Rilassamento Lagrangiano

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Rilassamento Lagrangiano"

Transcript

1

2 Rilassamento Lagrangiano AA 2009/10 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il seguente problema P di programmazione lineare a numeri interi: (P) z(p) = min c T x s.t. Ax b (1) Bx d x {0,1} dove A è una matrice m 1 n, B è una matrice m 2 n, b è un vettore di dimensione m 1, d è un vettore di dimensione m 2 e c ed x sono vettori di dimensioni n. Supponiamo che i vincoli (1) siano vincoli difficili. Il Rilassamento Lagrangiano di P rispetto ai vincoli (1) si ottiene: 1. rilassando dal problema P i vincoli (1); 2. introducendo tali vincoli nella funzione obiettivo associando a loro un vettore di penalità, chiamato vettore delle penalità Lagrangiane (o moltiplicatori Lagrangiani).

3 Rilassamento Lagrangiano AA 2009/10 2 Il rilassamento Lagrangiano di P rispetto ai vincoli Ax b è il seguente problema L(λ): L(λ) z(l(λ)) = min c T x λ(ax b) s.t. Bx d x {0,1} dove λ 0 è il vettore delle penalià Lagrangiane di dimensione m 1 e L(λ) viene chiamata Funzione Lagrangiana. Esempio 1: (P) z(p) = min 3x 1 +7x 2 +10x 3 s.t. x 1 +3x 2 +5x 3 7 x 1,x 2,x 3 {0,1} L(λ) z(l(λ)) = min 3x 1 +7x 2 +10x 3 λ(x 1 +3x 2 +5x 3 7) s.t. x 1,x 2,x 3 {0,1} L importanza di L(λ) sta nel fatto che z(l(λ)), λ 0, è un valido lower bound al costo della soluzione ottima di P, z(p). In certe condizione la soluzione ottima di L(λ) è anche la soluzione ottima di P.

4 Rilassamento Lagrangiano AA 2009/10 3 Teorema (Dualità Lagrangiana Debole). Il valore ottimo z(p) del problema P è maggiore o uguale al valore ottimo z(l(λ)) del problema L(λ), per ogni vettore λ 0, ovvero: z(p) z(l(λ)), λ 0. Dimostrazione. Sia x la soluzione ottima di P. Si noti che x è anche una soluzione ammissibile per L(λ) per ogni λ 0. Si ha quindi che c T x λ(ax b) z(l(λ)) ma λ(ax b) 0 (poichè λ 0 e Ax b), quindi c T x z(l(λ)) ovvero z(p) z(l(λ)), λ 0.

5 Rilassamento Lagrangiano AA 2009/10 4 Set Covering Problem Il Set Covering Problem (SCP) è il problema di coprire le righe di una matrice m n (a ij ) con coefficienti 0 ed 1, con un sottoinsieme di colonne a costo minimo. Sia x j una variabile binaria 0-1 definita come segue: x j = 1 se la colonna j con costo c j è in soluzione; 0 altrimenti. Una formulazione matematica per il problema SCP è la seguente: (SC) z(sc) = min n s.t. n c j x j a ij x j 1, i = 1,...,m (2) x j {0,1}, j = 1,...,n Esempio 2: m = 3, n = 6, c j = [1,2,3,4,5,6] (a ij ) = Soluzione ottima S = {2,3} di costo 5.

6 Rilassamento Lagrangiano AA 2009/10 5 Il Rilassamento Lagrangiano del problema SC rispetto ai vincoli (2) è il seguente: (L(λ)) z(l(λ)) = min n c j x j m λ i ( n a ij x j 1) i=1 s.t. x j {0,1}, j = 1,...,n dove λ i 0,i = 1,...,m. Il problema L(λ) può essere riscritto come segue: (L(λ)) z(l(λ)) = min n (c j m λ i a ij )x j + m i=1 λ i i=1 s.t. x j {0,1}, j = 1,...,n Posto C j = c j m i=1 λ i a ij,j = 1,...,n, L(λ) diventa: (L(λ)) z(l(λ)) = min n C j x j + m λ i i=1 s.t. x j {0,1}, j = 1,...,n la cui soluzione ottima può x essere calcolata ponendo: x j = 1 se C j 0; 0 altrimenti.,j = 1,...,n

7 Rilassamento Lagrangiano AA 2009/10 6 Esempio 3 Si consideri il seguente problem di Set Covering: (P1) z(p1) = min 2x 1 +3x 2 +4x 3 +5x 4 s.t. x 1 +x 3 1 x 1 +x 4 1 x 2 +x 3 +x 4 1 x 1,x 2,x 3,x 4 {0,1} La soluzione ottima è x 1 = x 2 = 1 e x 3 = x 4 = 0. Rilassando mediante le penalità Lagrangiane λ 1, λ 2 e λ 3 i 3 vincoli di P1 si ottiene il seguente problema: (L(λ)) z(l(λ)) = min 2x 1 +3x 2 +4x 3 +5x 4 λ 1 (x 1 +x 3 1) ovvero λ 2 (x 1 +x 4 1) λ 3 (x 2 +x 3 +x4 1) s.t. x 1,x 2,x 3,x 4 {0,1} (L(λ)) z(l(λ)) = min C 1 x 1 +C 2 x 2 +C 3 x 3 +C 4 x 4 +λ 1 +λ 2 +λ 3 s.t. x 1,x 2,x 3,x 4 {0,1} dove C 1 = 2 λ 1 λ 2 C 2 = 3 λ 3 C 3 = 4 λ 1 λ 3 C 4 = 5 λ 2 λ 3

