OLAP On Line Analytical Processing
|
|
|
- Romano Petrucci
- 10 anni fa
- Visualizzazioni
Transcript
1 OLAP On Line Analytical Processing Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria [email protected] Testo di Riferimento: J. Han, M. Kamber Data Mining: Concepts and Techniques 1
2 Outline Motivazioni Il Contesto Applicativo I Cardini di OLAP Modelli Concettuali a Supporto della Progettazione di OLAP Data Modelli Logici a Supporto della Progettazione di OLAP Data Modello Multidimensionale dei Dati Operatori ed Operazioni OLAP Un esempio Modelli di Rappresentazione Fisica di OLAP Data Commercial OLAP Server Systems 2
3 Outline Motivazioni Il Contesto Applicativo I Cardini di OLAP Modelli Concettuali a Supporto della Progettazione di OLAP Data Modelli Logici a Supporto della Progettazione di OLAP Data Modello Multidimensionale dei Dati Operatori ed Operazioni OLAP Un esempio Modelli di Rappresentazione Fisica di OLAP Data Commercial OLAP Server Systems 3
4 Motivations La tecnologia dei DB, Internet ed il recupero automatico dei dati hanno causato l esplosione della dimensione delle sorgenti di dati (large data set) I Sistemi di Supporto alle Decisioni possono trarre vantaggio da una più elevata conoscenza derivata da enormi quantità di dati Spesso i dati sono contenuti in Sistemi Informativi eterogenei, complessi e distribuiti Inadeguatezza dei tradizionali DBMS (tecnologia OLTP On Line Transactional Processing) 4
5 Differences between OLTP and OLAP OLTP OLAP users clerk, IT professional knowledge worker function day to day operations decision support DB design application-oriented subject-oriented data current, up-to-date detailed, flat relational isolated usage repetitive ad-hoc access read/write lots of scans index/hash on prim. key unit of work short, simple transaction complex query # records accessed tens millions # users thousands hundreds DB size 100MB-GB 100GB-TB historical, summarized, multidimensional, integrated, consolidated metric transaction throughput query throughput, response 5
6 Outline Motivazioni Il Contesto Applicativo I Cardini di OLAP Modelli Concettuali a Supporto della Progettazione di OLAP Data Modelli Logici a Supporto della Progettazione di OLAP Data Modello Multidimensionale dei Dati Operatori ed Operazioni OLAP Un esempio Modelli di Rappresentazione Fisica di OLAP Data Commercial OLAP Server Systems Exploitation: : Interrogazione Approssimata di OLAP Data 6
7 The Applicative Context Data Warehousing Environment Monitor + Integrator Metadati Server OLAP DB Operazionali Extract Transform Load Refresh Data Warehouse Serve Analisi Query Report Data mining altre sorgenti Data Marts Sorgenti Archivio Dati Motore OLAP Tool Front-End 7
8 Outline Motivazioni Il Contesto Applicativo I Cardini di OLAP Modelli Concettuali a Supporto della Progettazione di OLAP Data Modelli Logici a Supporto della Progettazione di OLAP Data Modello Multidimensionale dei Dati Operatori ed Operazioni OLAP Un esempio Modelli di Rappresentazione Fisica di OLAP Data Commercial OLAP Server Systems Exploitation: : Interrogazione Approssimata di OLAP Data 8
9 OLAP Foundamentals Si basa su un modello logico multidimensionale dei dati (dimensioni, misure, gerarchie e livelli) Consente di estrarre conoscenza da grosse moli di dati Supporta analisi di tipo qualitativa Lavora su dati storicizzati Concetto di reticolo di cuboidi 9
10 Outline Motivazioni Il Contesto Applicativo I Cardini di OLAP Modelli Concettuali a Supporto della Progettazione di OLAP Data Modelli Logici a Supporto della Progettazione di OLAP Data Modello Multidimensionale dei Dati Operatori ed Operazioni OLAP Un esempio Modelli di Rappresentazione Fisica di OLAP Data Commercial OLAP Server Systems Exploitation: : Interrogazione Approssimata di OLAP Data 10
11 Conceptual Models for supporting the OLAP Data Design Dimensional Fact Model Consente di modellare a livello concettuale lo schema multidimensionale dell OLAP data cube category brand Product description street Sales money quantity Time day store Zone city region month week year country 11
12 Outline Motivazioni Il Contesto Applicativo I Cardini di OLAP Modelli Concettuali a Supporto della Progettazione di OLAP Data Modelli Logici a Supporto della Progettazione di OLAP Data Modello Multidimensionale dei Dati Operatori ed Operazioni OLAP Un esempio Modelli di Rappresentazione Fisica di OLAP Data Commercial OLAP Server Systems Exploitation: : Interrogazione Approssimata di OLAP Data 12
