Informazioni generali sul corso

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Informazioni generali sul corso"

Transcript

1 Informazioni generali sul corso Principi di Datawarehouse 1 Obiettivi del corso Conoscere i Datawarehouse 2 1

2 Argomenti Il contesto I sistemi DSS Architettura DW Proprietà DW Utilizzo DW Elementi OLAP: Data Cube: fatti,misure,gerarchie e dimensioni; Operazioni: Drill, Roll, Slice, Dice, Pivoting, Ranking, ecc; Star Schema: Fact Table e Dimensional Tables; 3 Il Contesto Verso la fine degli anni 90 si è capita l importanza strategica, per il business, dell uso dei dati aziendali raccolti dai processi operazionali (Business Intelligence) Il ritorno di investimento dato dall automatizzazione dei processi aziendali non dava il risultato sperato. Occorreva sfruttare meglio i dati aziendali globali accumulati 4 2

3 Knowledge Discovery in Databases : scoperta della conoscenza dai dati contenuti nei Database. Il processo di analisi parte da un insieme limitato di dati e, usando una certa metodologia, cerca di sviluppare una rappresentazione ottimale della struttura dei dati; durante questa fase il processo acquisisce conoscenza. Una volta che tale conoscenza è stata acquisita, questa può essere estesa ad un insieme più vasto di dati basandosi sull'assunzione che il largo insieme di dati ha una struttura simile a quello più semplice. 5 Processi Aziendali Processi informativi aziendali: Processi operativi Operano su dati dipartimentali e dettagliati Decisioni strutturate e basate su regole definite Processi gestionali Operano su dati settoriali e parzialmente aggregati Decisioni semistrutturate, basate su regole note ma con intervento umano creativo Processi direzionali Operano su dati integrati e aggregati Decisioni non strutturate, non ci sono regole, il tutto è basato su capacità umane 6 3

4 Processi Operativi Esempio - Una Banca Gestione di un movimento su Conto Corrente bancario presso uno sportello Processi Gestionali Concessione di un fido Revisione delle condizioni su conto corrente Processi Direzionali Verifica dell andamento di servizi su carte di credito Lancio di una campagna promozionale Accordi commerciali 7 Esempio - Compagnia Telefonica Processi Operativi Stipula dei contratti Instradamento delle telefonate Dati contabili telefonate(scatti, durata, tariffa ) Processi Gestionali Stipula di contratti speciali Installazione infrastrutture Processi Direzionali Scelta dei parametri che fissano il costo delle telefonate Definizione di contratti diversificati Pianificazione potenziamento infrastrutture 8 4

5 Il problema In genere: DB1 DB2 Ø abbondanza di dati DB4 DB3 ma anche Œ abbondanza di ridondanza ed inconsistenza che non permette di utilizzare i dati in modo utile a fini decisionali 9 Tipiche richieste Qual è il volume delle vendite per regione e categorie di prodotto durante l ultimo anno? Come si correlano i prezzi delle azioni delle società produttrici di hardware con i profitti trimestrali degli ultimi 10 anni? Quali sono stati i volumi di vendita dello scorso anno per regione e categoria di prodotto? In che modo i dividendi di aziende di hardware sono correlati ai profitti trimestrali negli ultimi 10 anni? 10 5

6 Possibili applicazioni contesti gestione dei rischi analisi finanziaria programmi di marketing analisi statistica integrazione DB clienti integrazione relazioni clienti analisi temporale telecomunicazioni banking università assicurazioni beni di consumo salute produzione problematiche 11 DSS sistemi di supporto alle decisioni (DSS) dati conoscenza utile all azienda 12 6

7 Sistemi di Supporto alle Decisioni (DSS) Sono i sistemi che supportano la dirigenza nel prevedere decisioni tattico-strategiche, nel modo migliore e velocemente. Tipiche operazioni: Quali sono stati i volumi di vendita dello scorso anno per una certa categoria di prodotto? Quali ordini dovremmo soddisfare per massimizzare le entrate? Ci si basa sui dati accumulati OLTP!!!! 13 OLAP per Decision Support E un elemento del DSS Obiettivo dell OLAP è supportare query ad-hoc per gli analisti di business Analisti di business hanno molta familiarità con spreadsheet OLAP tools permettono di lavorare su: Enormi data set Semanticamente arricchiti per comprendere meglio le analisi di business (ad es. tempo, geografia) Multidimensional view dei dati è il principio fondamentale dell OLAP 14 7

