LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)"

Transcript

1 LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema di Completezza di Gödel. Dimostriamo l equivalenza dei punti (A) e (B) seguenti. (A) L enunciato E è deducibile dalla teoria T (i.e., T E). (B) L enunciato E è valido in tutti i modelli di T (i.e., T = E). In particolare, se T è la teoria vuota, abbiamo l equivalenza tra Osserviamo che E è un teorema del calcolo dei predicati E è vero in tutte le strutture. E abbrevia una quantificazione esistenziale su un insieme numerabile di oggetti finiti: Esiste una derivazione formale (D 1,..., D n ) con conclusione E. = E abbrevia una quantificazione universale su un insieme non numerabile di oggetti anche infiniti: Per ogni struttura A (adeguata per il linguaggio di E), E è vero in A. Abbiamo inoltre la seguente riformulazione. Sono equivalenti i punti (C) e (D) seguenti: (C) La teoria T non deduce contraddizioni (i.e., T è coerente). (D) La teoria T ha un modello (i.e., T è soddisfacibile). Le due doppie implicazioni ( A se e solo se B e C se e solo se D ) sono due formulazioni del Teorema di Completezza. Le formulazioni sono equivalenti. In particolare, A B è equivalente a D C e B A è equivalente a C D. Premettiamo due osservazioni elementari. Osservazione 1.1. Per definizione, una teoria T è coerente se non esiste un enunciato F tale che T F e T F. Questo equivale a dire che esiste un enunciato E tale che T E. In altre parole, una teoria è coerente se e solo se non dimostra tutti gli enunciati (se e solo se esiste un enunciato che la teoria non dimostra). Basta osservare che (A ( A E)) è una tautologia (detta ex falso quodlibet). Osservazione 1.2. T {E} è coerente se e solo se T E. Supponiamo T {E} coerente e supponiamo per assurdo che T E. Allora T {E} E E ed è incoerente. Contraddizione. Supponiamo ora che T E ma che, per assurdo, T {E} è incoerente. Allora T {E} E. Dunque T E E. Dunque T E (per logica proposizionale). Questo contraddice l ipotesi. Contraddizione. Dimostriamo ora l equivalenza delle due formulazioni del Teorema di Completezza. La seconda formulazione si ottiene dalla prima formulazione così: Da (D) a (C): supponiamo che T dimostri una contraddizione. Allora ogni modello di T è modello di una contraddizione. Ma una contraddizione non ha un modello. Note preparate da Lorenzo Carlucci, 1

