Cluster Analysis. La Cluster Analysis è il processo attraverso il quale vengono individuati raggruppamenti dei dati. per modellare!

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cluster Analysis. La Cluster Analysis è il processo attraverso il quale vengono individuati raggruppamenti dei dati. per modellare!"

Transcript

1 La Cluster Analysis è il processo attraverso il quale vengono individuati raggruppamenti dei dati. Le tecniche di cluster analysis vengono usate per esplorare i dati e non per modellare! La cluster analysis è applicata a matrici di dati non strutturate, cioè le relazioni interne tra gli oggetti non sono note a priori. Se i gruppi di oggetti trovati dalla cluster analysis presentano delle differenze statisticamente significative, allora i gruppi trovati possono essere considerati classi di oggetti.

2 NOTA BENE I metodi di cluster non devono essere confusi con i metodi di classificazione! Metodi di cluster: dati non strutturati Metodi di classificazione: dati strutturati, gli oggetti sono stati campionati da popolazioni diverse e quindi appartengono a classi distinte definite a priori. Metodi di cluster: scopo è trovare raggruppamenti significativi degli oggetti. Metodi di classificazione: scopo è trovare modelli capaci di assegnare correttamente ciascun oggetto alla classe di appartenenza.

3 I metodi di cluster analysis utilizzano le misure di dissimilarità o similarità tra gli oggetti. Punto di partenza : matrice di dissimilarità (similarità) Nota: tutti i metodi che usano le misure di distanza per valutare la dissimilarità non sono invarianti alle trasformazioni delle variabili, quali le scalature.

4 data (n, p) distance distance matrix (n, n) similarity similarity matrix (n, n) clustering algorithm data + class variable interpretation data + clustering variable

5 I clusters vengono definiti in termini di: - separazione - compattezza - forma singleton

6 centroide centrotipo X2

7 Metodi di clustering - hierarchical methods - agglomerative methods - weighted average linkage - unweighted average linkage - divisive methods - complete linkage... - single linkage - centroid linkage - median linkage - Ward method - McNaughton method - Cavalli-Sforza method - non-hierarchical methods - K-means method - Jarvis-Patrick method - fuzzy methods - graph-theoretical methods...

8 Procedure preliminari 1. selezione del metodo di clustering 2. selezione del tipo di scalatura delle variabili 3. selezione della misura di dissimilarità 4. calcolo della dissimilarità tra tutte le coppie di oggetti 5. calcolo della corrispondente similarità

9 Metodi gerarchici agglomerativi Al passo iniziale, si hanno n clusters ciascuno contenente un singolo oggetto. Algoritmo iterativo: 1. si cercano i due clusters più simili; 2. i due clusters più simili vengono uniti generando un nuovo cluster; 3. si calcola la similarità (o dissimilarità) del nuovo cluster con ciascuno dei clusters esistenti. Questo comporta la cancellazione delle 2 righe e 2 colonne della matrice di similarità (dissimilarità) corrispondenti ai due clusters uniti e l aggiunta di 1 riga e 1 colonna corrispondenti al nuovo cluster.

10 L intero processo di clustering può essere riassunto mediante un grafico a forma di albero : DENDROGRAMMA coefficiente di clustering A B C D E

11

12 Regole per calcolare la dissimilarità tra due cluster n k = numero di oggetti del cluster k n f = numero di oggetti del cluster f D kf = dissimilarità tra i clusters k e f Single-linkage linkage : D kf è la più piccola tra le n k n f dissimilarità tra ogni oggetto di k e ogni oggetto di f D kf

13 Regole per calcolare la dissimilarità tra due cluster Complete-linkage linkage : D kf è la più grande tra le n k n f dissimilarità tra ogni oggetto di k e ogni oggetto di f D kf

14 Regole per calcolare la dissimilarità tra due cluster Average-linkage : D kf è la media delle n k n f dissimilarità tra ogni oggetto di k e ogni oggetto di f Centroid-linkage : D kf è la distanza Euclidea al quadrato tra i centroidi dei clusters k e f D kf

15 Regole per calcolare la dissimilarità tra due cluster Nota bene : ogni metodo produce una diversa ripartizione degli oggetti.. E importante scegliere il metodo di clustering prima di effettuare l analisi.

16 Regole per calcolare la dissimilarità tra due cluster Caratteristiche dei metodi agglomerativi : - complete, average e centroid-linkage producono clusters sferici costituiti da oggetti molto simili. - single-linkage linkage produce clusters allungati in cui si possono avere anche coppie di oggetti diversi (concatenamento).