8 Perché i sistemi tradizionali (OLTP) non sono sufficienti? Non gestiscono dati storici Sono sistemi eterogenei Basse prestazioni DBMS non adeguati al supporto decisionale Problemi di sicurezza 15 OLTP vs. OLAP OLTP OLAP funzione gestione giornaliera supporto alle decisioni progettazione orientata alle orientata al soggetto applicazioni frequenza giornaliera sporadica dati recenti, dettagliati storici, riassuntivi, multidimensionali sorgente singola DB DB multiple uso ripetitivo ad hoc accesso read/write read flessibilità accesso uso di programmi generatori di query precompilati # record acceduti decine migliaia tipo utenti operatori manager # utenti migliaia centinaia tipo DB singola multiple, eterogenee performance alta bassa dimensione DB 100 MB - GB 100 GB - TB 16 8

9 Più formalmente Sistemi tradizionali On-Line Transaction Processing (OLTP) Sistemi di data warehousing On-Line Analytical Processing (OLAP) Profondamente diversi 17 OLAP Rappresenta una visione multidimensionale, LOGICA, dei dati Permette un analisi interattiva dei dati Aggregazioni per ogni intersezione di ogni dimensione. Previsione, trend analysis, e statistical analysis. Calcola e visualizza i dati in 2D o 3D crosstabs, charts, e grafi, con semplici operazioni di pivoting degli assi 18 9

10 Altri Sistemi derivati ROLAP (Relational OLAP): sistema di Data Warehouse in grado di supportare le interrogazioni tipiche (roll-up, drill-down, ) presentation server relazionale Oracle 9i + Discoverer MOLAP (Multidimensional OLAP): sistema di Data Warehouse in grado di supportare le interrogazioni tipiche (roll-up, drill-down, ) presentation server multidimensionale Express Server DOLAP (Desktop OLAP): i dati vengono recuperati da un DW relazionale o multidimensionale e copiati localmente Business Objects 19 Confronto caratteristiche sistemi OLAP Performance Analisi: Dimensione DW: Query: MOLAP Caricamento: ROLAP MOLAP ROLAP MOLAP: problema sparsità Flessibilità nello schema: ROLAP MOLAP: minor numero di dimensioni ammesse 20 10

11 Datawarehouse - definizione E una collezione di dati, integrata e consistente, progettata a supporto delle decisioni. Può contenere dati atomici o leggermente aggregati, ma rappresenta sempre l evoluzione temporale del dominio di interesse. Il DW è un architettura non è un prodotto E usata per il supporto alle decisioni 21 DataWarehouse - Architettura Operational & External Data Management Platform Metadata MKDB Reports, Query, EIS, Tools Data Extract Data Cleanup Data Load Data Warehouse Data Warehouse DBMS MDDB Data Marts OLAP Tools GIS, Tools, Data Mining Admin Platform Repository 22 11

12 External Data DW - Strumenti software coinvolti Data Capture DW Storage Management Information Delivery Extract Informix Oracle Transform DATA STAGE Secondary Data Mart BUSINESS OBJECT Data Mart MVS SQL Server Cleanse Enterprise Data Warehouse Data Mart Data Mart Etc ODS ORACLE 23 DW - Caratteristiche architetturali Separazione: l elaborazione analitica e quella transazionale devono essere il più possibile separate; Scalabilità: l architettura hw e sw deve essere facilmente ridimensionabile; Estendibilità: deve essere possibile accogliere nuove applicazioni e tecnologie; Sicurezza: il controllo sugli accessi è essenziale (dati strategici); Amministrabilità: l attività di amministrazione non deve essere troppo complessa; 24 12

13 DW - Architettura ad 1 livello 1/2 In questo caso non è prevista alcuna ridondanza dei dati. I sistemi decisionali accedono all unica copia dei dati in concorrenza con i sistemi operazionali, con conseguente degradazione delle prestazioni di entrambi. Il vantaggio è dato dalla minimizzazione del volume dei dati e dall eliminazione dei problemi di consistenza causati dalla duplicazione. L assenza di qualsiasi trasformazione dei dati operazionali ed in particolare l assenza di aggregazioni precalcolate contrasta in modo evidente con le esigenze dell analisi decisionale. I DW con architettura ad un livello sono anche detti data warehouse virtuali, poiché il disaccoppiamento dall ambiente operazionale è gestito direttamente dalle applicazioni decisionali senza il supporto di dati fisicamente organizzati secondo le esigenze dell ambiente informativo. 25 DW - Architettura ad 1 livello 2/2 OLTP = DW OLTP catalogo dei metadati DW Virtuale 26 13