2 2 DISPENSA N. 4 Dunque T non ha un modello. Da (C) a (D): Supponiamo ora che T non abbia un modello. Allora è vero (a vuoto) che tutti i modelli di T soddisfano una contraddizione. Dunque T deduce una contraddizione. La prima formulazione si ottiene dalla seconda così: Da (B) a (A): supponiamo che T E. Allora T { E} è coerente. Allora ha un modello. Dunque non vale T = E (da notare esiste almeno un modello di T dato che ne esiste uno di T { E}). Da (A) a (B): Supponiamo che T E. Sia A un modello di T ma non di E. Allora A = E. Dunque la teoria T { E} ha un modello. Dunque T { E} non deduce contraddizioni. Dunque T E. L implicazione difficile è C D. Si tratta di dedurre da Non esiste una deduzione formale di una contraddizione da premesse in T, l esistenza di un insieme con certe proprietà (una struttura che soddisfa T ). 2. Estensione Completa Mostriamo ora che nello spazio delle estensioni di una teoria esiste sempre un oggetto massimale. Diciamo che una teoria T estende una teoria T se T T. Diciamo che una teoria T è completa se, per ogni enunciato E nel linguaggio di T, vale T T oppure T E. Lemma 2.1 (Lemma di Lindenbaum). Ogni teoria coerente ha un estensione coerente e completa. Dimostrazione. Sia T una teoria coerente nel linguaggio L (numerabile). Sia {E 1, E 2,..., } una enumerazione di tutti gli enunciati di L. Sia S 0 = T. Dato S n, per n 0, definiamo S n+1 come segue. { S n {E n+1 } se S n {E n+1 } è coerente, S n+1 = altrimenti. S n La definizione è ben posta perché uno solo tra S n {E n+1 } e S n { E n+1 } è coerente. S n {E n+1 } è coerente è equivalente a S n E n+1. Sia S = n N S n. S è un insieme di enunciati coerente e completo. (Esercizio). La condizione Vediamo che in un senso molto preciso una teoria coerente è completa è quasi un modello. Per la discussione che segue ci concentriamo sul Calcolo dei Predicati senza uguaglianza. Sia T una teoria coerente e completa. Definiamo una struttura M (detto il modello dei termini di T ) come segue. (1) Il dominio M del modello è l insieme dei termini chiusi nel linguaggio di T. (2) L interpretazione di una costante c è data dalla costante c stessa. (3) L interpretazione di un simbolo di relazione R è data dall insieme delle sequenze di termini chiusi di cui T dimostra che soddisfano la relazione, i.e., (t 1,..., t n ) R M se e solo se T R(t 1,..., t n ). (4) L interpretazione di un simbolo di funzione f è l associazione t 1,..., t d f(t 1,..., t d ). Si osserva facilmente che l intepretazione in M di un termine chiuso t coincide con il termine stesso, i.e., t M = t. (Esercizio). Per induzione sul numero dei connettivi e dei quantificatori proviamo a dimostrare che, per ogni enunciato E nel linguaggio di T, vale M = E T E. Nella dimostrazione usiamo in modo essenziale la coerenza e la completezza di T. Vedremo che è possibile trattare tutti i casi tranne quello dei quantificatori. (Caso 1) Se E è un enunciato atomico R(t 1,..., t k ) abbiamo: se T R(t 1,..., t k ) allora t 1,..., t k è in R M. (Caso 2) Se E è G. Se M = E allora M G e per ipotesi induttiva T G. Dato che T è completa segue T G. Se M E, allora M = G e per ipotesi induttiva T G. Dato che T è coerente segue T G. (Caso 3) E è (G H). Se M (G H) allora A = G e M H. Per ipotesi induttiva T G e T H. Per completezza di T segue T H. Usando la tautologia (G ( H (G H))) ottengo T (G H). Dato che T è coerente, segue T (G H). Supponiamo ora che M = (G H). Allora: se M = G allora M = H. Per ipotesi induttiva, M = G se e solo se T G, e M = H se e solo se T H. Abbiamo quindi che: se T G allora T H. In genere questo non basta a concludere che T G H.

3 LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) 3 Supponiamo però che T (G H). Dato che T è completa segue che T (G H). Allora (per logica proposizionale) T G e T H. Contraddizione. (Caso 4) Proviamo a considerare il caso di un enunciato predicativo, e.g., xf. Abbiamo due casi. F è un enunciato oppure F ha qualche variabile libera. Nel primo caso, vale M = F se e solo se T F. Inoltre T F x, e M = F se e solo se M = xf. Consideriamo ora il secondo caso. Se F ha qualche variabile libera, allora F ha x come unica variabile libera (dato che xf è un enunciato). Proviamo dimostrare che se M = xf allora T xf. Se M = xf allora, per definizione di soddisfazione, per ogni m M vale M = F (x)[ ( x m) ]. Dato che M è l insieme dei termini chiusi, si ha che per ogni termine chiuso t, M = F (x)[ ( x t) ]. Si può dimostrare (Esercizio!) che M = F (x)[ ( x t) ] se e solo se M = F (t). Dunque abbiamo che per ogni termine chiuso t vale M = F (t). Per ipotesi induttiva segue che per ogni termine chiuso t vale T F (t). Ma da questo non si può concludere in generale che T xf (x). Proviamo invece a ragionare per assurdo: supponiamo M = xf e T xf. Per completezza di T vale T E. Dunque T x F (x). Qui non possiamo andare avanti, perché non siamo in grado di ridurci ad una formula di complessità più semplice alla quale poter applicare l ipotesi di induzione! Se fossimo in grado di dedurre dal fatto che T x F (x), che T F (t) per qualche termine chiuso t, potremmo procedere con la dimostrazione. Vediamo di seguito che è sempre possibile estendere una teoria a una teoria che permette questo passaggio. 3. Teorie con testimoni Definizione 3.1 (Teoria con testimoni). T è una teoria con testimoni se per ogni formula F (x) con x unica variabile libera esiste un termine chiuso t tale che t è un testimone dell enunciato x F (x). T ( x) F (x) F (t). Prima di dimostrare che è possibile estendere ogni teoria coerente a una teoria coerente con testimoni (aggiungendo solo una quantità numerabile di nuovi simboli al linguaggio), facciamo vedere che, se la teoria T è coerente, con testimoni e completa, possiamo concludere la dimostrazione che il modello M costruito sopra è un modello di T. Restava da concludere il caso di un enunciato xf (x) con F (x) aperta. Dimostriamo che, se M = xf, allora T xf. Per assurdo, supponiamo M = xf e T xf. Per completezza di T vale T E. Dunque T x F (x). Dato che T è una teoria con testimoni, esiste un termine chiuso t tale che T x F (x) F (t). Dunque T F (t). Per ipotesi induttiva M = F (t). Ma da M = xf (x), e vale M = xf (x) F (t) (vale per qualunque termine chiuso). Dunque M = F (t), una contraddizione con M = F (t). Supponiamo ora che M xf ma T xf (x). Esiste un assegnamento α in M tale che M = xf (x)[α]. Dunque esiste un elemento del dominio t (t è un termine chiuso) tale che M = F (x)[α ( x t) ]. Allora M F (t), dato che l interpretazione di t sotto qualunque assegnamento in M è proprio t. D altra parte T xf (x) e quindi T F (t). Per ipotesi induttiva vale M = F (t). Contraddizione. La dimostrazione è conclusa. Teorema 3.2. Per ogni teoria T coerente esiste una teoria T tale che (1) T è un estensione di T, (2) T è una teoria con testimoni, (3) Il linguaggio di T è numerabile ed estende quello di T, (4) T è coerente. Dimostrazione. Estendiamo il linguaggio di T con nuove costanti {b 1, b 2,... }. Sia T 0 uguale a T con l aggiunta di tutti gli assiomi logici nel nuovo linguaggio. Ovviamente T 0 è coerente. Sia F 1 (x 1 ), F 2 (x 2 ),...