17 Regole per calcolare la dissimilarità tra due cluster Caratteristiche dei metodi agglomerativi : - con il single-linkage linkage un oggetto si unisce ad un gruppo se è simile anche ad un solo oggetto del gruppo. - con il complete-linkage linkage un oggetto si unisce ad un gruppo solo se presenta una certa similarità con tutti gli oggetti del gruppo. Il single-linkage linkage è il metodo più appropriato per individuare outliers

18 Esempio Matrice delle dissimilarità oggetti

19 STEP 1 : Gli oggetti 1 e 3 sono i più simili e quindi vengono uniti formando così il primo cluster al livello di dissimilarità uguale a 1. Utilizzando il single-linkage: linkage: D = min d, d = min 44, = 4 213, D = min d, d = min 44, = 4 413, D = min d, d = min 5, 3 = 3 513, b g b g b g b g b g b g

20 STEP 1 : Matrice delle dissimilarità aggiornata con il single-linkage: linkage: oggetti (1+3) (1+3)

21 STEP 2 : Gli oggetti 2 e 4 sono i più simili e quindi vengono uniti formando così il secondo cluster al livello di dissimilarità uguale a 2. Utilizzando il single-linkage: linkage: D = min d, d = min 44, = 4 (,), (,) 13 2 (,) 13 4 D = min d, d = min 54, = 4 524, d h b g b g b g

22 STEP 2 : Matrice delle dissimilarità aggiornata con il single-linkage: linkage: oggetti (1+3) (2+4) 5 (1+3) 0 (2+4)

23 STEP 3 : L oggetto 5 e il cluster (1+3) sono i più simili e quindi vengono uniti formando così il terzo cluster al livello di dissimilarità uguale a 3. Utilizzando il single-linkage: linkage: d h b g D = min d 24 13, d 24 5 = min 44, = 4 (, ),(,) (, )(,) (, ) oggetti (1+3+5) (2+4) (1+3+5) 0 (2+4) 4 0

24 STEP 4 : L unica possibilità rimasta è l unione finale dei due clusters (1+3+5) e (2+4) ad un livello di dissimilarità uguale a 4. coefficiente di clustering

25 Esempio: : Wines

26 Esempio: : Wines

27 Esempio: : Wines

28

29

30 Metodi non-gerarchici I metodi di cluster non-gerarchico si differenziano molto tra loro, essendo basati su approcci matematici differenti. Alcuni di loro si chiamano tecniche di ricollocamento, poichè dopo una partizione iniziale degli oggetti, questi vengono spostati da un cluster all altro finchè un criterio di stop è stato soddisfatto. Il metodo K-means è il più noto.

31 Metodo K-means Proposto da MacQueen nel 1967, è un algoritmo di ricollocamento basato sul confronto delle distanze di ogni oggetto dai centroidi dei clusters. Occorre definire a priori il numero G di clusters. centroide del g-esimo cluster : n c x, x, K, x g = g1 g2 gp s

32 Algoritmo del metodo K-means A0. selezione della misura di dissimilarità A1. selezione del numero G di clusters B1. partizione iniziale random degli oggetti in G clusters C1. calcolo dei centroidi dei G clusters C2. calcolo delle distanze tra ciascun oggetto e ciascun centroide C3. collocamento di ogni oggetto nel cluster del centroide più vicino C4. se almeno un oggetto è stato ricollocato, ritorna a C1 D1. stop

33 metodo K-means

34 metodo K-means Normalmente,, i centroidi dei clusters vengono ricalcolati dopo il ricollocamento di tutti gli oggetti. Una variante di questo metodo si basa sul calcolo dei centroidi dei clusters dopo il ricollocamento di ogni singolo oggetto. La partizione finale degli oggetti è influenzata da molti fattori, tra cui il numero scelto di clusters.

35 Metodo di Jarvis-Patrick E un metodo di clustering efficiente basato sulla matrice dei vicini derivata dalla matrice delle dissimilarità. Steps preliminari 1. selezione della misura di dissimilarità 2. definizione della dimensione L della matrice dei vicini 3. definizione del numero k di vicini comuni 4. calcolo della matrice delle dissimilarità 5. calcolo della matrice dei vicini

36 Metodo Jarvis-Patrick Matrice dei vicini (n, L) oggetti 1 v 2 v 3 v L v n

37 Metodo Jarvis-Patrick Algoritmo : Due oggetti s e t vengono collocati nel medesimo cluster se: 1. l oggetto s è nella lista dei vicini dell oggetto t 2. l oggetto t è nella lista dei vicini dell oggetto s 3. i due oggetti hanno k vicini comuni.

38 Metodo Jarvis-Patrick Valori ottimali dei parametri L e k: L = n / 3 k = n / 4 Aumentando i valori di L e k, il numero di clusters ottenuti aumenta, poichè diventa più severa la condizione richiesta per l unione degli oggetti. Nota bene: il numero dei clusters è un risultato del metodo e non deve essere definito a priori dall utente.

39 Esempio : Cheese 134 campioni di formaggio (Parmigiano Reggiano) descritti dalle concentrazioni analitiche dei 21 amminoacidi. Le variabili sono state autoscalate prima dell analisi.

40 Esempio : Cheese Metodo gerarchico complete linkage (distanza( Euclidea) Linkage Distance

41 Esempio : Cheese Metodo gerarchico complete linkage (distanza( Euclidea) PC2 (E.V.% 10.1) PC1 (E.V.% 68.3)

42 Esempio : Cheese Metodo gerarchico single linkage (distanza( Euclidea) 6 5 Linkage Distance

43 Esempio : Cheese Metodo gerarchico single linkage (distanza( Euclidea) PC2 (E.V.% 10.1) PC1 (E.V.% 68.3)

44 Esempio : Cheese Metodo K-means (distanza( Euclidea) 2.5 PC2 (E.V.% 10.1) PC1 (E.V.% 68.3)

45 Esempio : Cheese Metodo di Jarvis-Patrick (distanza( Euclidea,, L=50, k=40) PC2 (E.V.% 10.1) PC1 (E.V.% 68.3)

Corso di Laurea di Scienze biomolecolari e ambientali Laurea magistrale

Corso di Laurea di Scienze biomolecolari e ambientali Laurea magistrale UNIVERSITA DEGLI STUDI DI PERUGIA Dipartimento di Chimica, Biologia e Biotecnologie Via Elce di Sotto, 06123 Perugia Corso di Laurea di Scienze biomolecolari e ambientali Laurea magistrale Corso di ANALISI

