tripla {P} C {R} è costituita da precondizionecomando-postcondizione La tripla {P} C {R} è soddisfatta

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema

Dettagli

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore

Dettagli

Logica Proposizionale

Logica Proposizionale Logica Proposizionale Domenico Cantone Dipartimento di Matematica e Informatica Università di Catania Logica Computazionale, A.A. 2006/07 Outline 1 Sintassi e Semantica Sintassi Semantica 2 Tableaux semantici

Dettagli

IL CALCOLO DEL PRIMO ORDINE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella

IL CALCOLO DEL PRIMO ORDINE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella IL CALCOLO DEL PRIMO ORDINE Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella ANCORA SU SISTEMI DI DIMOSTRAZIONE (PROOF SYSTEMS) Dato un insieme di formule, un sistema

Dettagli

ELEMENTI DI LOGICA MATEMATICA LEZIONE VII

ELEMENTI DI LOGICA MATEMATICA LEZIONE VII ELEMENTI DI LOGICA MATEMATICA LEZIONE VII MAURO DI NASSO In questa lezione introdurremo i numeri naturali, che sono forse gli oggetti matematici più importanti della matematica. Poiché stiamo lavorando

Dettagli

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine RISOLUZIONE IN LOGICA PROPOSIZIONALE Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine 1. Risoluzione Definitione 1.1. Un letterale l è una variabile proposizionale (letterale

Dettagli

LOGICA PER LA PROGRAMMAZIONE a.a. 2016/17 Seconda esercitazione - 11/10/16 - Soluzioni Proposte

LOGICA PER LA PROGRAMMAZIONE a.a. 2016/17 Seconda esercitazione - 11/10/16 - Soluzioni Proposte LOGICA ER LA ROGRAMMAZIONE a.a. 2016/17 Seconda esercitazione - 11/10/16 - Soluzioni roposte 1. Nei seguenti passi di dimostrazione, indicare il connettivo logico corretto da sostituire a? applicando il

Dettagli

1 Richiami di logica matematica

1 Richiami di logica matematica Geometria e Topologia I 2006-mar-05 1 1 Richiami di logica matematica Definire cos è un enunciato, una proposizione (elemento primitivo della logica delle proposizioni). La definizione è data in termini

Dettagli

1 Principio di Induzione

1 Principio di Induzione 1 Principio di Induzione Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi 0, 1,, 3, Da un punto di vista insiemistico costruttivo, a partire dall esistenza dell insieme

Dettagli

DIMOSTRAZIONI DI TAUTOLOGIE. Corso di Logica per la Programmazione

DIMOSTRAZIONI DI TAUTOLOGIE. Corso di Logica per la Programmazione DIMOSTRAZIONI DI TAUTOLOGIE Corso di Logica per la Programmazione DIMOSTRAZIONE DI TAUTOLOGIE Abbiamo detto che: Per dimostrare che p è una tautologia possiamo: Usare le tabelle di verità, sfruttando quelle

Dettagli

Deduzione naturale. Claudio Sacerdoti Coen 20,22,... /11/2017. Universitá di Bologna. Correttezza e mancanza di completezza

Deduzione naturale. Claudio Sacerdoti Coen 20,22,... /11/2017. Universitá di Bologna. Correttezza e mancanza di completezza Deduzione naturale Universitá di Bologna 20,22,... /11/2017 Deduzione naturale: sintassi B, D A A (B C) C [A (B C)] e2 B C C A (B C) C i B e Un albero di deduzione naturale per Γ

Dettagli

Informatica

Informatica Informatica 2016-06-20 Nota: Scrivete su tutti i fogli nome e matricola. Esercizio 1. Si dimostri il teorema del punto fisso di Kleene. Esercizio 2. Sia g : N 2 N una funzione fissata, e si considerino

Dettagli

Induzione. Definizione induttiva di insiemi e funzioni Principio di induzione strutturale

Induzione. Definizione induttiva di insiemi e funzioni Principio di induzione strutturale Induzione Definizione induttiva di insiemi e funzioni Principio di induzione strutturale Gli insiemi definiti per induzione ricevono una struttura che può servire come base per la definizione induttiva

Dettagli

Linguaggi di programmazione: sintassi e semantica Sintassi fornita con strumenti formali: Semantica spesso data in modo informale

Linguaggi di programmazione: sintassi e semantica Sintassi fornita con strumenti formali: Semantica spesso data in modo informale LOGICA DI HOARE INTRODUZIONE Linguaggi di programmazione: sintassi e semantica Sintassi fornita con strumenti formali: es. grammatica in BNF Semantica spesso data in modo informale di stile operazionale