4 4 DISPENSA N. 4 una enumerazione di tutte le formule di T 0 con una sola variabile libera. Sia una lista di nuovi simboli di costante tale che b jk non appare in F 1 (x 1 ),..., F k (x k ) b jk è diverso da b j1,..., b jk 1 Sia W k l enunciato seguente Sia b j1, b j2,... x k F k (x k ) F k (b jk ). T n = T 0 {W 1,..., W n }, e sia T = T n. n Dimostriamo che T è coerente. Basta dimostrare che tutti i T n sono coerenti. T 0 è coerente. Supponiamo T n 1 coerente e dimostriamo coerente T n. Se T n è incoerente, in particolare Dunque e dunque Ma allora T n 1 W n, ossia Si dimostra allora che T n W n. W n, T n 1 W n, T n 1 W n W n. T n 1 ( x n F n (x n ) F n (b jn )). T n 1 ( x n ) F n (x n ) e T n 1 F n (b jn ). Dunque anche T n 1 F n (b jn ). Sia y una variabile che non occorre nella dimostrazione di F n (b jn ) in T n 1. Dato che T n 1 è T 0 {W 1,..., W n 1 }, e b jn non appare in W 1,..., W n 1, possiamo concludere che (Esercizio). Allora abbiamo T n 1 F n (y) T n 1 yf n (y) e dunque rinominando le variabili vincolate abbiamo T n 1 x n F n (x n ), dato che x n è libera per y in F n (y) e F n (y) non ha occorrenze libere di x n. D altra parte però Dunque T n 1 è incoerente. Contraddizione. T n 1 x n F n (x n ) = T n 1 x n F n (x n ) Abbiamo già visto come dimostrare il seguente teorema. numerabile. = T n 1 x n F n (x n ). Il modello M costruito sopra è ovviamente Teorema 3.3. Sia T una teoria con testimoni coerente e completa. Allora T ha un modello numerabile. Teorema 3.4 (Esistenza del Modello). Ogni teoria coerente ha un modello numerabile. Dimostrazione. Da T coerente passiamo a una sua estensione T coerente e con testimoni. I termini chiusi di T cono in quantità numerabile. Da T passiamo a T una sua estensione coerente e completa. Dato che il linguaggio non cambia, T è una teoria con testimoni. Il modello dei termini di T è un modello numerabile di T.