Dettagli

Intelligenza Artificiale. Clustering. Francesco Uliana. 14 gennaio 2011

Intelligenza Artificiale. Clustering. Francesco Uliana. 14 gennaio 2011 Intelligenza Artificiale Clustering Francesco Uliana 14 gennaio 2011 Definizione Il Clustering o analisi dei cluster (dal termine inglese cluster analysis) è un insieme di tecniche di analisi multivariata

Dettagli

Introduzione all analisi di arrays: clustering.

Introduzione all analisi di arrays: clustering. Statistica per la Ricerca Sperimentale Introduzione all analisi di arrays: clustering. Lezione 2-14 Marzo 2006 Stefano Moretti Dipartimento di Matematica, Università di Genova e Unità di Epidemiologia

Dettagli

Analisi Statistica dei Dati Misurazione e gestione dei rischi a.a. 2007-2008

Analisi Statistica dei Dati Misurazione e gestione dei rischi a.a. 2007-2008 Analisi Statistica dei Dati Misurazione e gestione dei rischi a.a. 2007-2008 Dott. Chiara Cornalba COMUNICAZIONI La lezione del 30 ottobre è sospesa per missione all estero del Prof. Giudici. Dal 6 Novembre

Dettagli

Cluster Analysis (2 parte)

Cluster Analysis (2 parte) Cluster Analysis (2 parte) Esempio 2 Data set: Nel data set Dieta (Dieta.txt, Dieta.sav) sono contenute informazioni sul consumo medio dei principali alimenti in 16 paesi Europei. Paese Cereali (Ce) Riso

Dettagli

Riconoscimento e recupero dell informazione per bioinformatica

Riconoscimento e recupero dell informazione per bioinformatica Riconoscimento e recupero dell informazione per bioinformatica Clustering: introduzione Manuele Bicego Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Una definizione

Dettagli

Riconoscimento e recupero dell informazione per bioinformatica. Clustering: validazione. Manuele Bicego

Riconoscimento e recupero dell informazione per bioinformatica. Clustering: validazione. Manuele Bicego Riconoscimento e recupero dell informazione per bioinformatica Clustering: validazione Manuele Bicego Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Definizione

Dettagli

Riconoscimento e recupero dell informazione per bioinformatica

Riconoscimento e recupero dell informazione per bioinformatica Riconoscimento e recupero dell informazione per bioinformatica Clustering: metodologie Manuele Bicego Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Tassonomia

Dettagli

Riconoscimento e recupero dell informazione per bioinformatica

Riconoscimento e recupero dell informazione per bioinformatica Riconoscimento e recupero dell informazione per bioinformatica Filogenesi Manuele Bicego Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Introduzione alla

Dettagli

Algoritmi di clustering

Algoritmi di clustering Algoritmi di clustering Dato un insieme di dati sperimentali, vogliamo dividerli in clusters in modo che: I dati all interno di ciascun cluster siano simili tra loro Ciascun dato appartenga a uno e un

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

Cluster Analysis Distanze ed estrazioni Marco Perugini Milano-Bicocca

Cluster Analysis Distanze ed estrazioni Marco Perugini Milano-Bicocca Cluster Analysis Distanze ed estrazioni M Q Marco Perugini Milano-Bicocca 1 Scopi Lo scopo dell analisi dei Clusters è di raggruppare casi od oggetti sulla base delle loro similarità in una serie di caratteristiche

Dettagli

ESERCIZIO 1. Vengono riportati di seguito i risultati di una cluster analysis gerarchica.

ESERCIZIO 1. Vengono riportati di seguito i risultati di una cluster analysis gerarchica. ESERCIZIO. Vengono riportati di seguito i risultati di una cluster analysis gerarchica. Programma di agglomerazione Stadio 5 6 7 8 9 0 5 6 7 8 9 0 5 6 7 8 9 0 5 6 7 8 9 Stadio di formazione accorpati del

Dettagli

Metodi di classificazione. Loredana Cerbara

Metodi di classificazione. Loredana Cerbara Loredana Cerbara I metodi di classificazione, anche detti in inglese cluster analysis, attengono alla categoria dei metodi esplorativi. Esistono centinaia di metodi di classificazione dei dati ed hanno

Dettagli

Statistica multivariata 27/09/2016. D.Rodi, 2016

Statistica multivariata 27/09/2016. D.Rodi, 2016 Statistica multivariata 27/09/2016 Metodi Statistici Statistica Descrittiva Studio di uno o più fenomeni osservati sull INTERA popolazione di interesse (rilevazione esaustiva) Descrizione delle caratteristiche

Dettagli

Analisi dei Gruppi con R

Analisi dei Gruppi con R Università di Bologna - Facoltà di Scienze Statistiche Laurea Triennale in Statistica e Ricerca Sociale Corso di Analisi di Serie Storiche e Multidimensionali Prof.ssa Marilena Pillati Analisi dei Gruppi