13 Logic Models for supporting the OLAP Data Design Star schema Un singolo oggetto (fact table) in mezzo connesso ad un numero di oggetti (dimension tables) Snowflake schema Un raffinamento dello star schema in cui la gerarchia dimensionale è rappresentata esplicitamente (normalizzando le tabelle delle dimensioni) Fact constellations fact tables multiple condividono dimension tables 13
14 Star Schema Date Date Month Year Store StoreID City State Country Region Measurements Sales Fact Table Date Product Store Customer unit_sales dollar_sales Yen_sales Product ProductNo ProdName ProdDesc Category QOH Cust CustId CustName CustCity CustCountry 14
15 Snowflake Schema Year Year Month Month Year Date Date Month Sales Fact Table Date Product Product ProductNo ProdName ProdDesc Category QOH Country Country Region State State Country City City State Store StoreID City Measurements Store Customer unit_sales dollar_sales Yen_sales Cust CustId CustName CustCity CustCountry 15
16 time time_key day day_of_the_week month quarter year Fact Constellations Sales Fact Table time_key item_key branch_key item item_key item_name brand type supplier_type Shipping Fact Table time_key item_key shipper_key from_location branch branch_key branch_name branch_type Measures location_key units_sold dollars_sold avg_sales location location_key street city province_or_street country to_location dollars_cost units_shipped shipper shipper_key shipper_name location_key shipper_type 16
17 Outline Motivazioni Il Contesto Applicativo I Cardini di OLAP Modelli Concettuali a Supporto della Progettazione di OLAP Data Modelli Logici a Supporto della Progettazione di OLAP Data Modello Multidimensionale dei Dati Operatori ed Operazioni OLAP Un esempio Modelli di Rappresentazione Fisica di OLAP Data Commercial OLAP Server Systems Exploitation: : Interrogazione Approssimata di OLAP Data 17
18 Multidimensional Data Model Sales come funzione di Product, Month, e Region Zone Product Zone Time Industry Region Year Category Country Quarter Product Product City Month Week Office Day Time 18
19 Dimensions, Hierarchies and Levels all all region Europe... North_America country Germany... Spain Canada... Mexico city Frankfurt... Vancouver... Toronto office L. Chan... M. Wind 19
20 Hierarchies and Aggregations Le gerarchie consentono di aggregare automaticamente i dati di interesse quando ci si focalizza su un livello: se ci concentriamo su Mese i fatti rappresentano i totali delle vendite per ogni mese Possiamo concentrarci su diversi livelli della gerarchia in dimensioni diverse: le vendite mensili per regione di ogni prodotto 20
21 Cuboids Lattice n NC = L i + 1 i = 1 all n L i = numero di dimensioni = profondità della gerarchia definita sulla dimensione i 0-D(apex) cuboid time item location supplier 1-D cuboids time,item time,location item,location location,supplier time,supplier item,supplier 2-D cuboids time,item,location time,location,supplier 3-D cuboids time,item,supplier item,location,supplier time, item, location, supplier 4-D(base) cuboid 21
22 OLAP Measures Distributive calcolo incrementale E.g., count, sum, min, max Algebriche risultato di una funzione algebrica di M argomenti (M costante) in cui ogni argomento è un aggregato E.g., avg, min_k, max_k, standard_deviation Olistiche non c è un limite costante nel numero di elementi necessari per definirle a partire da un sottoaggregato E.g., median, mode, rank OLAP E UNO STRUMENTO DI ANALISI 22
23 An Example of OLAP Data Cube Store Pisa Roma Firenze sum Product Milk Bread Orange... sum All Products January 96, Pisa. Jan 96 Feb Time sum Ogni dimensione contiene una gerarchia di valori Ogni cella del cubo contiene valori aggregati (count, sum, max, etc.) 23
Ambienti Operativi per OLAP. Casi di Studio
Ambienti Operativi per OLAP. Casi di Studio Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria [email protected] Sommario Installazione e Configurazione
Lezione 7. Data Warehouse & OLAP
Lezione 7 Data Warehouse & OLAP Che cos'è un Data Warehouse? Termine inventato da Bill Inmon alla fine degli anni 1980. È una base di dati contenente dati provenienti da uno o più basi di dati operative
Lezione 9. Ambienti Operativi per OLAP Casi di Studio 08/03/2010 1
Lezione 9 Ambienti Operativi per OLAP Casi di Studio 08/03/2010 1 Ambienti Operativi per OLAP. Casi di Studio Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della
Lezione 9. Microsoft Analysis Services: Principi e Funzionalità
Lezione 9 Microsoft Analysis Services: Principi e Funzionalità MS Analysis Services (OLAP Server) E l implementazione Microsoft di OLAP Server Offre buone prestazione per realtà aziendali medie/grandi
OLAP On Line Analytical Processing
OLAP On Line Analytical Processing Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria [email protected] Testo di Riferimento: J. Han, M.