5 LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) 5 4. Completezza, Coerenza, Decidibilità Il Teorema di Completezza ha importanti conseguenze per il Problema della Decisione. In primo luogo, dal Teorema di Completezza segue che il Problema della Decisione (che abbiamo formulato in termini di Validità o Soddisfacibilità) è equivalente al problema seguente. (Dimostrabilità) Dato un enunciato E del I ordine, decidere se E è dimostrabile dagli assiomi della logica del I ordine. In secondo luogo, la seguente osservazione individua una condizione sufficiente alla decidibilità dei teoremi di una teoria T. Osservazione 4.1. Se T è coerente e completa e l insieme dei teoremi di T è algoritmicamente enumerabile, allora l insieme dei teoremi di T è decidibile. L osservazione di sopra spiega l importanza di trovare assiomatizzazioni coerenti, complete e con teoremi algoritmicamente enumerabili: se abbiamo una assiomatizzazione di questo tipo per una certa teoria matematica (e.g., teoria dei numeri), allora esiste un algoritmo per decidere le verità matematiche in quella teoria. Quando si studiano gli enunciati veri in una particolare struttura matematica, come per esempio i naturali (con la loro struttura moltiplicativa e additiva) o i reali (con la loro struttura di campo), è naturale sperare di poter formulare una teoria completa, ossia un insieme S di enunciati (assiomi) tali che, per ogni enunciato E, o E è dimostrabile da S oppure E è dimostrabile da S. Se la teoria è anche tale che l insieme dei suoi teoremi è algoritmicamente enumerabile, allora l insieme dei teoremi è decidibile. È dunque importante individuare condizioni sufficienti affinché i teoremi di una teoria (ossia le conseguenze logiche di un insieme di enunciati) siano effettivamente enumerabili. Osservazione 4.2. Se T è un insieme finito allora i teoremi di T sono effettivamente enumerabili. Sia T = {S 1,..., S t }. E è dimostrabile dagli assiomi S se e solo se (S 1 S t E) è un teorema del Calcolo dei Predicati. Non sempre è possibile individuare un numero finito di assiomi per catturare una teoria matematica. In alcuni casi è necessario usare un numero infinito di assiomi. Una richiesta ragionevole è che deve essere possibile riconoscere algoritmicamente se una certa formula è un assioma o no. In altre parole, richiedere che l insieme degli assiomi sia decidibile. Osservazione 4.3. Se T è un insieme decidibile allora i teoremi di T sono effettivamente enumerabili. Se T è un insieme decidibile (i.e., esiste un algoritmo che, data una stringa di simboli, decide se è in T o no) allora si può decidere algoritmicamente se una stringa è una dimostrazione con premesse in T. Si possono allora enumerare le dimostrazioni formali con premesse in T e per ciascuna identificare la conclusione. Questi sono tutti e soli i teoremi di T. Cosa succede se T è un insieme soltanto algoritmicamente enumerabile (ma non necessariamente decidibile)? Si dimostra che anche in questo caso, l insieme dei teoremi è algoritmicamente enumerabile. La dimostrazione è istruttiva. Proposizione 4.4 (Lemma di Craig). Sia S un insieme algoritmicamente enumerabile di enunciati. Esiste un insieme decidibile di enunciati S tale che l insieme delle conseguenze di S coincide con l insieme delle conseguenze di S. Dimostrazione. Per ipotesi S è algoritmicamente enumerabile. Fissiamo un programma che enumera S. Questo programma produce, su input i N, un enunciato S i in S e è una enumerazione di tutti e soli gli enunciati in S. Definiamo S come segue. Definiamo S 1, S 2,..., S i,... S 1 = S 1, S 2 = (S 2 S 2 ), S 3 = (S 3 (S 3 S 3 )),... In generale, S i è il risultato di una congiunzione iterata i volte dell enunciato S i.

6 6 DISPENSA N. 4 L insieme S è l insieme che cerchiamo! Dimostriamo che le conseguenze di S coincidono con quelle di S. A tale fine basta dimostrare i due punti seguenti. (a) Per ogni i, S i è una conseguenza di S. (b) Per ogni i, S i è una conseguenza di S. Per il punto (a), basta osservare che S i = (S i (S i... )) è una conseguenza di S e che (A B) A è una verità logica. Per il punto (b), basta osservare che S i è una conseguenza di S e che A (A A) è una verità logica e che A, B = (A B). Dunque S i è deducibile da S i. Resta da dimostrare che S è decidibile. Data una formula F, come decidere se F è in S? Se F è S 1, siamo a posto. Altrimenti, verifichiamo se F è di forma (G (G... )) per qualche formula G. Si vede chiaramente che questo controllo è algoritmico. Se F non è della forma desiderata, allora non è in S. Altrimenti, sia i il numero di volte che G è ripetuto in F. Allora F è in S se e solo se G è uguale a S i. Per verificare se questo è il caso, basta produrre l i-esimo elemento nell enumerazione di S e confrontarlo con G. Osservazione 4.5. Se l insieme degli assiomi di T è decidibile, non è detto che lo sia quello della sua estensione completa costruita come nel Lemma di Lindenbaum. In effetti, non è detto che questa abbia un insieme di assiomi effettivamente enumerabile. Ad ogni passo non è detto che si possa determinare effettivamente se S n {E n+1 } è coerente, ossia se S n {E n+1 } oppure no. Si può però dimostrare che ogni teoria coerente il cui insieme di teoremi è decidibile (in questo caso la teoria si dice decidibile) ha un estensione coerente e completa il cui insieme dei teoremi è decidibile. Osservazione 4.6 (Teorema di Completezza Effettivo). Si può dimostrare una versione effettiva del Teorema di Completezza. Se A è una struttura per un linguaggio L, consideriamo un estensione del linguaggio L ottenuta aggiungendo una nuova costante c a per ogni elemento a del dominio A (i.e., un nome proprio per ogni elemento). Otteniamo da A una struttura adeguata al nuovo linguaggio aggiungendo l interpretazione ovvia per le nuove costanti, ossia c a è interpretata come a. Denotiamo questa nuova struttura con (A, a) a A. Diciamo che un modello A è decidibile se esiste un algoritmo per decidere, dato un enunciato E nel nuovo linguaggio L {c a } a A, se E è vero in (A, a) a A. Si può dimostrare che ogni teoria coerente e decidibile (i.e., il cui insieme di teoremi è decidibile) ha un modello decidibile.