Dettagli

Statistica per le ricerche di mercato

Statistica per le ricerche di mercato Statistica per le ricerche di mercato A.A. 2012/13 Dr. Luca Secondi 15. Tecniche di analisi statistica multivariata per la segmentazione del mercato Cluster Analysis 1 Cluster analysis La cluster analysis

Dettagli

Riconoscimento automatico di oggetti (Pattern Recognition)

Riconoscimento automatico di oggetti (Pattern Recognition) Riconoscimento automatico di oggetti (Pattern Recognition) Scopo: definire un sistema per riconoscere automaticamente un oggetto data la descrizione di un oggetto che può appartenere ad una tra N classi

Dettagli

Il problema del clustering

Il problema del clustering Il problema del clustering Stefano Rovetta 1 aprile 2003 Sommario Concetto di clustering Definizioni di distanze Modalità di raggruppamento Clustering con la tecnica k-means Clustering gerarchico Cautele

Dettagli

Sistemi Intelligenti Learning and Clustering

Sistemi Intelligenti Learning and Clustering Sistemi Intelligenti Learning and Clustering Alberto Borghese Università degli Studi di Milano Laboratorio di Sistemi Intelligenti Applicati (AIS-Lab) Dipartimento di Informatica alberto.borghese@unimi.it

Dettagli

Clustering. Utilizziamo per la realizzazione dell'esempio due tipologie di software:

Clustering. Utilizziamo per la realizzazione dell'esempio due tipologie di software: Esercizio Clustering Utilizziamo per la realizzazione dell'esempio due tipologie di software: - XLSTAT.xls - Cluster.exe XLSTAT.xls XLSTAT.xls è una macro di Excel che offre la possibilità di effettuare

Dettagli

Celle di fabbricazione

Celle di fabbricazione Celle di fabbricazione Produzione per parti (Classificazione Impiantistica) Produzione per parti Fabbricazione Montaggio (assemblaggio) Job Shop Celle di fabbricazione Linee transfer A posto fisso Ad Isola

Dettagli

Clustering. Cos è un analisi di clustering

Clustering. Cos è un analisi di clustering Clustering Salvatore Orlando Data Mining. - S. Orlando Cos è un analisi di clustering Cluster: collezione di oggetti/dati Simili rispetto a ciascun oggetto nello stesso cluster Dissimili rispetto agli

Dettagli

I modelli lineari generalizzati per la tariffazione nel ramo RCA: applicazione

I modelli lineari generalizzati per la tariffazione nel ramo RCA: applicazione I modelli lineari generalizzati per la tariffazione nel ramo RCA: applicazione Giuseppina Bozzo Giuseppina Bozzo Considerazioni preliminari La costruzione di un GLM è preceduta da alcune importanti fasi:

Dettagli

METODI DI CLASSIFICAZIONE. Federico Marini

METODI DI CLASSIFICAZIONE. Federico Marini METODI DI CLASSIFICAZIONE Federico Marini Introduzione Nella parte introduttiva dell analisi multivariata abbiamo descritto la possibilità di riconoscere l origine di alcuni campioni come uno dei campi

Dettagli

Classificazione (aka Cluster Analysis)

Classificazione (aka Cluster Analysis) Classificazione (aka Cluster Analysis) Classificazione non gerarchica esk-means Classificazione gerarchica divisiva Classificazione gerarchica agglomerativa Legame: singolo, completo, medio, Coefficiente

Dettagli

(a) Si proponga una formulazione di programmazione nonlineare a variabili misto-intere per problema.

(a) Si proponga una formulazione di programmazione nonlineare a variabili misto-intere per problema. 6. Clustering In molti campi applicativi si presenta il problema del data mining, che consiste nel suddividere un insieme di dati in gruppi e di assegnare un centro a ciascun gruppo. Ad esempio, in ambito

Dettagli

Obiettivo: assegnazione di osservazioni a gruppi di unità statistiche non definiti a priori e tali che:

Obiettivo: assegnazione di osservazioni a gruppi di unità statistiche non definiti a priori e tali che: Cluster Analysis Obiettivo: assegnazione di osservazioni a gruppi di unità statistiche non definiti a priori e tali che: le unità appartenenti ad uno di essi sono il più possibile omogenee i gruppi sono

Dettagli

Analisi di dati Microarray: Esercitazione Matlab

Analisi di dati Microarray: Esercitazione Matlab Analisi di dati Microarray: Esercitazione Matlab Laboratorio di Bioinformatica II Pietro Lovato Anno Accademico 2010/2011 Contenuti 1 Introduzione DNA Microarray 2 Lavorare con una singola ibridazione

Dettagli

I metodi di Classificazione automatica

I metodi di Classificazione automatica L Analisi Multidimensionale dei Dati Una Statistica da vedere I metodi di Classificazione automatica Matrici e metodi Strategia di AMD Anal Discrimin Segmentazione SI Per riga SI Matrice strutturata NO

Dettagli

LA CLUSTER ANALYSIS IN R

LA CLUSTER ANALYSIS IN R LA CLUSTER ANALYSIS IN R 1 Cluster gerarchica 1.1 Cluster delle unità sperimentali > sanita= read.table(file.choose(), header =TRUE, row.names=2) > str(sanita) 'data.frame': 20 obs. of 6 variables: $ n

Dettagli

ESERCIZIO 1. Vengono riportati di seguito i risultati di un analisi discriminante.