8 Rilassamento Lagrangiano AA 2009/10 7 Se λ 1 = 1.5, λ 2 = 1.6 e λ 3 = 2.2 si ha: C 1 = 2 λ 1 λ 2 = 1.1 C 2 = 3 λ 3 = 0.8 C 3 = 4 λ 1 λ 3 = 0.3 C 4 = 5 λ 2 λ 3 = 1.2 per cui la soluzione ottima x di L(λ) é x 1 = 1,x 2 = x 3 = x 4 = 0 di costo z(l(λ)) = = 4.2 ( 5). Se λ 1 = 1, λ 2 = 1 e λ 3 = 3 si ha: C 1 = 2 λ 1 λ 2 = 0 C 2 = 3 λ 3 = 0 C 3 = 4 λ 1 λ 3 = 0 C 4 = 5 λ 2 λ 3 = 1 per cui la soluzione ottima x è di L(λ) x 1 = x 2 = x 3 = x 4 = 0 di costo L(λ) = = 5 (= z(p1)). Si noti che x non è una soluzione ammissibile per P1. Si noti inoltre che esistono soluzioni ottime alternative di L(λ) tutte di costo z(l(λ)) = 5 che si ottengono ponendo x 1 = 1 e/o x 2 = 1 e/o x 3 = 1 e x 4 = 0. Fra tali soluzioni vi è anche la soluzione ottima di P1.

9 Rilassamento Lagrangiano AA 2009/10 8 Lagrangiano Duale Dal teorema della Dualità debole per cui z(l(λ)) z(p), λ 0, si ha che l ottimo z(d L ) del seguente problema: (D L ) z(d L ) = max λ 0 [z(l(λ))] è un valido lower bound a z(p); ovvero z(d L ) z(p). Il problema D L è detto Lagrangiano Duale di P. Duality Gap Nel caso in cui z(d L ) < z(p) allora si dice che esiste un duality gap fra il problema P e il problema D L. Siaλla soluzione ottima del problema D L. Siainoltre xla soluzione ottima di RL(λ), ovvero: z(d L ) = z(l(λ)) = cx λ(ax b) Si consideri il caso in cui x è anche l ottimo di P, ovvero z(p) = cx. È evidente che z(d L ) < z(p) se λ(ax b) > 0.

10 Rilassamento Lagrangiano AA 2009/10 9 Esempio 4 (P) z(p) = min 3x 1 +7x 2 +10x 3 s.t. x 1 +3x 2 +5x 3 7 x 1,x 2,x 3 {0,1} (L(λ)) z(l(λ)) = min 3x 1 +7x 2 +10x 3 λ(x 1 +3x 2 +5x 3 7) s.t. x 1,x 2,x 3 {0,1} ovvero (L(λ)) z(l(λ)) = min (3 λ)x 1 +(7 3λ)x 2 +(10 5λ)x 3 +7λ s.t. x 1,x 2,x 3 {0,1} Per calcolare z(d L ), calcoliamo L(λ), λ 0: λ = 0, z(l(0)) = 0 e x = (0,0,0); λ = 1, z(l(1)) = 7 e x = (0,0,0); λ = 2, z(l(2)) = 14 e x = (0,0,0) oppure x = (0,0,1); λ = 7 3, z(l(7 44 )) = 3 3 e x = (0,0,1) oppure x = (0,1,1); λ = 3, z(l(3)) = 14 e x = (0,1,1) oppure x = (1,1,1); λ > 3, z(l(λ)) = 2λ+20 e x = (1,1,1). Quindi esiste un gap di dualità in quanto z(d L ) = 44 3 (= z(l(7 3 ))), z(p) = 17 e x = (0,1,1), che corrisponde ad una delle soluzioni di z(l( 7 3 )).

11 Rilassamento Lagrangiano AA 2009/10 10 Teorema (Dualità Lagrangiana Forte). Sia x la soluzione ottima di L(λ) per un dato λ 0. Se x e λ soddisfano le seguenti condizioni: x è ammissibile per P(ovvero Ax b) e (3) λ(ax b) = 0, (4) allora x è la soluzione ottima di P ed inoltre z(d L ) = z(l(λ)). Dimostrazione. Dimostriamo x è una soluzione ottima di P. Essendo x soluzione ammissibile di P si ha cx z(p). (5) Per il teorema della dualità Lagrangiana debole si ha: Quindi da (5( e (6) si ottiene z(p) L(λ) = cx λ(ax b) ). (6) } {{ } =0 per la (4 cx z(p) cx ovvero z(p) = cx (= z(l(λ))). (7) Dimostriamo che z(d L ) = z(l(λ)). Per come è definito il problema D L si ha che: z(d L ) L(λ) z(p) z(d L ) (8) Quindi da (7) e (8) si ottiene z(d L ) = z(p).