LOGICA MATEMATICA PER INFORMATICA

LOGICA MATEMATICA PER INFORMATICA LOGICA MATEMATICA PER INFORMATICA A.A. 12/13, DISPENSA N. 6 Sommario. Il Teorema di Compattezza e alcune sue applicazioni: assiomatizzabilità e non-assiomatizzabilità di proprietà di strutture, e modelli

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Ragionamento Automatico Richiami di calcolo dei predicati

Ragionamento Automatico Richiami di calcolo dei predicati Richiami di logica del primo ordine Ragionamento Automatico Richiami di calcolo dei predicati (SLL: Capitolo 7) Sintassi Semantica Lezione 2 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 2 0

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

NOZIONI DI LOGICA PROPOSIZIONI.

NOZIONI DI LOGICA PROPOSIZIONI. NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale

Dettagli

Maiuscole e minuscole

Maiuscole e minuscole Maiuscole e minuscole Abilità interessate Distinguere tra processi induttivi e processi deduttivi. Comprendere il ruolo e le caratteristiche di un sistema assiomatico. Riconoscere aspetti sintattici e

Dettagli

La matematica non è un opinione, lo è oppure...?

La matematica non è un opinione, lo è oppure...? La matematica non è un opinione, lo è oppure...? Giulio Giusteri Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Brescia 26 Febbraio 2010 Vecchie conoscenze Dedurre... dedurre...

Dettagli

Un po di logica. Christian Ferrari. Laboratorio di matematica

Un po di logica. Christian Ferrari. Laboratorio di matematica Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Aniello Murano Decidibilità delle teorie logiche

Aniello Murano Decidibilità delle teorie logiche Aniello Murano Decidibilità delle teorie logiche 11 Lezione n. Parole chiave: Teorie logiche Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009 Prefazione Nelle lezioni

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 11/12)

LOGICA MATEMATICA PER INFORMATICA (A.A. 11/12) LOGICA MATEMATICA PER INFORMATICA (A.A. 11/12) DISPENSA N. 5 Sommario. Dimostriamo l indecidibilità dell aritmetica formale, della verità aritmetica, e della validità logica. 1. Incompletezza e indecidibilità

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

Alcune Tracce dei Precedenti Esami del Dottorato di Siena in Logica Matematica ed Informatica Teorica

Alcune Tracce dei Precedenti Esami del Dottorato di Siena in Logica Matematica ed Informatica Teorica Alcune Tracce dei Precedenti Esami del Dottorato di Siena in Logica Matematica ed Informatica Teorica Raccolti e curati da Luca Spada Indice 1 Temi 1 1.1 Logica Matematica.......................... 1 1.2

Dettagli

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine 1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine In questo tipo di giochi l arena è costituita da due grafi orientati G = (V, E), G = (V, E ). Lo scopo del I giocatore è di mostrare, in un numero

Dettagli

Il Teorema di Kakutani

Il Teorema di Kakutani Il Teorema di Kakutani Abbiamo visto, precedentemente, il seguente risultato: 1 Sia X uno spazio di Banach. Se X è separabile, la palla è debolmente compatta. B X = {x X x 1} Il Teorema di Kakutani è un