Data warehousing e OLAP
Data warehousing e OLAP Introduzione Il contesto, processi aziendali Decision Support Systems Sistemi di Data Warehousing Data mart Architettura Modellazione Concettuale Star Schema, Dimensioni, Livelli
Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007
Data warehousing Introduzione A partire dalla metà degli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa
Analisi dei Dati. Lezione 10 Introduzione al Datwarehouse
Analisi dei Dati Lezione 10 Introduzione al Datwarehouse Il Datawarehouse Il Data Warehousing si può definire come il processo di integrazione di basi di dati indipendenti in un singolo repository (il
Data warehousing con SQL Server
Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data
Star Schema. Progettazione Logica ROLAP 30/05/2014
Progettazione Logica Progettazione Logica ROLAP La versione multidimensionale dei dati usata nel DW può essere realizzata usando modelli logici diversi: Modello Relazionale: realizza la visione multidimensionale
Data warehousing Mario Guarracino Data Mining a.a. 2010/2011
Data warehousing Introduzione A partire dagli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa lezione vedremo
Data warehousing con SQL Server
Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing
Introduzione ad OLAP (On-Line Analytical Processing)
Introduzione ad OLAP (On-Line Analytical Processing) Metodi e Modelli per il Supporto alle Decisioni 2002 Dipartimento di Informatica Sistemistica e Telematica (Dist) Il termine OLAP e l acronimo di On-Line
Data Warehousing. Argomenti della lezione. Rappresentazioni dei dati. Rappresentazione dei dati. Parte II Analisi multidimensionale
Argomenti della lezione Data Warehousing Parte II Analisi multidimensionale richiami sul data warehousing organizzazione di un data warehouse l analisi multidimensionale data warehousing e internet strumenti
Data warehousing con SQL Server
Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing
Il modello dimensionale
aprile 2012 1 L organizzazione dei dati del data warehouse costituisce la pietra angolare dell intero sistema DW/BI le applicazioni BI, di supporto alle decisioni, accedono i dati direttamente dal DW l
Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse
Introduzione data warehose Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa Data Warehouse Che cosa e un data warehouse? Quali sono i modelli dei dati per data warehouse Come si progetta
Data warehousing con SQL Server
Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data
Cosa è un data warehouse?
Argomenti della lezione Data Warehousing Parte I Introduzione al warehousing cosa è un data warehouse classificazione dei processi aziendali sistemi di supporto alle decisioni elaborazione OLTP e OLAP
Estensioni del linguaggio SQL per interrogazioni OLAP
Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Estensioni del linguaggio SQL per interrogazioni OLAP Outline! Esempio introduttivo e motivazioni! Introduzione al modello
Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17
Lorenzo Braidi Database design Libro_datadesign.indb 1 23-11-2004 10:06:17 Sommario Introduzione...XI Capitolo 1 Le basi di dati relazionali... 1 Le basi di dati... 1 Un po di storia... 2 I database gerarchici...
Data Warehousing (DW)
Data Warehousing (DW) Il Data Warehousing è un processo per estrarre e integrare dati storici da sistemi transazionali (OLTP) diversi e disomogenei, e da usare come supporto al sistema di decisione aziendale
La suite Pentaho Community Edition
La suite Pentaho Community Edition GULCh 1 Cosa è la Business Intelligence Con la locuzione business intelligence (BI) ci si può solitamente riferire a: un insieme di processi aziendali per raccogliere
Data Warehousing e Data Mining
Università degli Studi di Firenze Dipartimento di Sistemi e Informatica A.A. 2011-2012 I primi passi Data Warehousing e Data Mining Parte 2 Docente: Alessandro Gori [email protected] OLTP vs. OLAP OLTP vs.