12 Rilassamento Lagrangiano AA 2009/10 11 Considerazioni Si noti che le condizioni del teorema della dualità lagrangiana forte sono sufficienti, ma non necessarie. Nell esempio 4 la soluzione duale ottima che si ha per λ = 7 3 soluzione ottima del problema primale (x = (0,1,1)), ma: fornisce la λ(ax b) = λ(x 1 +3x 2 +5x 3 7) = 7 3 ( ) = Dato un problema P: Quali vincoli devono essere rilassati in modo Lagrangiano? È necessario considerare rilassamenti per i quali la complessità computazionale necessaria per risolvere il problema L(λ) è di tipo polinomiale o pseudopolinomiale; Come risolvere il problema D L? Il numero di penalità Lagrangiane necessarie per effettuare il rilassamento influenza la complessità computazionale necessaria per risolvere il problema D L ; Che relazioni ci sono fra il Rilassamento Lineare di P ed il Rilassamento Lagrangiano di P?

13 Rilassamento Lagrangiano AA 2009/10 12 Relazione fra il Rilassamento Lineare ed il Rilassamento Lagrangiano Il miglior lower bound ottenuto rilassando in modo Lagrangiano il problema P (ovvero la soluzione ottima del lagrangiano duale) è sempre maggiore o uguale al lower bound ottenuto dal rilassamento lineare di P z(lp) z(d L ) Proprietà di integralità Definizione: proprietà di integralità. Si dice che il Rilassamento Lagrangiano L(λ) soddisfa la proprietà di integralità se la regione ammissibile di L(λ) (per un dato vettore λ 0) ha solo vertici interi. Ne consegue che per qualunque vettore di costi c T z(l(λ)) = z(ril. lineare di L(λ)) Teorema (Proprietà d integralità). Se il Rilassamento Lagrangiano L(λ) di P soddisfa la proprietà di integralità, allora z(d L ) = z(lp).

14 Rilassamento Lagrangiano AA 2009/10 13 Assegnamento Generalizzato Sono dati m contenitori ed n oggetti. Il contenitore j ha una capacità pari a b j (j = 1,...,m). Ogni oggetto i (i = 1,...,n) occupa una spazio pari a a ij nel contenitore j (j = 1,...,m). Sia c ij il costo per assegnare l oggetto i al contenitore j. Si vuole assegnare ogni oggetto ad uno ed un solo contenitore nel rispetto della capacità dei contenitori e minimizzando il costo complessivo. Una formulazione matematica è la seguente: x ij = 1 se l oggetto i viene assegnato al contenitore j; 0 altrimenti. (AG) z(ag) = Min n s.t. m i=1 m n i=1 c ij x ij x ij = 1,i = 1,...,n (9) a ij x ij b j,j = 1,...,m (10) x ij {0,1},i = 1,...,n,j = 1,...,m I vincoli (9) impongono che ogni oggetto sia assegnato ad un ed un solo contenitore, mentre le disuguaglianze (10) impongono il vincolo sulla capacità dei contenitori.

15 Rilassamento Lagrangiano AA 2009/10 14 Si considerino i seguenti tre Rilassamenti del problema AG: - Rilassamento Lagrangiano rispetto ai vincoli (9): z(l 1 (λ)) = min n s.t. m i=1 n i=1 (c ij λ i )x ij + n λ i i=1 a ij x ij b j,j = 1,...,m x ij {0,1},i = 1,...,n,j = 1,...,m - Rilassamento Lagrangiano rispetto ai vincoli (10): z(l 2 (µ)) = min n s.t. m i=1 m (c ij +a ij µ j )x ij m x ij = 1,i = 1,...,n µ j b j x ij {0,1},i = 1,...,n,j = 1,...,m µ j 0,j = 1,...,m - Rilassamento Lagrangiano rispetto ai vincoli (9) e (10): z(l 3 (λ,µ)) = min n m i=1 (c ij λ i +a ij µ j )x ij + n i=1 λ i m s.t. x ij {0,1},i = 1,...,n,j = 1,...,m µ j 0,j = 1,...,m µ j b j Siccome L 2 e L 3 soddisfano la proprietà di integralità e possono essere facilmente risolti per ispezione. Si ha z(d L2 ) = z(d L3 ) = z(lp). Per quanto riguarda L 1, si ha z(d L1 ) z(lp). Si noti che la risoluzione di L 1 (λ) coinvolge la risoluzione di m problemi di knapsack.

16 Rilassamento Lagrangiano AA 2009/10 15 Risoluzione del Lagrangiano Duale Teorema La Funzione Lagrangiana è concava. z(l(λ)) = z(l(αλ 1 +(1 α)λ 2 )) z(l(λ 2 )) αz(l(λ 1 ))+(1 α)z(l(λ 2 )) z(l(λ 1 )) λ 1 λ = αλ 1 +(1 α)λ 2 λ 2 αz(l(λ 1 ))+(1 α)z(l(λ 2 )) z(l(λ)). Subgradiente Un vettore s è detto subgradiente di L(λ) in λ se soddisfa: z(l(λ)) z(l(λ))+s(λ λ) z(l(λ))+s(λ λ)) z(l(λ)) z(l(λ)) λ λ

17 Rilassamento Lagrangiano AA 2009/10 16 Il Lagrangiano Duale (D L ) z(d L ) = max λ 0 [z(l(λ))] potrebbe essere risolto come un problema di Programmazione Lineare Continua, ma spesso risulta molto oneroso dal punto di vista computazionale. Per risolvere D L si usano perciò altri metodi, di tipo euristico, fra i quali l ottimizzazione subgradiente. 1. Calcola la funzione z(l(λ)) per λ dato. 2. Calcola un subgradiente s in λ; 3. λ := λ+θs (un passo nella direzione del subgradiente) 4. Se non è attivo un criterio di arresto, then goto 1. Il metodo genera una sequenza finita di vettori λ 1,λ 2,...,λ k e di valori z(l(λ 1 )), z(l(λ 2 )),...,z(l(λ k )) N.B. i valori z(l(λ i )) non sono monotoni!