Dettagli

Lo sviluppo di un semplice programma e la dimostrazione della sua correttezza

Lo sviluppo di un semplice programma e la dimostrazione della sua correttezza Il principio di induzione Consideriamo inizialmente solo il principio di induzione per i numeri non-negativi, detti anche numeri naturali. Sia P una proprietà (espressa da una frase o una formula che contiene

Dettagli

LOGICA FUZZY, I LOGICA PROPOSIZIONALE CLASSICA VINCENZO MARRA

LOGICA FUZZY, I LOGICA PROPOSIZIONALE CLASSICA VINCENZO MARRA LOGICA FUZZY, I LOGICA PROPOSIZIONALE CLASSICA VINCENZO MARRA 1. Sintassi L insieme dei numeri naturali è N = 1, 2,...}. Si consideri l alfabeto A = (, ), X,, $,,,,, }, e sia A l insieme delle stringhe

Dettagli

Alberi: definizioni e dimostrazioni induttive.

Alberi: definizioni e dimostrazioni induttive. Alberi: definizioni e dimostrazioni induttive. Gennaio 2005 Iniziamo con l introdurre la nozione di albero. Con N indichiamo l insieme dei numeri naturali (zero escluso) e con N l insieme delle liste finite

Dettagli

02 - Logica delle dimostrazioni

02 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016

Dettagli

Esercizio 2. Spiegare perché è falsa la seguente affermazione: Se n è un numero negativo, allora anche n + 3 è negativo.

Esercizio 2. Spiegare perché è falsa la seguente affermazione: Se n è un numero negativo, allora anche n + 3 è negativo. Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica

Dettagli

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini INFERENZE CORRETTE E TAUTOLOGIE Il Calcolo Proposizionale permette di formalizzare

Dettagli

Verifica di programmi

Verifica di programmi Verifica di programmi Informalmente, un programma è corretto se l output prodotto è quello atteso rispetto all input. La correttezza dei programmi può essere espressa mediante formule per la correttezza

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/12/ : Logica del prim ordine. Universitá di Bologna. Logica del prim ordine

Linguaggi. Claudio Sacerdoti Coen 11/12/ : Logica del prim ordine. Universitá di Bologna. Logica del prim ordine Linguaggi 17: Universitá di Bologna 11/12/2017 Outline 1 Quantificatori Wikipedia: Nella logica i quantificatori sono espressioni come qualcosa (quantificatore esistenziale) e ogni

Dettagli

LOGICA MATEMATICA PER INFORMATICA

LOGICA MATEMATICA PER INFORMATICA LOGICA MATEMATICA PER INFORMATICA A.A. 10/11, DISPENSA N. 2 Sommario. Assiomi dell identità, modelli normali. Forma normale negativa, forma normale prenessa, forma normale di Skolem. 1. L identità Esistono

Dettagli

Linguaggi. Claudio Sacerdoti Coen 03/12/ : Logica del prim ordine. Universitá di Bologna. Logica del prim ordine

Linguaggi. Claudio Sacerdoti Coen 03/12/ : Logica del prim ordine. Universitá di Bologna. Logica del prim ordine Linguaggi 17: Logica del prim ordine Universitá di Bologna 03/12/2014 Outline Logica del prim ordine 1 Logica del prim ordine Quantificatori Logica del prim ordine Wikipedia: Nella

Dettagli

DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione

DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI Corso di Logica per la Programmazione SULLE LEGGI DEL CALCOLO PROPOSIZIONALE Abbiamo visto le leggi per l'equivalenza ( ),

Dettagli

Ragionamenti e metodi di dimostrazione. Liceo Scientifico Statale S. Cannizzaro Prof.re E. Modica

Ragionamenti e metodi di dimostrazione. Liceo Scientifico Statale S. Cannizzaro Prof.re E. Modica Ragionamenti e metodi di dimostrazione Liceo Scientifico Statale S. Cannizzaro Prof.re E. Modica Proposizioni Si definisce proposizione una frase alla quale è possibile attribuire uno e un solo valore

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Logica booleana. Bogdan Maris ( )

Logica booleana. Bogdan Maris ( ) Logica booleana 1 Algebra di Boole Opera con i soli valori di verità 0 o 1 (variabili booleane o logiche) La struttura algebrica studiata dall'algebra booleana è finalizzata all'elaborazione di espressioni

Dettagli