14 DW - Metadati 1/4 Affinché un data warehouse sia acceduto e mantenuto in maniera efficiente è necessario conoscere quali dati sono disponibili, dove sono collocati, quali procedure di trasformazione sono state effettuate, etc. Tipi di metadati : 1. Servizio; 2. Controllo; 3. Per l utente finale. 27 DW - Metadati 2/4 1. di Servizio Per la costruzione del sistema informativo, ovvero metadati utilizzati per la creazione e gestione dei dati operazionali. L'origine di questi metadati è antecedente alla creazione del data warehouse ma il loro ruolo in tale contesto è essenziale in quanto contengono tutte le informazioni necessarie per l'integrazione e riconciliazione dei dati; 28 14

15 DW - Metadati 3/4 2. di controllo Utilizzati dal DW per gestire il funzionamento del data warehouse stesso. Questa tipologia di metadati realizza il collegamento tra i dati operazionali e la struttura del DW; 29 DW - Metadati 4/4 3. per l utente finale Pensati per aiutare l'utente del DW nella ricerca delle informazioni di interesse attraverso l enorme mole di dati disponibili

16 DW - Architettura a 2 livelli 1/2 1. un livello di dati real-time, cui accedono i sistemi operazionali in lettura e scrittura; 2. un livello di dati derivati, cui accedono i sistemi decisionali tipicamente in lettura; in tale livello sono presenti sia dati di dettaglio che dati aggregati, relativi a finestre temporali di differenti dimensioni. 31 DW - Architettura a 2 livelli OLTP Derived Data catalogo dei metadati Derived Data = DW 32 16

17 DW - Architettura a 2 livelli Pro: La replicazione dei dati elimina il problema della concorrenza tra sistemi decisionali e sistemi operazionali. Contro: Gli insiemi di dati presenti nei dati derivati provengono da più d'uno degli insiemi presenti nei dati OLTP. Tutto questo produce una notevole complicazione nel livello di gestione ed aggiornamento dei dati derivati, rendendone difficile la manutenzione. Notevole aumento dello spazio di memorizzazione necessario. nasce il concetto di DATA MART 2/2 33 DW - Data mart 1/4 Un DW rappresenta spesso l unione di più Data mart Data mart: restrizione data warehouse ad un singolo processo o ad un gruppo di processi aziendali (es. Marketing) DW Data mart #1 Data mart DW #2 Data mart #

18 Data mart - Definizione formale 2/4 una struttura dipartimentale dei dati, alimentata dal datawarehouse, dove i dati sono denormalizzati ed aggregati in base ai requisiti di una particolare divisione dell azienda. 35 Data mart - Caratteristiche 3/4 Datawarehouse dipartimentale sistema specializzato che mette insieme i dati necessari ad un dipartimento implementato creando Views specifiche alle applicazioni sottoinsiemi materializzati di Views dipartimentali che focalizzano su soggetti determinati. Possono utilizzare differenti metafore di rappresentazione 36 18

19 Data mart - Architettura 4/4 Sorgenti Data mart Gestionali DM Dipartimento Contabilità Documenti DW DM Dipartimento Risorse Umane Third-party software DM Dipartimento Vendite DM Dipartimento Produzione 37 DW - Architettura a 3 livelli 1/2 Lo scopo del livello di riconciliazione è dunque quello di creare un modello dati che sia comune a tutta l organizzazione e che contenga tutte le possibili informazioni di possibile interesse per gli utenti finali. Il processo di caricamento dei dati provenienti dal livello operativo (OLTP) permetterà di eliminare da essi inconsistenze e irregolarità e di integrarli tra loro in maniera razionale

20 DW - Architettura a 3 livelli 2/2 OLTP catalogo dei metadati Dati riconciliati DW 39 Datawarehouse Proprietà 1/6 1. orientata ai soggetti 2. integrata: livello aziendale e non dipartimentale 3. correlata alla variabile tempo: ampio orizzonte temporale 4. con dati tipicamente aggregati, per effettuare stime 5. fuori linea: dati aggiornati periodicamente 40 20