18 Rilassamento Lagrangiano AA 2009/10 17 Calcolo del subgradiente Dato λ sia x la soluzione di RL(λ), ovvero Per un generico λ si ha che z(l(λ)) = cx λ(ax b) (11) z(l(λ)) = min x X (ct x λ(ax b)) cx λ(ax b) (12) Sottraendo dalla (12) la (11) si ottiene: ovvero z(l(λ)) z(l(λ)) (λ λ)(ax b) z(l(λ)) z(l(λ)) (Ax b)(λ λ) ne segue che s = (Ax b) è un subgradiente di z(l(λ)) in λ. Affinche z(l(λ)) sia maggiore di z(l(λ)) è necessario che: (Ax b)(λ λ) > 0, ovvero, è necessario muoversi nella direzione del subgradiente: λ = λ+θs, θ > 0 Il problema (non facile) è quello di determinare il valore di θ.

19 Rilassamento Lagrangiano AA 2009/10 18 Metodo del Subgradiente Indichiamo in forma di sommatoria i vincoli Ax b, ovvero, n a ij x j b i, i = 1,...,m 1. Algoritmo Subgradiente Step 1. Sia α un parametro predefinito. Poni LB =. Sia inoltre z(u B) il costo di una soluzione euristica al problema. Si ponga λ i = 0,i = 1,...,m 1. Step 2. Si risolva il problema L(λ). Sia x la soluzione ottima di L(λ) di costo z(l(λ)). Poni LB = max[lb,l(λ)]. Se Ax b e λ(ax b) = 0 allora x è la soluzione ottima di P. Step 3. Siano s i, i = 1,...,m 1, i subgradienti per i vincoli rilassati, calcolati come: s i = b i n a ij x j, i = 1,...,m 1. Step 4. θ = α[z(ub) z(l(λ))] / m 1 Step 5. Si aggiornino le Penalita Lagrangiane nel seguente modo: λ i = max[0,λ i +θs i ], i = 1,...,m 1. Vai allo Step 2. i=1 s 2 i.

20 Rilassamento Lagrangiano AA 2009/10 19 In genere 0 < α 2. Osservazioni Il valore di α va opportunatamente ridotto (α = α/2) se per iterazioni risulta z(l(λ)) LB. In genere = 20. In generale è necessario imporre un numero massimo di iterazioni all algoritmo in quanto non vi è nessuna garanzia sulla sua terminazione. Il lower bound z(l(λ)) prodotto ad una generica iterazione può essere inferiore al lower bound prodotto all iterazione precedente. Il lower bound LB tende a crescere rapidamente durante le primi iterazioni dell algoritmo per poi convergere lentamente verso z(d L ).

21 Rilassamento Lagrangiano AA 2009/10 20 Set Covering Si consideri il problema di Set Covering dell esercizio 3. Una possibile iterazione del Metodo Subgradiente è la seguente. Step 1. Poni α = 2. Poni z(u B) = 6 (soluzione euristica ottenuta ponendo x 1 = x 3 = 1, x 2 = x 4 = 0). Poni λ 1 = 1.5, λ 2 = 1.6 e λ 3 = 2.2. Step 2. La soluzione di L(λ) è x 1 = 1 e x 2 = x 3 = x 4 = 0 con z(l(λ)) = 4.2 Step 3. Le equazioni per il subgradiente sono: s 1 = (1 x 1 x 3 ) = 0 s 2 = (1 x 1 x 4 ) = 0 s 3 = (1 x 2 x 3 x 4) = 1 Step 4. θ = 2(6 4.2) ( ) = 3.6 Step 5. L aggiornamento delle penalità Lagrangiane produce: λ 1 = max(0, (0)) = 1.5 λ 2 = max(0, (0)) = 1.6 λ 3 = max(0, (1)) = 5.8 L iterazione successiva produce: x 1 = x 2 = x 3 = x 4 = 1 con z(l(λ)) = 0.7 (< 4.2).

22 Rilassamento Lagrangiano AA 2009/10 21 Rilassamenti con vincoli di tipo diverso Si consideri il seguente problema P di programmazione lineare a numeri interi: (P) z(p) = min c T x s.t. A 1 x b 1 (13) A 2 x b 2 (14) A 3 x = b 3 (15) Bx d x {0,1} dove A 1 è una matrice m 1 n, A 2 è una matrice m 2 n ed A 3 è una matrice m 3 n. Il rilassamento Lagrangiano del problema P secondo i vincoli (13), (14) e (15) è il seguente: (L(λ,µ,ω)) z(l(λ,µ,ω) = min c T x λ(a 1 x b 1 )+ s.t. µ(a 2 x b 2 ) ω(a 3 x b 3 ) Bx d x {0,1} λ,µ 0 - λ: vettore di dimensione m 1 associato ai vincoli (13); - µ: vettore di dimensione m 2 associato ai vincoli (14); - ω: vettore (libero) di dimensione m 3 associato ai vincoli (15);

23 Rilassamento Lagrangiano AA 2009/10 22 Nel caso del problema P lo Step 5 del Metodo del Subgradiente si modifica come segue: Calcolo dei subgradienti (Step 3): - G i = b 1 i n - F i = b 2 i n - H i = b 3 i n a 1 ijx j, i = 1,...,m 1 ; a 2 ijx j, i = 1,...,m 2 ; a 3 ijx j, i = 1,...,m 3. Calcolo dello step T (Step 4): θ = m 1 i=1 α(z(ub) L(λ)) G 2 i + m 2 Fi 2 + m 3 Hi 2 i=1 i=1 (16) Per quanto riguarda l aggiornamento delle penalità Lagrangiane si ha (Step 5): - A 1 x b 1 : λ i = max[0,λ i +θg i ], i = 1,...,m 1 ; - A 2 x b 2 : µ i = max[0,µ i +θf i ], i = 1,...,m 2 ; - A 3 x b 3 : ω i = ω i +θh i, i = 1,...,m 3.