ESERCIZIO 1. Vengono riportati di seguito i risultati di un analisi discriminante. ESERCIZIO 1. Vengono riportati di seguito i risultati di un analisi discriminante. Test di uguaglianza delle medie di gruppo SELF_EFF COLL_EFF COIN_LAV IMPEGNO SODDISF CAP_IST COLLEGHI Lambda di Wilks

Dettagli

3. Matrici e algebra lineare in MATLAB

3. Matrici e algebra lineare in MATLAB 3. Matrici e algebra lineare in MATLAB Riferimenti bibliografici Getting Started with MATLAB, Version 7, The MathWorks, www.mathworks.com (Capitolo 2) Mathematics, Version 7, The MathWorks, www.mathworks.com

Dettagli

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi) CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON

Dettagli

Misure di dispersione (o di variabilità)

Misure di dispersione (o di variabilità) 14/1/01 Misure di dispersione (o di variabilità) Range Distanza interquartile Deviazione standard Coefficiente di variazione Misure di dispersione 7 8 9 30 31 9 18 3 45 50 x = 9 range=31-7=4 x = 9 range=50-9=41

Dettagli

FACOLTA DI SCIENZE STATISTICHE Corso di laurea in Statistica, Imprese e Mercati Statistica economica (Prof. Filippucci) Prova del 19/12/07

FACOLTA DI SCIENZE STATISTICHE Corso di laurea in Statistica, Imprese e Mercati Statistica economica (Prof. Filippucci) Prova del 19/12/07 FACOLTA DI SCIENZE STATISTICHE Corso di laurea in Statistica, Imprese e Mercati Statistica economica (Prof. Filippucci) Prova del 19/12/07 Nome e cognome N. di Matricola 1.) Quale delle seguenti affermazioni

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Risoluzione di problemi ingegneristici con Excel

Risoluzione di problemi ingegneristici con Excel Risoluzione di problemi ingegneristici con Excel Problemi Ingegneristici Calcolare per via numerica le radici di un equazione Trovare l equazione che lega un set di dati ottenuti empiricamente (fitting

Dettagli

MISURE DI SINTESI 54

MISURE DI SINTESI 54 MISURE DI SINTESI 54 MISURE DESCRITTIVE DI SINTESI 1. MISURE DI TENDENZA CENTRALE 2. MISURE DI VARIABILITÀ 30 0 µ Le due distribuzioni hanno uguale tendenza centrale, ma diversa variabilità. 30 0 Le due

Dettagli

2. ALGORITMO DEL SIMPLESSO

2. ALGORITMO DEL SIMPLESSO . ALGORITMO DEL SIMPLESSO R. Tadei Una piccola introduzione R. Tadei SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Matlab: esempi ed esercizi

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Matlab: esempi ed esercizi UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA Matlab: esempi ed esercizi Sommario e obiettivi Sommario Esempi di implementazioni Matlab di semplici algoritmi Analisi di codici Matlab Obiettivi

Dettagli

CLUSTERING GERARCHICO

CLUSTERING GERARCHICO Clustering Il clustering organizza i geni in gruppi (cluster) con simili pattern di espressione. Spesso i geni apparteni allo stesso cluster sono detti coespressi. Le ragioni per cui si cercano geni coespressi

Dettagli

Data Mining in SAP. Alessandro Ciaramella

Data Mining in SAP. Alessandro Ciaramella UNIVERSITÀ DI PISA Corsi di Laurea Specialistica in Ingegneria Informatica per la Gestione d Azienda e Ingegneria Informatica Data Mining in SAP A cura di: Alessandro Ciaramella La Business Intelligence

Dettagli

MODELLI DI ASSEGNAZIONE PER LE RETI STRADALI

MODELLI DI ASSEGNAZIONE PER LE RETI STRADALI MODELLI DI ASSEGNAZIONE PER LE RETI STRADALI CORSO DI PROGETTAZIONE DEI SISTEMI DI TRASPORTO - I MODELLI DI ASSEGNAZIONE L ASSEGNAZIONE DELLA DOMANDA AD UNA RETE DI TRASPORTO CONSISTE NEL CALCOLARE I FLUSSI

Dettagli

Clustering con Weka. L interfaccia. Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna. Algoritmo utilizzato per il clustering

Clustering con Weka. L interfaccia. Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna. Algoritmo utilizzato per il clustering Clustering con Weka Soluzioni degli esercizi Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna L interfaccia Algoritmo utilizzato per il clustering E possibile escludere un sottoinsieme

Dettagli

1. INTRODUZIONE ALLA CHEMIOMETRIA

1. INTRODUZIONE ALLA CHEMIOMETRIA Chemiometria per la Chimica Analitica 1 1. INTRODUZIONE ALLA CHEMIOMETRIA 1.1 Definizione di Chemiometria La Chemiometria è quella disciplina che permette di affrontare problemi sperimentali complessi

Dettagli

Esplorazione grafica di dati multivariati. N. Del Buono

Esplorazione grafica di dati multivariati. N. Del Buono Esplorazione grafica di dati multivariati N. Del Buono Scatterplot Scatterplot permette di individuare graficamente le possibili associazioni tra due variabili Variabile descrittiva (explanatory variable)