Caratteristiche principali. Contesti di utilizzo
Dalle basi di dati distribuite alle BASI DI DATI FEDERATE Antonella Poggi Dipartimento di Informatica e Sistemistica Antonio Ruberti Università di Roma La Sapienza Anno Accademico 2006/2007 http://www.dis.uniroma1.it/
4 Introduzione al data warehousing
Che cosa è un data warehouse? Introduzione al data warehousing 22 maggio 2001 Un data warehouse è una base di dati collezione di dati di grandi dimensioni, persistente e condivisa gestita in maniera efficace,
SQL Server 2005. Introduzione all uso di SQL Server e utilizzo delle opzioni Olap. Dutto Riccardo - SQL Server 2005.
SQL Server 2005 Introduzione all uso di SQL Server e utilizzo delle opzioni Olap SQL Server 2005 SQL Server Management Studio Gestione dei server OLAP e OLTP Gestione Utenti Creazione e gestione DB SQL
Basi di Dati Complementi Esercitazione su Data Warehouse
Sommario Basi di Dati Complementi Esercitazione su Data Warehouse 1. Riassunto concetti principali dalle slide della lezione di teoria 2.Studio di caso : progettazione di un Data Warehouse di una catena
Sistemi Informativi Avanzati
Anno Accademico 2012/2013 Sistemi Informativi Avanzati Corso di Laurea Magistrale in Ingegneria Gestionale Domenico Beneventano Andrea Scavolini Introduzione 1 Obiettivi Il corso si propone di fornire
Informazioni generali sul corso
Informazioni generali sul corso Principi di Datawarehouse 1 Obiettivi del corso Conoscere i Datawarehouse 2 1 Argomenti Il contesto I sistemi DSS Architettura DW Proprietà DW Utilizzo DW Elementi OLAP:
Data Warehousing: concetti base e metodologie
Data Warehousing: concetti base e metodologie Paolo Atzeni (con la collaborazione di Luca Cabibbo e Riccardo Torlone) Università di Roma Tre Dipartimento di Informatica e Automazione [email protected]
Data Warehouse e OLAP
Data Warehouse e OLAP Gianluca Amato Corso di Laurea Specialistica in Economia Informatica Università G. D'Annunzio di Chieti-Pescara ultimo aggiornamto: 03/04/09 1 Knowledge Discovery in Databases ci
SQL Server BI Development Studio
Il Data warehouse SQL Server Business Intelligence Development Studio Analysis Service Sorgenti dati operazionali DB relazionali Fogli excel Data warehouse Staging Area e dati riconciliati Cubi Report
Introduzione. La misurazione dei sistemi di Data Warehouse. Definizioni & Modelli. Sommario. Data Warehousing. Introduzione. Luca Santillo (CFPS)
Introduzione La misurazione dei sistemi di Data Warehouse Luca Santillo (CFPS) AIPA, 17/5/01 In pratica I concetti generali, le definizioni e le regole di conteggio possono essere difficili da applicare
Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali
DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Introduzione al Data Warehousing per a. Modello Multidimensionale & OLAP 1 Cos è il Data Warehousing Collezione di metodi,
Rassegna sui principi e sui sistemi di Data Warehousing
Università degli studi di Bologna FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI Rassegna sui principi e sui sistemi di Data Warehousing Tesi di laurea di: Emanuela Scionti Relatore: Chiar.mo Prof.Montesi
Servizi finanziari (studio di caso)
(studio di caso) aprile 2012 1 Il processo dei servizi finanziari Viene ora considerato il data warehouse per una grande banca la banca offre diversi servizi finanziari ad esempio, conti correnti, libretti
PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE
Tesi in: ARCHITETTURA DEI SISTEMI INFORMATIVI PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE IN UN AMBIENTE DI DISTRIBUZIONE FARMACEUTICA RELATORE: Prof. Crescenzio Gallo LAUREANDO: Alessandro Balducci
SQL Server. Applicazioni principali
SQL Server Introduzione all uso di SQL Server e utilizzo delle opzioni OLAP Applicazioni principali SQL Server Enterprise Manager Gestione generale di SQL Server Gestione utenti Creazione e gestione dei
Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo
Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Obiettivi. Presentare l evoluzione dei sistemi informativi: da supporto alla operatività a supporto al momento decisionale Definire
Thematica Software Technologies
Sperimentazione di Servizi Innovativi alle Imprese Produttrici di Software Università della Calabria 21-10-2004 Giovanni Laboccetta Thematica s.r.l. www.thematica.it [email protected] Perché i data
Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi
Sistemi Informativi La Modellazione Dimensionale dei Fatti Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Obiettivi Nelle lezioni precedenti abbiamo modellato i processi