Rilassamento Lagrangiano

Rilassamento Lagrangiano RILASSAMENTO LAGRANGIANO 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il seguente problema

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il p. 1/4 Algoritmi esatti La teoria ci dice che per problemi difficili (come il KNAPSACK o, ancora di più, il TSP ) i tempi di risoluzione delle istanze, calcolati tramite analisi worst-case, tendono a crescere

Dettagli

Programmazione Lineare Intera: Piani di Taglio

Programmazione Lineare Intera: Piani di Taglio Programmazione Lineare Intera: Piani di Taglio Andrea Scozzari a.a. 2014-2015 April 22, 2015 Andrea Scozzari (a.a. 2014-2015) Programmazione Lineare Intera: Piani di Taglio April 22, 2015 1 / 23 Programmazione

Dettagli

Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4

Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4 Macchine parallele M 1 J 1 J 2 LAVORI M 2 J 3 J 4 M 3 Macchine parallele Scheduling su macchine parallele scorrelate R C max Descrizione del problema n lavori devono essere processati da m macchine diverse

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (5 punti) Sia dato il seguente problema di PL: max x + x 2 x 2x 2 + x 3 = 4 x x 2 x 3 = 3 x 2 + 2x 3 = x, x 2, x 3 0 Utilizzando il metodo due fasi, si stablisca

Dettagli

5.3 Metodo dei piani di taglio

5.3 Metodo dei piani di taglio 5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

Tecniche di rilassamento

Tecniche di rilassamento Tecniche di rilassamento 1 Introduzione Consideriamo un problema di ottimizzazione P in forma di minimo (P ) min f(x), x F (P ) Possimo definire un nuovo problema R nel seguente modo: (R) min Φ(x), x F

Dettagli

Programmazione Lineare Intera

Programmazione Lineare Intera Programmazione Lineare Intera Andrea Scozzari a.a. 2012-2013 May 10, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare Intera May 10, 2013 1 / 16 Programmazione Lineare Intera: Metodo dei Piani

Dettagli

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR 1 Giovedí 14 Maggio 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Geometria di R n 1 Dare la definizione di Poliedro e Vertice di un Poliedro 2 Dare la definizione di Poliedro e di Politopo

Dettagli

Problemi di Flusso: Il modello del Trasporto

Problemi di Flusso: Il modello del Trasporto Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su

Dettagli

3.4 Metodo di Branch and Bound

3.4 Metodo di Branch and Bound 3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land

Dettagli

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.0 Aprile 2004 Algoritmo del Simplesso L algoritmo del Simplesso

Dettagli

Problemi di localizzazione di servizi (Facility Location Problems)

Problemi di localizzazione di servizi (Facility Location Problems) 9. Problemi di Localizzazione di Servizi 1 Problemi di localizzazione di servizi (Facility Location Problems) Dato un insieme di clienti richiedenti una data domanda di merce e dato un insieme di possibili

Dettagli

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0 Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2014-2015 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Daniele Vigo rev. 1.1.a ottobre 2014 Fondamenti di Ricerca Operativa

Dettagli

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Problema di PLI in forma standard: max cx Ax = b x 0, x I n I insieme degli interi. Regione ammissibile:

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione)

RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione) RICERCA OPERATIVA Tema d esame del 04/03/2008 (Simulazione) COGNOME: NOME: MATRICOLA:. Una nota azienda automobilistica produce due modelli di auto (un utilitaria e una berlina), che rivende con un guadagno

Dettagli

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli.

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli. ESERCIZIO 1 Sia dato il grafo orientato in Figura 1. Si consideri il problema di flusso a 1 2 4 Figura 1: costo minimo su tale grafo con b 1 = 4 b 2 = 2 b = b 4 = e c 12 = 2 c 1 = 4 c 14 = 1 c 2 = 1 c

Dettagli

5.5 Metodi generali per la soluzione di problemi

5.5 Metodi generali per la soluzione di problemi 5.5 Metodi generali per la soluzione di problemi di PLI I problemi di PLI hanno caratteristiche molto diverse dai problemi di PL. In alcuni casi, la soluzione del problema lineare rilassato, ottenuto cioè

Dettagli

Parte III: Algoritmo di Branch-and-Bound

Parte III: Algoritmo di Branch-and-Bound Parte III: Algoritmo di Branch-and-Bound Divide et Impera Sia z * max {c T x : x S} (1) un problema di ottimizzazione combinatoria difficile da risolvere. Domanda: E possibile decomporre il problema (1)

Dettagli

Programmazione a numeri interi: il metodo del Branch and Bound

Programmazione a numeri interi: il metodo del Branch and Bound Programmazione a numeri interi: il metodo del Branch and Bound L. De Giovanni G. Zambelli Un problema di programmazione lineare intera è una problema della forma z I = maxc T x Ax b x 0 x i Z, i I. (1)

Dettagli

TEORIA della DUALITÀ. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Teoria della Dualità / 1.