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

Esercizi sul Principio d Induzione

Esercizi sul Principio d Induzione AM110 - ESERCITAZIONI I - II - 4 OTTOBRE 01 Esercizi sul Principio d Induzione Esercizio svolto 1. Dimostrare che per ogni n 1, il numero α(n) := n 3 + 5n è divisibile per 6. Soluzione. Dimostriamolo usando

Dettagli

CALCOLO DEL PRIMO ORDINE

CALCOLO DEL PRIMO ORDINE CALCOLO DEL PRIMO ORDINE ANCORA SUL CONCETTO DI CALCOLO (PROOF SYSTEM) Un sistema di dimostrazione è un insieme di regole di inferenza Ciascuna regola di inferenza consente di derivare una formula ϕ (conseguenza)

Dettagli

ANALISI 1 1 QUINTA LEZIONE

ANALISI 1 1 QUINTA LEZIONE ANALISI 1 1 QUINTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,

Dettagli

L aritmetica degli insiemi infiniti Parte I

L aritmetica degli insiemi infiniti Parte I L aritmetica degli insiemi infiniti Parte I Stefano Baratella Versione L A TEX realizzata in collaborazione con Tullio Garbari 1 Prerequisiti La relazione di equipotenza tra insiemi. Definizione 1. Si

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una

Dettagli

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi

Dettagli

Il teorema di Schwarz

Il teorema di Schwarz Il teorema di Schwarz 1. Quante sono le derivate parziali seconde, terze,...? Il procedimento di derivazione parziali applicato ad una funzione f(x, y) di due variabili raddoppia il numero di derivate

Dettagli

Codice Gray. (versione Marzo 2007)

Codice Gray. (versione Marzo 2007) Codice Gray (versione Marzo 27) Data una formula booleana con n variabili, per costruire una tavola di verità per questa formula è necessario generare tutte le combinazioni di valori per le n variabili.

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti. INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme

Dettagli

Richiami di logica matematica

Richiami di logica matematica Richiami di logica matematica Gli oggetti elementari dei discorsi matematici sono le proposizioni logiche = enunciati di cui si possa stabilire inequivocabilmente se sono veri o falsi. Sono proposizioni

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione

DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI Corso di Logica per la Programmazione SULLE LEGGI DEL CALCOLO PROPOSIZIONALE Abbiamo visto le leggi per l'equivalenza ( ),

Dettagli

Geometria Superiore Esercizi 1 (da consegnare entro... )

Geometria Superiore Esercizi 1 (da consegnare entro... ) Geometria Superiore Esercizi 1 (da consegnare entro... ) In questi esercizi analizziamo il concetto di paracompattezza per uno spazio topologico e vediamo come questo implichi l esistenza di partizioni

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

I teoremi di Gödel. Giovanna Corsi. Dicembre Aritmetizzazione. Numeri di Gödel 2. 3 L aritmetica di Robinson 7

I teoremi di Gödel. Giovanna Corsi. Dicembre Aritmetizzazione. Numeri di Gödel 2. 3 L aritmetica di Robinson 7 I teoremi di Gödel Giovanna Corsi Dicembre 2003 Indice 1 Aritmetizzazione. Numeri di Gödel 2 2 Teoremi limitativi per PA 3 3 L aritmetica di Robinson 7 4 Il predicato T eor P A 8 5 I teoremi di Gödel da

Dettagli

7. INSIEMI APERTI, INSIEMI CHIUSI, INSIEMI NE APERTI NE CHIUSI

7. INSIEMI APERTI, INSIEMI CHIUSI, INSIEMI NE APERTI NE CHIUSI 7. INSIEMI APERTI, INSIEMI CHIUSI, INSIEMI NE APERTI NE CHIUSI Sia E un insieme numerico, sia cioè. Esempi Si dice che E è un insieme APERTO se tutti i suoi punti sono interni. Ogni intervallo aperto (dove

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim

Dettagli

Numeri cardinali. Definizione 1.1 Due insiemi A e B, non vuoti, si dicono equipotenti, e si scrive A B, se esiste un applicazione f : A B biunivoca.