Introduzione al data warehousing
Introduzione al data warehousing, Riccardo Torlone aprile 2012 1 Motivazioni I sistemi informatici permettono di aumentare la produttività delle organizzazioni automatizzandone la gestione quotidiana dei
Lezione 1. Introduzione e Modellazione Concettuale
Lezione 1 Introduzione e Modellazione Concettuale 1 Tipi di Database ed Applicazioni Database Numerici e Testuali Database Multimediali Geographic Information Systems (GIS) Data Warehouses Real-time and
Progettazione Logica. Sviluppo di un Database/DataWarehouse
Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Progettazione Logica Dal Capitolo 8 e 9 del libro Data Warehouse - teoria e pratica della Progettazione Autori: Matteo
Pivot Tables. vendite raggruppate per prodotto e zona vendite raggruppate per prodotto e mese
Pivot Tables Le Pivot Tables di Excel consentono di costruire un cubo OLAP a partire da dati memorizzati in una singola tabella Le operazioni OLAP corrispondono, in Excel, ad una tecnica di analisi dei
Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni
Data warehouse Data warehouse La crescita dell importanza dell analisi dei dati ha portato ad una separazione architetturale dell ambiente transazionale (OLTP on-line transaction processing) da quello
Architetture per l analisi di dati
Architetture per l analisi di dati Basi di dati: Architetture e linee di evoluzione - Seconda edizione Capitolo 8 Appunti dalle lezioni Motivazioni I sistemi informatici permettono di aumentare la produttività
Data Warehousing. Esercitazione 1
Esercitazione 1 IBM DB2 UDB DB2 Universal Database Suite di strumenti per la gestione dei dati Funzioni avanzate per soluzioni business intelligence Dispone di strumenti di sviluppo del data warehouse
Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse
Riferimenti Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse Queste trasparenze parte 4 Testo di Atzeni et al. Basi di dati R.Kimball, The Data Warehouse Lifecycle Toolkit, 2nd Ed.,
DATA WAREHOUSING CON JASPERSOFT BI SUITE
UNIVERSITÁ DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Ingegneria di Enzo Ferrari Corso di Laurea Magistrale in Ingegneria Informatica (270/04) DATA WAREHOUSING CON JASPERSOFT BI SUITE Relatore
SQL/OLAP. Estensioni OLAP in SQL
SQL/OLAP Estensioni OLAP in SQL 1 Definizione e calcolo delle misure Definire una misura significa specificare gli operatori di aggregazione rispetto a tutte le dimensioni del fatto Ipotesi: per ogni misura,
Data warehouse Introduzione
Database and data mining group, Data warehouse Introduzione INTRODUZIONE - 1 Pag. 1 Database and data mining group, Supporto alle decisioni aziendali La maggior parte delle aziende dispone di enormi basi
Corso di Laboratorio di Basi di Dati
Corso di Laboratorio di Basi di Dati F1I072 - INF/01 a.a 2009/2010 Pierluigi Pierini Technolabs S.p.a. [email protected] Università degli Studi di L Aquila Dipartimento di Informatica Technolabs
Progetto Turismo Pisa
2012 Progetto Turismo Pisa Deliverable D2.2 Realizzazione del prototipo per la navigazione dell infrastruttura di conoscenza Coordinamento: Fosca Fosca Giannotti Salvatore Rinzivillo KDD KDD Lab, Lab,
ESEMPIO: RITARDI & BIGLIETTI
ESEMPIO: RITARDI & BIGLIETTI Fatto Ritardi: l analisi a livello volo giornaliero, considerando l aeroporto di partenza, la città e lo stato di arrivo e la compagnia Fatto Biglietti: l analisi deve considerare
Misure. Definizione delle misure
Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Misure In parte dal Capitolo 5 del libro Data Warehouse - teoria e pratica della Progettazione Autori: Matteo Golfarelli,
PBI Passepartout Business Intelligence
PBI Passepartout Business Intelligence TARGET DEL MODULO Il prodotto, disponibile come modulo aggiuntivo per il software gestionale Passepartout Mexal, è rivolto alle Medie imprese che vogliono ottenere,
Governo Digitale a.a. 2011/12
Governo Digitale a.a. 2011/12 I sistemi di supporto alle decisioni ed il Data Warehouse Emiliano Casalicchio Agenda Introduzione i sistemi di supporto alle decisioni Data warehouse proprietà architettura
Sistemi Informativi Aziendali I
Modulo 6 Sistemi Informativi Aziendali I 1 Corso Sistemi Informativi Aziendali I - Modulo 6 Modulo 6 Integrare verso l alto e supportare Managers e Dirigenti nell Impresa: Decisioni più informate; Decisioni
Per capire meglio l ambito di applicazione di un DWhouse consideriamo la piramide di Anthony, L. Direzionale. L. Manageriale. L.