TEORIA della DUALITÀ. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Teoria della Dualità / 1. Prof. R. adei EORIA della DUALIÀ Una piccola introduzione R. adei 1 R. adei 2 EORIA DELLA DUALIA' Il concetto di dualità fu introdotto nel 1947 da Von Neumann, anche se il teorema della dualità fu formulato

Dettagli

Il modello duale. Capitolo settimo. Introduzione

Il modello duale. Capitolo settimo. Introduzione Capitolo settimo Il modello duale Introduzione Il modello duale e la teoria della dualità assumono una grande importanza nella teoria della programmazione matematica. In questo testo i modelli primale

Dettagli

Il metodo dei Piani di Taglio (Cutting Planes Method)

Il metodo dei Piani di Taglio (Cutting Planes Method) Il metodo dei Piani di Taglio (Cutting Planes Method) E un metodo di soluzione dei problemi (IP) di tipo generale. L idea di base: Se la soluzione di (RL) non è intera allora la soluzione ottima intera

Dettagli

Risoluzione di problemi di programmazione lineare tramite generazione di colonne

Risoluzione di problemi di programmazione lineare tramite generazione di colonne Risoluzione di problemi di programmazione lineare tramite generazione di colonne A. Agnetis 1 Introduzione In alcune applicazioni, un problema può essere formulato in termini di programmazione lineare,

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2015-2016 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Paolo Tubertini, Daniele Vigo rev. 2. ottobre 2016 Fondamenti di

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 3 La dualità nella Programmazione Lineare 3.1 Teoria della dualità Esercizio 3.1.1 Scrivere il problema duale del seguente problema di Programmazione Lineare: min x 1 x 2 + x 3 2x 1 +3x 2 3 x

Dettagli

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 Esercizio 1 Si risolva con il metodo branch-and-bound il seguente problema di PLI max x 1 + x 4x 1 + x + x = 0 x 1 + x + x 4 = x 1, x, x, x 4 0 x 1, x,

Dettagli

Si consideri il seguente tableau ottimo di un problema di programmazione lineare

Si consideri il seguente tableau ottimo di un problema di programmazione lineare ESERCIZIO 1 Si consideri il seguente tableau ottimo di un problema di programmazione lineare -25/3 0 4/3 19/6 9/2 0 0 0 7/6 1 0 1-1/2-3/2 1 0 0 3/2 11/3 1-2/3-1/3 0 0 0 0 2/3 2/3 0 1/3 1/6-1/2 0 1 0 7/6

Dettagli

1 Il metodo dei tagli di Gomory

1 Il metodo dei tagli di Gomory Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare

Dettagli

Ricerca Operativa A.A. 2007/ Analisi di sensitività

Ricerca Operativa A.A. 2007/ Analisi di sensitività Ricerca Operativa A.A. 7/8. Analisi di sensitività Luigi De Giovanni - Ricerca Operativa -. Analisi di sensitività. Analisi di Sensitività: motivazioni I parametri (A, b e c) di un problema di programmazione

Dettagli

Esercizi sulla Programmazione Lineare Intera

Esercizi sulla Programmazione Lineare Intera Soluzioni 4.7-4.0 Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare Intera 4.7 Algoritmo del Simplesso Duale. Risolvere con l algoritmo del simplesso duale il seguente

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi Risolutivi per la Programmazione Lineare Intera

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi Risolutivi per la Programmazione Lineare Intera Metodi e Modelli per l Ottimizzazione Combinatoria Metodi Risolutivi per la Programmazione Lineare Intera L. De Giovanni G. Zambelli Un problema di programmazione lineare intera é una problema della forma

Dettagli

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI 3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:

Dettagli

OTTIMIZZAZIONE LINEARE MULTICRITERIO

OTTIMIZZAZIONE LINEARE MULTICRITERIO OTTIMIZZAZIONE LINEARE MULTICRITERIO NOTAZIONE Siano x ed y vettori di R n indicati estesamente con x x x x 1 Μ i Μ n, y y1 Μ yi Μ y n e si ponga N = {1,2,, n}. Scriveremo allora: x y ( x è diverso da

Dettagli

Esercizi su ottimizzazione vincolata

Esercizi su ottimizzazione vincolata Esercizi su ottimizzazione vincolata 1. Rispondere alle seguenti domande (a) Quando un vincolo di disuguaglianza è detto attivo? (b) Cosa è l insieme delle soluzioni ammissibili? Gli algoritmi di ricerca

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera 0 Teoria della Programmazione Lineare Intera 0. INTRODUZIONE Come visto precedentemente, molti problemi particolarmente importanti dal punto di vista applicativo sono riconducibili alla soluzione di un

Dettagli

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema Compito di Ricerca Operativa II Esercizio ( punti). ia dato il problema di flusso massimo sulla rete in figura (le capacit a degli archi sono riportate sopra di essi). 0 8 i consideri il seguente flusso

Dettagli

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si

Dettagli

5.5 Metodi dei piani di taglio

5.5 Metodi dei piani di taglio 5.5 Metodi dei piani di taglio Problema generale di Programmazione Lineare Intera (PLI) max{c t x : x X} dove X = {x Z n + : Ax b}, con A matrice m n e b vettore n 1 razionali Proposizione: conv(x) = {x