21 Datawarehouse Proprietà 2/6 1. Orientata ai soggetti: considera i dati di interesse ai soggetti dell organizzazione e non quelli rilevanti ai processi organizzativi Esempio: basi di dati operazionali dipartimentali: vendita, produzione, marketing data warehouse: prodotti, clienti, fornitori 41 Datawarehouse Proprietà 3/6 2. Integrata: i dati provengono da tutte le sorgenti informative il data warehouse rappresenta i dati in modo univoco, riconciliando le eterogeneità delle diverse rappresentazioni: nomi struttura codifica rappresentazione multipla 42 21

22 Datawarehouse Proprietà 4/6 3. Correlata alla variabile tempo: presenza di dati storici per eseguire confronti, previsioni e per individuare tendenze Le basi di dati operazionali mantengono il valore corrente delle informazioni L orizzonte temporale di interesse è dell ordine dei pochi mesi Nel data warehouse è di interesse l evoluzione storica delle informazioni L orizzonte temporale di interesse è dell ordine degli anni 43 Datawarehouse Proprietà 5/6 4. Dati aggregati: nell attività di analisi dei dati per il supporto alle decisioni: non interessa chi ma quanti non interessa un dato ma: la somma di un insieme di dati; la media di un insieme di dati; il minimo di un insieme di dati; il massimo di un insieme di dati; ecc

23 Datawarehouse Proprietà 6/6 5. Fuori linea: base di dati operazionale: i dati venono acceduti, inseriti, modificati, cancellati pochi record alla volta data warehouse: operazioni di accesso e interrogazione diurne operazioni di caricamento e aggiornamento notturne che riguardano milioni di record 45 Uso bimodale: DW - Uso ore al giorno usati per attività di interrogazione 2-8 ore al giorno per: caricamento; indicizzazione; controllo qualità; pubblicazione. 1/

24 Presentazione OLAP Internet DW - Uso 2/3 Linguaggi per lo sviluppo di applicazioni Reporting Analisi statistiche Query SQL ad hoc Interpretazione e analisi Database multidimensionali relazionali aggregati MDDB Strutture dati per l analisi RDB aggregati Data mining Database relazionali denormalizzati Estrazione, trasformazione, caricamento (ETL) 47 I ruoli degli utenti mutano DW - Uso 3/3 Gli utenti hanno esigenze diverse confrontandosi di volta in volta con necessità diverse Cruscotti Aziendali Lettura di Reports Analisi su Spreadsheet Q&R, OLAP, Data Mining 48 24

25 Pausa 49 Ripresa

26 Datawarehouse Elementi OLAP Si basa su un modello dei dati multidimensionale che rappresenta i dati sotto forma di data cube Un data cube permette di modellare e creare viste dei dati rispetto a molteplici dimensioni Modello dati multidimensionale detto Star Schema Implementabile su un DB relazionale Consente volumi di dati molto grandi volumi dell ordine di 100 gbytes forniscono tempi di risposta sotto i 10 sec 51 Il manager regionale esamina la vendita dei prodotti in tutti i periodi relativamente ai propri mercati Data Cube Esempio 1 1/5 Il manager finanziario esamina la vendita dei prodotti in tutti i mercati relativamente al periodo corrente e quello precedente magazzino tempo prodotto Il manager di prodotto esamina la vendita di un prodotto in tutti i periodo e in tutti i mercati Il manager strategico si concentra su una categoria di prodotti, un area regionale e un orizzonte temporale medio 52 26

27 Data Cube Esempio 2 2/5 Store Pisa Roma Firenze sum Product Milk Bread Orange... sum All Products January 96, Pisa. Jan 96 Feb Time sum Ogni dimensione contiene una gerarchia di valori una cella del cubo contiene valori aggregati (count, sum, max, etc.) 53 Data Cube Esempio 3 3/5 Processo: vendite in una catena di supermercati tempo magazzino A feb apr mag set prodotto B C vino acqua coca cola 54 27