DATA WAREHOUSE Un Dataware House può essere definito come una base di dati di database. In molte aziende ad esempio ci potrebbero essere molti DB, per effettuare ricerche di diverso tipo, in funzione del
SISTEMI INFORMATIVI AZIENDALI
SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg [email protected] Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Sistemi informazionali La crescente diffusione dei
02/mag/2012. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale
Modello semplice ed intuitivo Si presta bene a descrivere dei FATTI in modo grafico (CUBO o IPERCUBO) Es. di FATTI: Vendite Spedizioni Ricoveri Interventi chirurgici Andamento borsistico 62 Un cubo multidimensionale
Data Mining a.a. 2010-2011
Data Mining a.a. 2010-2011 Docente: [email protected] tel. 081 6139519 http://www.na.icar.cnr.it/~mariog Informazioni logistiche Orario delle lezioni A partire dall 19.10.2010, Martedì h: 09.50 16.00
ITI M. FARADAY Programmazione modulare a.s. 2014-2015
Indirizzo: INFORMATICA E TELECOMUNICAZIONI Disciplina: Informatica Docente:Maria Teresa Niro Classe: Quinta B Ore settimanali previste: 6 (3 ore Teoria - 3 ore Laboratorio) ITI M. FARADAY Programmazione
Customer Relationship Management. Eleonora Ploncher 3 aprile 2006
Customer Relationship Management Eleonora Ploncher 3 aprile 2006 1. Gli obiettivi Gli obiettivi della presentazione sono volti a definire: 1. gli elementi fondamentali e strutturali di una strategia di
Basi di Dati Corso di Laura in Informatica Umanistica
Basi di Dati Corso di Laura in Informatica Umanistica Appello del 10/09/2010 Parte 1: Algebra Relazionale e linguaggio SQL Docente: Giuseppe Amato Sia dato il seguente schema di base di dati per la gestione
Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2)
Tecnologie per i sistemi informativi Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2) Letizia Tanca lucidi tratti dal libro: Atzeni, Ceri, Paraboschi, Torlone Introduzione
La qualità delle informazioni:
misurazione e controllo in Enterprise Data Warehouse FABIO BALDUZZI ICTEAM Torino / Direttore Tecnico 0 Dati strutturati INFORMAZIONI DMS Dati non strutturati DATI Contesto Esperienza Enterprise Knowledge
Introduzione alla Business Intelligence
SOMMARIO 1. DEFINIZIONE DI BUSINESS INTELLIGENCE...3 2. FINALITA DELLA BUSINESS INTELLIGENCE...4 3. DESTINATARI DELLA BUSINESS INTELLIGENCE...5 4. GLOSSARIO...7 BIM 3.1 Introduzione alla Pag. 2/ 9 1.DEFINIZIONE
SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione
1 SOMMARIO 2 9- Basi di dati direzionali Basi di Dati per la gestione dell Informazione A. Chianese, V. Moscato, A. Picariello, L. Sansone Sistemi Informativi Direzionali (SID) Architettura dei SID La
MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati:
DAI DATI ALLE DECISIONI MODELLI DEI DATI PER DW Le aziende per competere devono usare metodi di analisi, con tecniche di Business Intelligence, dei dati interni, accumulati nel tempo, e di dati esterni,
25/11/14 ORGANIZZAZIONE AZIENDALE. Tecnologie dell informazione e controllo
ORGANIZZAZIONE AZIENDALE 1 Tecnologie dell informazione e controllo 2 Evoluzione dell IT IT, processo decisionale e controllo Sistemi di supporto al processo decisionale IT e coordinamento esterno IT e
Introduzione alla Business Intelligence. E-mail: [email protected]
Introduzione alla Business Intelligence E-mail: [email protected] Introduzione alla Business Intelligence Introduzione Definizione di Business Intelligence: insieme di processi per raccogliere
Introduzione al Data Warehousing per Sistemi Informativi Aziendali