Dettagli

Introduzione alla programmazione lineare

Introduzione alla programmazione lineare Introduzione alla programmazione lineare struttura del problema di PL forme equivalenti rappresentazione e soluzione grafica rif. Fi 1.2; BT 1.1, 1.4 Problema di programmazione lineare Dati: un vettore

Dettagli

Esercizi di Programmazione Lineare - Dualità

Esercizi di Programmazione Lineare - Dualità Esercizi di Programmazione Lineare - Dualità Esercizio n1 Dato il seguente problema 3 + 3 2 2 + a scriverne il duale; b risolvere il duale (anche geometricamente indicando cosa da esso si può dedurre sul

Dettagli

Ottimizzazione Combinatoria e Reti (a.a. 2007/08)

Ottimizzazione Combinatoria e Reti (a.a. 2007/08) o Appello 6/07/008 Ottimizzazione Combinatoria e Reti (a.a. 007/08) Nome Cognome: Matricola: ) Dopo avere finalmente superato l esame di Ricerca Operativa, Tommaso è pronto per partire in vacanza. Tommaso

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

5.4.5 Struttura dell algoritmo ed esempi

5.4.5 Struttura dell algoritmo ed esempi CAPITOLO 5. IL METODO DEL SIMPLESSO 6 5.4.5 Struttura dell algoritmo ed esempi Come abbiamo già ampiamente osservato, la fase II del metodo del simplesso, a partire da una soluzione di base ammissibile,

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Per formalizzare il concetto sono necessarie alcune nozioni relative ai poliedri e alla loro descrizione.

Per formalizzare il concetto sono necessarie alcune nozioni relative ai poliedri e alla loro descrizione. 3.7.4 Disuguaglianze valide forti Cerchiamo disuguaglianze valide forti, ovvero disuguaglianze valide che forniscano migliori formulazioni (più stringenti). Per formalizzare il concetto sono necessarie

Dettagli

Contenuto e scopo presentazione. Modelli Lineari Interi/Misti. Piani di taglio. Piani di taglio. Piani di taglio Versione 31/08/

Contenuto e scopo presentazione. Modelli Lineari Interi/Misti. Piani di taglio. Piani di taglio. Piani di taglio Versione 31/08/ Contenuto e scopo presentazione Contenuto: viene presentato un altro metodo di soluzione di problemi di ILP o di MILP. Modelli Lineari Interi/Misti Piani di taglio Versione /8/. Scopo: fornire le capacità

Dettagli

Problemi di localizzazione

Problemi di localizzazione Problemi di localizzazione Claudio Arbib Università di L Aquila Prima Parte (marzo 200): problemi con singolo decisore . Introduzione Un problema di localizzazione consiste in generale nel decidere dove

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

u(ax b) = Consideriamo il generico moltiplicatore u i 0. Se la corrispondente quantità n

u(ax b) = Consideriamo il generico moltiplicatore u i 0. Se la corrispondente quantità n Bound di tipo duale: Rilassamento Lagrangiano In questo paragrafo descriveremo, attraverso un esempio, che cosa si intende per Rilassamento Lagrangiano. Si consideri la seguente formulazione: min s.t.

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

Ricerca Operativa. Ricerca Operativa p. 1/6

Ricerca Operativa. Ricerca Operativa p. 1/6 Ricerca Operativa Ricerca Operativa p. 1/6 Ricerca Operativa Disciplina basata sulla modellizzazione e la risoluzione tramite strumenti automatici di problemi di decisione complessi. In tali problemi la

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

COMPITO DI RICERCA OPERATIVA. (5 punti) Sia dato il seguente problema di PL: min x 1 + x 2 x 1 + x 2 3 x 1 + x 2 2 2x 1 + x 2 3.

COMPITO DI RICERCA OPERATIVA. (5 punti) Sia dato il seguente problema di PL: min x 1 + x 2 x 1 + x 2 3 x 1 + x 2 2 2x 1 + x 2 3. COMPITO DI RICERCA OPERATIVA ESERCIZIO 1. (5 punti) Sia dato il seguente problema di PL: min x 1 + x 2 x 1 + x 2 x 1 + x 2 2 2x 1 + x 2 x 1 0 x 2 0 Si trasformi questo problema in forma standard e lo si

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

2. ALGORITMO DEL SIMPLESSO

2. ALGORITMO DEL SIMPLESSO . ALGORITMO DEL SIMPLESSO R. Tadei Una piccola introduzione R. Tadei SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

ASSEGNAMENTO DELLE OPERAZIONI DI TAGLIO NELLA PRODUZIONE DI CAPI DI ABBIGLIAMENTO

ASSEGNAMENTO DELLE OPERAZIONI DI TAGLIO NELLA PRODUZIONE DI CAPI DI ABBIGLIAMENTO ASSEGNAMENTO DELLE OPERAZIONI DI TAGLIO NELLA PRODUZIONE DI CAPI DI ABBIGLIAMENTO Lo scenario produttivo Una nota azienda produce capi di abbigliamento per l alta moda Ogni capo è costituito da vari pezzi

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

4. METODI DUALI DEL SIMPLESSO

4. METODI DUALI DEL SIMPLESSO 4. MEODI DUALI DEL SIMPLESSO R. adei 1 Una piccola introduzione R. adei 2 MEODI DUALI DEL SIMPLESSO L obiettivo del capitolo è illustrare e giustificare i metodi duali del simplesso. Entrambi i metodi