Numeri cardinali. Definizione 1.1 Due insiemi A e B, non vuoti, si dicono equipotenti, e si scrive A B, se esiste un applicazione f : A B biunivoca. Numeri cardinali 1 Insiemi equipotenti e cardinalità Partiamo da un semplice esempio. Sia A = {a, b, c, d, e, f} l insieme delle prime sei lettere dell alfabeto. Che tipo di operazione facciamo per concludere

Dettagli

Cenni sulle dimostrazioni dei teoremi di Gödel

Cenni sulle dimostrazioni dei teoremi di Gödel Cenni sulle dimostrazioni dei teoremi di Gödel Alberto Zanardo Dipartimento di Matematica Pura ed Applicata Università di Padova 30 ottobre 2007 Linguaggio e dimostrazioni nella teoria assiomatica dei

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio

Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio Appunti di informatica Lezione 7 anno accademico 2016-2017 Mario Verdicchio L algoritmo di Euclide per l MCD Dati due numeri A e B, per trovare il loro MCD procedere nel seguente modo: 1. dividere il maggiore

Dettagli

2.6 Calcolo degli equilibri di Nash

2.6 Calcolo degli equilibri di Nash 92 2 Giochi non Cooperativi Per queste estensioni di giochi non finiti si possono provare risultati analoghi a quelli visti per i giochi finiti. Rimandiamo alla bibliografia per uno studio più approfondito

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Le parole dell informatica: algoritmo e decidibilità

Le parole dell informatica: algoritmo e decidibilità Le parole dell informatica: algoritmo e decidibilità Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario Filosofico dell Informatica

Dettagli

La codifica digitale

La codifica digitale La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore

Dettagli

2 non è un numero razionale

2 non è un numero razionale 2 non è un numero razionale 1. Richiami: numeri pari e dispari. Un numero naturale m è pari (rispettivamente dispari) se e solo se esiste un numero naturale r tale che m = 2r (rispettivamente m = 2r +

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi Asintotica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Un graduale processo di astrazione Passo 1: abbiamo ignorato il costo effettivo

Dettagli

Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi

Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi Algoritmi e Strutture Dati - II modulo Soluzioni degli esercizi Francesco Pasquale 6 maggio 2015 Esercizio 1. Su una strada rettilinea ci sono n case nelle posizioni 0 c 1 < c 2 < < c n. Bisogna installare

Dettagli

Richiami teorici ed esercizi di Logica

Richiami teorici ed esercizi di Logica Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla

Dettagli

Istituzioni di Logica. I parte: Calcolo dei predicati

Istituzioni di Logica. I parte: Calcolo dei predicati Istituzioni di Logica. I parte: Calcolo dei predicati Alessandro Berarducci Versione del 31 Ott. 2006. Rivista il 10 Gen. 2008 Indice 1 Logica proposizionale 2 1.1 Proposizioni e connettivi.......................

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto.

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto. Attività In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto. È possibile che si realizzi la situazione descritta? Motiviamo...

Dettagli

Operatori di relazione

Operatori di relazione Condizioni Negli algoritmi compaiono passi decisionali che contengono una proposizione (o predicato) dal cui valore di verità dipende la sequenza dinamica Chiamiamo condizioni tali proposizioni Nei casi

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Linguaggi regolari Potere espressivo degli automi Costruzione di una grammatica equivalente a un automa Grammatiche regolari Potere espressivo delle grammatiche 1

Dettagli

1 Introduzione alle matrici quadrate 2 2 a coefficienti in R.

1 Introduzione alle matrici quadrate 2 2 a coefficienti in R. 1 Introduzione alle matrici quadrate 2 2 a coefficienti in R Per introdurre il concetto di matrice, a 2 righe e 2 colonne, iniziamo col considerare griglie o tabelle di numeri Gli elementi della griglia,

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Rappresentazione della Conoscenza. Lezione 2. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 2 0

Rappresentazione della Conoscenza. Lezione 2. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 2 0 Rappresentazione della Conoscenza Lezione 2 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 2 0 Logica come linguaggio di rappresentazione della conoscenza Sommario richiami sintassi e semantica

Dettagli

Appunti di. Logica. per l insegnamento di Matematica Discreta e Logca del corso di laurea triennale in Informatica

Appunti di. Logica. per l insegnamento di Matematica Discreta e Logca del corso di laurea triennale in Informatica Marco Barlotti Appunti di Logica per l insegnamento di Matematica Discreta e Logca del corso di laurea triennale in Informatica Vers. 1.0 Anno Accademico 2015-2016 In copertina un disegno di autore ignoto.