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Indici di posizione e di variabilità Prof. Livia De Giovanni lstatistica@dis.uniroma1.it Esercizio 1 Data la seguente distribuzione unitaria del carattere X: X : 4 2 4 2 6 4

Dettagli

Clustering con Weka. L interfaccia. Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna. Algoritmo utilizzato per il clustering

Clustering con Weka. L interfaccia. Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna. Algoritmo utilizzato per il clustering Clustering con Weka Testo degli esercizi Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna L interfaccia Algoritmo utilizzato per il clustering E possibile escludere un sottoinsieme

Dettagli

Cluster Analysis. Paese Cereali (Ce) Riso (R) Patate (P) Zucchero (Z) Verdure (Ver) Vino (Vi) Carne (Ca) Latte (L) Burro (B) Uova (U)

Cluster Analysis. Paese Cereali (Ce) Riso (R) Patate (P) Zucchero (Z) Verdure (Ver) Vino (Vi) Carne (Ca) Latte (L) Burro (B) Uova (U) Analysis Esempio Stiamo studiando le abitudini alimentari nei Paesi europei. Sulla base dei dati a disposizione, ci chiediamo se si possano individuare sotto-aree con abitudini alimentari simili. Dati:

Dettagli

Lezione 4. Statistica. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Lezione 4. A. Iodice. Indici di posizione.

Lezione 4. Statistica. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Lezione 4. A. Iodice. Indici di posizione. Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 28 Outline 1 Indici 2 3 mediana distribuzioni 4 5 () Statistica 2 / 28 Indici robusti (o ): La moda

Dettagli

Analisi dei gruppi (Cluster analysis)

Analisi dei gruppi (Cluster analysis) Capitolo 10 Analisi dei gruppi (Cluster analysis) Partendo da un collettivo multidimensionale, l analisi dei gruppi mira ad assegnarne le unità a categorie non definite a priori, formando dei gruppi di

Dettagli

Misure di dispersione (o di variabilità)

Misure di dispersione (o di variabilità) 08/04/014 Misure di dispersione (o di variabilità) Range Distanza interquartile Deviazione standard Coefficiente di variazione Misure di dispersione 7 8 9 30 31 9 18 3 45 50 x 9 range31-74 x 9 range50-941

Dettagli

Cluster Analysis 1/40. Cluster Analysis. c 11 giugno 2005 Luca La Rocca

Cluster Analysis 1/40. Cluster Analysis. c 11 giugno 2005 Luca La Rocca Cluster Analysis 1/40 Cluster Analysis Cluster Analysis 1/40 Cluster Analysis è un insieme di tecniche esplorative che mirano a raggruppare le unità statistiche di una popolazione sulla base della loro

Dettagli

PROGETTO IREALP GRUPPO TELECOM ITALIA - FINSIEL SPERIMENTAZIONE DI METODI PER LA MESSA A REGISTRO DELLA BASE CATASTALE SULLA AEROFOTOGRAMMETRIA

PROGETTO IREALP GRUPPO TELECOM ITALIA - FINSIEL SPERIMENTAZIONE DI METODI PER LA MESSA A REGISTRO DELLA BASE CATASTALE SULLA AEROFOTOGRAMMETRIA PROGETTO IREALP SPERIMENTAZIONE DI METODI PER LA MESSA A REGISTRO DELLA BASE CATASTALE SULLA AEROFOTOGRAMMETRIA 1 SCOPO: Trasformare la base catastale e metterla a registro con gli elementi portanti del

Dettagli

INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno

INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno : Gli Algoritmi INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corsi di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Ingegneria della Conoscenza e Sistemi Esperti Lezione 2: Apprendimento non supervisionato

Ingegneria della Conoscenza e Sistemi Esperti Lezione 2: Apprendimento non supervisionato Ingegneria della Conoscenza e Sistemi Esperti Lezione 2: Apprendimento non supervisionato Dipartimento di Elettronica e Informazione Politecnico di Milano Apprendimento non supervisionato Dati un insieme

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. 70 3000 500 000 1500 1000 500 A B C D (a) Capitolo Terzo A B C D 500 1000 1500 000 5003000 3500 Fig. 1 - Ortogramma a colonne (a) e ortogramma a nastri (b) 4. MISURE DI ASSOCIAZIONE E DI COGRADUAZIONE

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano La circonferenza nel piano cartesiano 1. Definizione ed equazione. Si chiama circonferenza C, di centro C( α, β ) e raggio r, l insieme di tutti e soli i punti del piano che hanno distanza r da C. L equazione

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

ISTITUTO COMPRENSIVO BASSA ANAUNIA DENNO PIANO DI STUDIO DI MATEMATICA CLASSE SECONDA. Competenza 1

ISTITUTO COMPRENSIVO BASSA ANAUNIA DENNO PIANO DI STUDIO DI MATEMATICA CLASSE SECONDA. Competenza 1 ISTITUTO COMPRENSIVO BASSA ANAUNIA DENNO PIANO DI STUDIO DI MATEMATICA CLASSE SECONDA Alle fine della CLASSE SECONDA l alunno è in grado di Competenza 1 Competenza 1 Componenti della competenza Abilità

Dettagli

FUNZIONI BOOLEANE. Vero Falso

FUNZIONI BOOLEANE. Vero Falso FUNZIONI BOOLEANE Le funzioni booleane prendono il nome da Boole, un matematico che introdusse un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono

Dettagli

L ALGORITMO DEL SIMPLESSO REVISIONATO

L ALGORITMO DEL SIMPLESSO REVISIONATO L ALGORITMO DEL SIMPLESSO REVISIONATO L'algoritmo del simplesso revisionato costituisce una diversa implementazione dell algoritmo standard tesa a ridurre, sotto certe condizioni, il tempo di calcolo e

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 19 Analisi dell associazione

Dettagli

Guida al calcolo del maggior ricavo o compenso per i contribuenti non soggetti agli studi di settore o ai parametri. (art. 7, Legge n.