28 Data Cube Esempio 4 4/5 canale Data Cube 55 Concetti per Definire un Data Cube 5/5 1. Fatto un tema di interesse per l organizzazione (vendite, spedizioni, acquisti) 2. Misura attributo che descrive quantitativamente il fatto da diversi punti di vista, una proprietà di un fatto da analizzare (numero di unità vendute, prezzo unitario) 3. Gerarchia determina come le istanze di un fatto possono essere aggregate e selezionate - descrive una dimensione 4. Dimensione descrive una prospettiva lungo la quale un organizzazione vuole mantenere i dati (prodotto, negozio, data) 56 28

29 Data cube 1. Fatti 1/3 I fatti hanno delle proprietà che sono dette misure Le proprietà dei fatti sono tipicamente: numeriche additive possono essere aggregati rispetto agli attributi delle dimensioni, utilizzando l operazione di addizione 57 Data cube 1. Fatti 2/3 Esempi: Attività (fatti): vendite in una catena di supermercati misure: n. prodotti venduti, incassi, costi,... Attività (fatti): ordini misure: n. spedizioni, n. clienti, importi,... Attività (fatti): iscrizioni universitarie misure: n. studenti, Attività (fatti): chiamate gestite da compagnia telefonica misure: costo, durata 58 29

30 Data cube 1. Fatti anomali In alcuni contesti applicativi, puo` capitare di avere fatti senza misure fatti anomali 3/3 in questo caso i fatti rappresentano semplicemente una relazione molti-a-molti, senza aggiungere alcuna nuova informazione Esempi: Attività principale: corsi universitari dimensioni: corsi, professori, studenti, tempo Attività principale: assegnazione cure negli ospedali dimensioni: ospedali, dottori, diagnosi, tempo, pazienti, assistenti, procedure 59 Data cube 2. Misure Le misure sono i valori quantitativi che si vogliono analizzare Ad esempio: - la quantità e il valore fatturato; - il costo del venduto. Le misure sono analizzate in funzione delle dimensioni da cui dipendono 60 30

31 Data cube 3. Gerarchie (tra dimensioni) 1/5 Ogni dimensione puo` essere organizzata in una gerarchia che ne rappresenta i possibili livelli di aggregazione per I dati ogni livello della gerarchia rappresenta una relazione molti-a-uno Le gerarchie esprimono i legami esistenti tra più dimensioni. 61 Data cube 3. Gerarchie 2/5 Esempi 1: anno regione trimestre provincia categoria marca mese città prodotto giorno negozio 62 31

32 Data cube 3. Gerarchie 3/5 Esempi 2: guardando l anagrafica prodotti si può immaginare una struttura gerarchica che organizzi la stessa secondo una struttura ad albero di questo tipo:»prodotti»prodotti fornitura interna (Tipo ordine)»prodotti Finiti (Tipo articolo) 63 Data cube 3. Gerarchie 4/5 Esempi 3: Anno Semestre Trimestre Mese Regione Provincia Comune Direzioni Generali Aree Coordinamento Settori Data 64 32

33 Data cube 3. Gerarchie 5/5 Come Esplorare una gerarchia Anno Semestre Drill-down (dettaglio) Trimestre Mese Data Roll-up (aggregazione) 65 Data cube 4. Dimensione La dimensione è un attributo consistente dei dati. 1/5 La dimensione esprime una classe di raggruppamento delle informazioni, un parametro di organizzazione e di selezione nella lettura degli stessi. Ad esempio nel caso di una anagrafica prodotti una dimensione può esprimere la famiglia: Macchine tipo A, Accessori tipo xyz, ecc.; Il numero delle dimensioni cresce proporzionalmente alla complessità dell analisi

34 Data cube 4. Dimensione 2/5 Devono essere scelte solo le entità rilevanti per le analisi che si intendono effettuare Le dimensioni sono tipicamente caratterizzate da attributi: testuali discreti ma possono anche essere numeriche dimensione di un prodotto Esiste sempre una dimensione temporale 67 Data cube 4. Dimensione Esempi: Attività: vendita in una catena di supermercati dimensioni: tempo, prodotti, magazzino Attività: ordini dimensioni: tempo, prodotti, clienti, spedizioni Attività: iscrizioni universitarie dimensioni: tempo, facoltà, tipologia studenti Attività : vendita automobili dimensioni: clienti, venditori, concorrenti, automobili, concessionarie 3/