Dettagli

3. OPERAZIONI TRA CLASSI 2

3. OPERAZIONI TRA CLASSI 2 INSIEMI 1. Elementi e Classi Lo scopo di questo primo capitolo è di introdurre in maniera rigorosa le nozioni di classe e insieme, e di studiarne le principali proprietà. Nel seguito useremo il termine

Dettagli

Logica. Claudio Sacerdoti Coen 07/10/ : Connotazione, denotazione, invarianza per sostituzione. Universitá di Bologna

Logica. Claudio Sacerdoti Coen 07/10/ : Connotazione, denotazione, invarianza per sostituzione. Universitá di Bologna Logica 3: Connotazione, denotazione, invarianza per sostituzione Universitá di Bologna 07/10/2015 Outline 1 Connotazione, denotazione, invarianza per sostituzione Connotazione vs

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

Costruzione di espressioni regolari 4

Costruzione di espressioni regolari 4 ostruzione di espressioni regolari 4 Indicando con d uno dei possibili digits {,, 2,,9} --possiamo esprimere il sotto linguaggio dei digits come d = ( + + 2 +.. + 9) Quale linguaggio produce l espressione:

Dettagli

Elementi di Logica Matematica

Elementi di Logica Matematica Francesco Ciraulo Dispense del corso di Elementi di Logica Matematica Per i corsi di laurea in M.I.C.S e Matematica Università degli Studi di Palermo A. A. 2006/07 Indice i Introduzione La logica (dal

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Elementi di Logica Teoria degli insiemi

Elementi di Logica Teoria degli insiemi Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università

Dettagli

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:

Dettagli

R. De Leo 9 Febbraio Liceo Scientifico L.B. Alberti. Invito alla Logica Matematica. attraverso gli Indovinelli

R. De Leo 9 Febbraio Liceo Scientifico L.B. Alberti. Invito alla Logica Matematica. attraverso gli Indovinelli Liceo Scientifico L.B. Alberti 9 Febbraio 2010 1 / 40 Outline 2 / 40 La come gioco da tavolo Quali sono gli elementi fondamentali di un gioco da tavolo? I Pezzi 3 / 40 La come gioco da tavolo Quali sono

Dettagli

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k,

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k, 2.2 Serie Le serie numeriche sono semplicemente successioni reali o complesse di tipo particolare, che però, per la loro importanza pratica e teorica, meritano una trattazione a parte. Data una successione

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 2 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.5, 3.6,

Dettagli

Una Breve Introduzione alla Logica

Una Breve Introduzione alla Logica Una Breve Introduzione alla Logica LOGICA La LOGICA è la disciplina che studia le condizioni di correttezza del ragionamento Occorre dire, anzitutto, quale oggetto riguardi ed a quale disciplina spetti

Dettagli

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: Capitolo 1 PROBLEMI INIZIALI PER ODE Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: { y (t) = f(t, y(t)), t t f (1.1) y( ) = y 0 dove f : [, t f ] R m R

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

Il concetto di calcolatore e di algoritmo

Il concetto di calcolatore e di algoritmo Il concetto di calcolatore e di algoritmo Elementi di Informatica e Programmazione Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin Informatica

Dettagli

9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO

9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 9. CALCOLO INTEGRALE: L INTEGRALE INDEFINITO A. A. 2014-2015 L. Doretti 1 La nascita e lo sviluppo del calcolo integrale sono legati a due tipi

Dettagli

L algoritmo AKS. L algoritmo AKS. Seminario per il corso di Elementi di Algebra Computazionale. Oscar Papini. 22 luglio 2013

L algoritmo AKS. L algoritmo AKS. Seminario per il corso di Elementi di Algebra Computazionale. Oscar Papini. 22 luglio 2013 L algoritmo AKS Seminario per il corso di Elementi di Algebra Computazionale Oscar Papini 22 luglio 2013 Test di primalità Come facciamo a sapere se un numero n è primo? Definizione (Test di primalità)

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

Complementi di Logica Modale

Complementi di Logica Modale Complementi di Logica Modale Umberto Grandi 17 Maggio 2008 1 Completezza 1.1 Livelli di interpretazione semantica Per fissare la notazione e prendere confidenza con le strutture di Kripke (i modelli in

Dettagli

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi (fanizzi@di.uniba.it) Dipartimento di Informatica Università degli Studi di Bari Grammatiche

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Logica, teoria della conoscenza, filosofia della scienza. Gianluigi Bellin

Logica, teoria della conoscenza, filosofia della scienza. Gianluigi Bellin Logica, teoria della conoscenza, filosofia della scienza. Gianluigi Bellin October 8, 2013 0.1. La filosofia della scienza esamina le strutture concettuali e le argomentazioni in uso nelle varie scienze;

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di PS-Probabilità P.Baldi Tutorato 9, 19 maggio 11 Corso di Laurea in Matematica Esercizio 1 a) Volendo modellizzare l evoluzione della disoccupazione in un certo ambito

Dettagli