Guida al calcolo del maggior ricavo o compenso per i contribuenti non soggetti agli studi di settore o ai parametri. (art. 7, Legge n. Guida al calcolo del maggior ricavo o compenso per i contribuenti non soggetti agli studi di settore o ai parametri (art. 7, Legge n. 289 del 2002) Di seguito sono riportate le informazioni utili al contribuente

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE 1. Distribuzione congiunta Ci sono situazioni in cui un esperimento casuale non si può modellare con una sola variabile casuale,

Dettagli

Esercizi per il corso di. Logistica I. a.a Daniela Favaretto. Dipartimento di Matematica Applicata Università Ca Foscari di Venezia

Esercizi per il corso di. Logistica I. a.a Daniela Favaretto. Dipartimento di Matematica Applicata Università Ca Foscari di Venezia sercizi per il corso di Logistica I a.a. - aniela avaretto ipartimento di Matematica pplicata Università a oscari di Venezia sercizio Individuare un albero di supporto di lunghezza minima (SST) sul seguente

Dettagli

MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA MATEMATICA CONCORRENTI DISCIPLINA DI RIFERIMENTO: MATEMATICA COMPETENZA DISCIPLINE tutte

MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA MATEMATICA CONCORRENTI DISCIPLINA DI RIFERIMENTO: MATEMATICA COMPETENZA DISCIPLINE tutte MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA MATEMATICA CONCORRENTI DISCIPLINA DI RIFERIMENTO: MATEMATICA COMPETENZA DISCIPLINE tutte MATEMATICA CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE Utilizzare

Dettagli

Naïve Bayesian Classification

Naïve Bayesian Classification Naïve Bayesian Classification Di Alessandro rezzani Sommario Naïve Bayesian Classification (o classificazione Bayesiana)... 1 L algoritmo... 2 Naive Bayes in R... 5 Esempio 1... 5 Esempio 2... 5 L algoritmo

Dettagli

BLAST. W = word size T = threshold X = elongation S = HSP threshold

BLAST. W = word size T = threshold X = elongation S = HSP threshold BLAST Blast (Basic Local Aligment Search Tool) è un programma che cerca similarità locali utilizzando l algoritmo di Altschul et al. Anche Blast, come FASTA, funziona: 1. scomponendo la sequenza query

Dettagli

Miglior approssimazione in spazi euclidei

Miglior approssimazione in spazi euclidei Miglior approssimazione in spazi euclidei 15 gennaio 2009 1 Introduzione astratta Sia E uno spazio vettoriale dotato di un prodotto interno (, ) (talvolta un tale spazio è detto euclideo, cf. [7, p.148]),

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Esplorazione grafica di dati multivariati. N. Del Buono

Esplorazione grafica di dati multivariati. N. Del Buono Esplorazione grafica di dati multivariati N. Del Buono Scatterplot Scatterplot permette di individuare graficamente le possibili associazioni tra due variabili Variabile descrittiva (explanatory variable)

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014 A Ricerca Operativa 1 Seconda prova intermedia Un tifoso di calcio in partenza da Roma vuole raggiungere Rio De Janeiro per la finale del mondiale spendendo il meno possibile. Sono date le seguenti disponibilità

Dettagli

Luigi Santoro. Hyperphar Group S.p.A., MIlano

Luigi Santoro. Hyperphar Group S.p.A., MIlano Come modellare il rischio Luigi Santoro Hyperphar Group S.p.A., MIlano Gli argomenti discussi Le definizioni del termine rischio L utilità di un modello predittivo di rischio Come costruire modelli predittivi

Dettagli

L efficienza e la valutazione delle performance Concetti ed introduzione alla D.E.A.

L efficienza e la valutazione delle performance Concetti ed introduzione alla D.E.A. L efficienza e la valutazione delle performance Concetti ed introduzione alla D.E.A. Corso di Economia Industriale Lezione dell 8/01/2010 Valutazione delle peformance Obiettivo: valutare le attività di

Dettagli

Statistica Un Esempio

Statistica Un Esempio Statistica Un Esempio Un indagine sul peso, su un campione di n = 100 studenti, ha prodotto il seguente risultato. I pesi p sono espressi in Kg e sono stati raggruppati in cinque classi di peso. classe

Dettagli

Università di Pisa A.A. 2004-2005

Università di Pisa A.A. 2004-2005 Università di Pisa A.A. 2004-2005 Analisi dei dati ed estrazione di conoscenza Corso di Laurea Specialistica in Informatica per l Economia e per l Azienda Tecniche di Data Mining Corsi di Laurea Specialistica

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva Caso di 1 variabile: i dati si presentano in una tabella: Nome soggetto Alabama Dato 11.6.. Per riassumere i dati si costruisce una distribuzione delle frequenze. 1 Si determina

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Competitive Intelligence Data Mining - Analisi dei dati

Competitive Intelligence Data Mining - Analisi dei dati Competitive Intelligence Data Mining - Analisi dei dati L'applicazione di tecniche di data mining per estrarre conoscenza da banche dati di tipo tecnicoscientifico consente di effettuare studi di "technology

Dettagli

Analisi dei dati di traffico esistenti per la definizione dei profili temporali: metodologia ed esempio di applicazione.