Università La Sapienza di Roma AA 2009-2010 Prof. Introduzione al Data Warehousing per Cos è il Data Warehousing Collezione di metodi, tecnologie e strumenti di ausilio al lavoratore della conoscenza (manager,
CAPITOLO CAPIT Tecnologie dell ecnologie dell info inf rmazione e controllo
CAPITOLO 8 Tecnologie dell informazione e controllo Agenda Evoluzione dell IT IT, processo decisionale e controllo Sistemi di supporto al processo decisionale Sistemi di controllo a feedback IT e coordinamento
Introduzione al Data Warehousing
Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Introduzione al Data Warehousing Molte di queste slide sono state realizzate dal Prof. Stefano Rizzi (http://www-db.deis.unibo.it/~srizzi/)
Lezione 3. Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing
Lezione 3 Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing 27/02/2010 1 Modello multidimensionale Nasce dall esigenza
Introduzione al Data Mining
Introduzione al Data Mining Sistemi informativi per le Decisioni Slide a cura di Prof. Claudio Sartori Evoluzione della tecnologia dell informazione (IT) (Han & Kamber, 2001) Percorso evolutivo iniziato
SQL SQL. Definizione dei dati. Domini. Esistono 6 domini elementari:
SQL SQL (pronunciato anche come l inglese sequel: acronimo di Structured Query Language (linguaggio di interrogazione strutturato Linguaggio completo che presenta anche proprietà di: DDL (Data Definition
Famiglie di tabelle fatti
aprile 2012 1 Finora ci siamo concentrati soprattutto sulla costruzione di semplici schemi dimensionali costituiti da una singola tabella fatti circondata da un insieme di tabelle dimensione In realtà,
Sviluppo Applicazione di BI/DWH. con tecnologia Microsoft. per il supporto della catena logistica
UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Ingegneria Enzo Ferrari di Modena Corso di Laurea Magistrale in Ingegneria Informatica (270/04) Sviluppo Applicazione di BI/DWH con tecnologia
B C I un altro punto di vista Introduzione
Bollicine Community B C Intelligence B C I un altro punto di vista Introduzione Graziano Guazzi General Manager Data Flow Settembre 2007 pag, 1 Cosa misurare La definizione di quale domanda di mercato
DBMS (Data Base Management System)
Cos'è un Database I database o banche dati o base dati sono collezioni di dati, tra loro correlati, utilizzati per rappresentare una porzione del mondo reale. Sono strutturati in modo tale da consentire
I sistemi di reporting e i rapporti direzionali
I sistemi di reporting e i rapporti direzionali Reporting - Sintesi dei fenomeni aziendali secondo modelli preconfezionati e con frequenza e aggiornamento prestabiliti - contabile (dati economici) - extracontabile
Organizzazione delle informazioni: Database
Organizzazione delle informazioni: Database Laboratorio Informatico di base A.A. 2013/2014 Dipartimento di Scienze Aziendali e Giuridiche Università della Calabria Dott. Pierluigi Muoio ([email protected])
Introduzione al Datamining. Francesco Passantino [email protected] www.iteam5.net/francesco
Introduzione al Datamining Francesco Passantino francesco@iteam5net wwwiteam5net/francesco Cos è il datamining Processo di selezione, esplorazione e modellazione di grandi masse di dati, al fine di scoprire
Basi di dati. Corso di Laurea in Ingegneria Informatica Canale di Ingegneria delle Reti e dei Sistemi Informatici - Polo di Rieti
Basi di dati Corso di Laurea in Ingegneria Informatica Canale di Ingegneria delle Reti e dei Sistemi Informatici - Polo di Rieti Anno Accademico 2008/2009 Introduzione alle basi di dati Docente Pierangelo