Dettagli

PROGRAMMAZIONE LINEARE E DUALITA'

PROGRAMMAZIONE LINEARE E DUALITA' PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

a ij x j ) L i vincoli rilassati: a ij x j b i (i = 1,..., m) si inizia con un λ qualunque (es. λ i = 0 i);

a ij x j ) L i vincoli rilassati: a ij x j b i (i = 1,..., m) si inizia con un λ qualunque (es. λ i = 0 i); Determinazione di buoni moltiplicatori lagrangiani 1) Quando possibile, mediante analisi teorica del problema. 2) Metodo iterativo. Consideriamo il caso: funzione obiettivo: c j x j + λ i (b i j i j vincoli

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 23 Marzo Il Metodo del Simplesso Java API Problema di Trasporto

Ricerca Operativa. G. Liuzzi. Lunedí 23 Marzo Il Metodo del Simplesso Java API Problema di Trasporto 1 Lunedí 23 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR SHHHHH... Simplesso in 2 fasi Fase I (rg(a) m) Se P non è ammissibile, STOP Altrimenti 1 elimina da (A... b) eventuali

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8 Teoria della Programmazione Lineare Teoria della Programmazione Lineare p. 1/8 I problemi di PL in forma canonica In forma scalare: max n j=1 c jx j n j=1 a ijx j b i x j 0 i = 1,...,m j = 1,...,n Teoria

Dettagli

Ottimizzazione e Controllo 2015/2016 ESERCITAZIONE

Ottimizzazione e Controllo 2015/2016 ESERCITAZIONE Ottimizzazione e Controllo 2015/2016 ESERCITAZIONE Esercizio 1. Sono dati 6 job da processare su un centro di lavorazione automatizzato che può eseguire una sola lavorazione alla volta. Di ciascun job

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Corso di Matematica Applicata A.A

Corso di Matematica Applicata A.A Corso di Matematica Applicata A.A. 2012-2013 Programmazione lineare (II parte) Prof.ssa Bice Cavallo Soluzione di un problema PL Soluzione ottima Variabili slack e surplus A R mxn Ax b s R m, s i 0 : Ax

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera Teoria della Programmazione Lineare Intera Laura Galli Dipartimento di Informatica Largo B. Pontecorvo, 567 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 7 Ottobre 0 Ricerca Operativa Laurea

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Mirano a costruire la soluzione x di un sistema lineare come limite di una successione di vettori Per matrici piene di ordine n il costo computazionale è dell ordine

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi basati su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi basati su generazione di colonne Metodi e Modelli per l Ottimizzazione Combinatoria Metodi basati su generazione di colonne L. De Giovanni G. Zambelli 1 Un problema di taglio di tondini di ferro Un azienda metallurgica produce tondini

Dettagli

Programmazione Lineare

Programmazione Lineare Programmazione Lineare Andrea Scozzari a.a. 2012-2013 March 14, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare March 14, 2013 1 / 18 Metodo del Simplesso Dato un problema di PL in forma standard

Dettagli

Problemi lineari equivalenti

Problemi lineari equivalenti Problemi lineari equivalenti Introduzione Nel seguito verranno presentati alcuni esempi di trasformazione di problemi di problemi di programmazione lineare in forme equivalenti. Un problema di programmazione

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Convergenza del Simplesso e regole anti-ciclaggio

Convergenza del Simplesso e regole anti-ciclaggio Convergenza del Simplesso e regole anti-ciclaggio degenerazione e ciclaggio un esempio di ciclaggio regole anti-ciclaggio rif. Fi 3.2.6, BT 3.4 (Esempio 3.6), BT 3.7; Sulla convergenza del metodo del simplesso

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

AA Appello del 27 Novembre 2009 Compito A

AA Appello del 27 Novembre 2009 Compito A Metodi e Modelli di Ottimizzazione Discreta, I parte; Appello del 27 Novembre 2009 Compito A 1). Scrivere una formulazione per il seguente problema. Una ditta di spedizioni deve spedire via nave dei grossi

Dettagli

Branch-and-bound per TSP

Branch-and-bound per TSP p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza dobbiamo specificare: p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza

Dettagli

+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato

+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato Sistemi di equazioni SISTEMI LINEARI Un sistema di equazioni è un insieme di equazioni per le quali si cercano eventuali soluzioni comuni. +=7 =1 Ognuna delle due equazioni ha infinite soluzioni. La coppia

Dettagli

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III)

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III) Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III) L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di

Dettagli

2.6 Calcolo degli equilibri di Nash

2.6 Calcolo degli equilibri di Nash 92 2 Giochi non Cooperativi Per queste estensioni di giochi non finiti si possono provare risultati analoghi a quelli visti per i giochi finiti. Rimandiamo alla bibliografia per uno studio più approfondito

Dettagli

Esercitazione n o 3 per il corso di Ricerca Operativa

Esercitazione n o 3 per il corso di Ricerca Operativa Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento October 17, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua

Dettagli

L ALGORITMO DEL SIMPLESSO REVISIONATO

L ALGORITMO DEL SIMPLESSO REVISIONATO L ALGORITMO DEL SIMPLESSO REVISIONATO L'algoritmo del simplesso revisionato costituisce una diversa implementazione dell algoritmo standard tesa a ridurre, sotto certe condizioni, il tempo di calcolo e

Dettagli