Analisi dei dati di traffico esistenti per la definizione dei profili temporali: metodologia ed esempio di applicazione. XIII Expert panel emissioni da trasporto su strada Roma, 4 ottobre 27 Analisi dei dati di traffico esistenti per la definizione dei profili temporali: metodologia ed esempio di applicazione. C. Lavecchia*;

Dettagli

MATEMATICA classe PRIMA

MATEMATICA classe PRIMA MATEMATICA classe PRIMA OBIETTIVI DI APPRENDIMENTO MATEMATICA Classe PRIMA SECONDARIA A 1.1.1. Riconoscere,rappresentare e operare correttamente con gli insiemi matematici. A 1.1.2. Scrivere, leggere,

Dettagli

Equazioni Polinomiali II Parabola

Equazioni Polinomiali II Parabola Equazioni Polinomiali II Parabola - 0 Equazioni Polinomiali del secondo grado (Polinomi II) Forma Canonica e considerazioni La forma canonica dell equazione polinomiale di grado secondo è la seguente:

Dettagli

Simulazione. D.E.I.S. Università di Bologna DEISNet

Simulazione. D.E.I.S. Università di Bologna DEISNet Simulazione D.E.I.S. Università di Bologna DEISNet http://deisnet.deis.unibo.it/ Introduzione Per valutare le prestazioni di un sistema esistono due approcci sostanzialmente differenti Analisi si basa

Dettagli

RENDITE. Ricerca del tasso di una rendita

RENDITE. Ricerca del tasso di una rendita RENDITE Ricerca del tasso di una rendita Un problema che si presenta spesso nelle applicazioni è quello di calcolare il tasso di interesse associato a una rendita quando siano note le altre grandezze 1

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

Elementi di cluster analysis per la classificazione e il posizionamento nelle ricerche di marketing

Elementi di cluster analysis per la classificazione e il posizionamento nelle ricerche di marketing http://www.mauroennas.eu Elementi di cluster analysis per la classificazione e il posizionamento nelle ricerche di marketing Mauro Ennas 1 Cluster_Analysis.sav OUTPUT_clustering_gerarchico_BAVERAGE.spv

Dettagli

1. Descrivere il significato della seguente istruzione se x è un vettore di 10 elementi reali:

1. Descrivere il significato della seguente istruzione se x è un vettore di 10 elementi reali: Esame Scritto di Calcolo Numerico (Laurea di I Livello in Ingegneria Elettronica) (Laurea di I Livello in Ingegneria delle Telecomunicazioni) I Appello di Maggio 2008 1. Descrivere il significato della

Dettagli

Generazione di Numeri Casuali- Parte 2

Generazione di Numeri Casuali- Parte 2 Esercitazione con generatori di numeri casuali Seconda parte Sommario Trasformazioni di Variabili Aleatorie Trasformazione non lineare: numeri casuali di tipo Lognormale Trasformazioni affini Numeri casuali

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto

Dettagli

Introduzione ai network. Misael Mongiovì

Introduzione ai network. Misael Mongiovì Introduzione ai network Misael Mongiovì Big Network Data Social Transportation Biological, Chemical Communication Information Economics, Trade Network (graph) ingredients Node Edge (arco) Represents an

Dettagli

Clustering Mario Guarracino Data Mining a.a. 2010/2011

Clustering Mario Guarracino Data Mining a.a. 2010/2011 Clustering Introduzione Il raggruppamento di popolazioni di oggetti (unità statistiche) in base alle loro caratteristiche (variabili) è da sempre oggetto di studio: classificazione delle specie animali,

Dettagli

SCUOLA PRIMARIA - MORI

SCUOLA PRIMARIA - MORI ISTITUTO COMPRENSIVO DI MORI Via Giovanni XXIII, n. 64-38065 MORI Cod. Fisc. 94024510227 - Tel. 0464-918669 Fax 0464-911029 www.icmori.it e-mail: segr.ic.mori@scuole.provincia.tn.it REPUBBLICA ITALIANA

Dettagli

Proposta sistema elettorale per elezioni parlamentari

Proposta sistema elettorale per elezioni parlamentari Circolo PD Parigi Data: 11 Agosto 2013 Edizione: 2.0 Proposta sistema elettorale per elezioni parlamentari Questo documento illustra la proposta di un nuovo sistema elettorale pensato per l elezione legislativa

Dettagli

Organizzazione Fisica dei Dati (Parte II)

Organizzazione Fisica dei Dati (Parte II) Modello Fisico dei Dati Basi di Dati / Complementi di Basi di Dati 1 Organizzazione Fisica dei Dati (Parte II) Angelo Montanari Dipartimento di Matematica e Informatica Università di Udine Modello Fisico

Dettagli