35 Data cube 4. Dimensione Problema: come si può identificare se un attributo numerico è un fatto o un attributo di una dimensione? Se è una misura che varia continuamente nel tempo FATTO Esempio: analisi costo di un prodotto nel tempo Se è una descrizione discreta di qualcosa che è ragionevolmente costante 4/5 ATTRIBUTO di una dimensione Esempio: costo di un prodotto visto come informazione descrittiva 69 Data cube 4. Dimensione Le dimensioni utilizzate sono spesso le stesse in vari contesti applicativi: tempo collocazione geografica organizzazione clienti 5/5 il numero di attributi per ogni dimensione è in genere molto elevato (anche nell ordine del centinaio) 70 35

36 La dimensione - Tempo È presente in ogni DW in quanto virtualmente ogni DW rappresenta una serie temporale Domanda: perché non campo di tipo DATE nella Risposta: tabella dei fatti? la dimensione tempo permette di descrivere il tempo in modi diversi da quelli che si possono desumere da un campo date in SQL (giorni lavorativi-vacanze, periodi fiscali, stagioni, ecc.) 1/2 71 La dimensione - Tempo 2/2 Alcuni tipici attributi della dimensione tempo: tempo-k (può essere un campo di tipo data in SQL) giorno-della-settimana n-giorno-nel-mese n-giorno-in-anno n-settimana-in-anno mese stagione periodo fiscale

37 Data cube Operazioni 1/7 1. ROLL-UP (ACCUMULARE) AUMENTA IL LIVELLO DI AGGREGAZIONE DEI DATI 2. DRILL-DOWN (PERFORARE) AUMENTA IL LIVELLO DI DETTAGLIO DEI DATI 3. SLICE-AND-DICE (AFFETTARE E TAGLIARE A CUBETTI) SELEZIONA E PROIETTA RIDUCENDO LA DIMENSIONALITA DEI DATI 4. PIVOTING (ROTATE) (FAR PERNO, RIORIENTA IL CUBO) SELEZIONA DUE DIMENSIONI ATTORNO ALLE QUALI AGGREGARE I DATI METRICI 5. RANKING (ATTRIBUIRE UNA CLASSE DI MERITO) ORDINA I DATI SECONDO CRITERI PREDEFINITI 6. OPERAZIONI TRADIZIONALI (SELEZIONE ATTRIBUTI CALCOLATI, ECC.) 73 Data cube Operazioni 2/7 7. TOP-n (MIGLIORI n) SELEZIONA I PRIMI n NEI DATI 8. SELECTION (FILTRA) SELEZIONA IN BASE A UNA GRANDEZZA DATA 9. COMPUTED ATTRIBUTES (CALCOLA) ESEGUE CALCOLI DI AGGREGAZIONE Dipendono dai tool di accesso influenzano l implementazione delle query 74 37

38 Data cube Operazioni 3/7 1. Roll up (Drill up): riassumi i dati, salendo nella gerarchia dei concetti per una dimensione o attraverso una riduzione di una dimensione il volume totale di vendite per categoria di prodotto e per regione per anno si rimuove per esempio la dimensione tempo 2. Drill down (Roll down): passa da un livello di dettaglio basso ad un livello di dettaglio alto, scendendo nella gerarchia o introducendo una nuova dimensione. per un particolare prodotto, trova le vendite dettagliate per ogni venditore e per ogni data 75 Data cube Operazioni 4/7 1. Roll-Up 2. Drill-Down Roll-up Region Year Product Store Product Roll-up Year Drill-Down Store Product Month Drill-Down 76 38

39 1. Roll-Up Data cube Operazioni: 2. Drill-Down 5/7 Dipartimento Incassi Unità vendute Panificio Lit Cibo surgelato Lit down up Dipartimento Marca Incassi Unità vendute Panificio Barilla Panificio Agnesi Cibo surgelato Findus Cibo surgelato Orogel Data cube Operazioni 6/7 2. Slice and Dice: select & project L operazione di Slice esegue una selezione su una dimensione del cubo. L operazione di Dice definisce un sottocubo eseguendo una selezione su due o più dimensioni Esempio:Vendite delle bevande nel West negli ultimi 6 mesi 7. Top-n: Esempio: determinare i 10 prodotti piu` venduti ad una certa data e in un certo magazzino, ordinati per vendite 78 39

40 Data cube Operazioni 7/7 3. Slice and Dice Anno=2003 Slice Quotidiano Anno Lingua Dice Anno in (2003, 2004) Quotidiano in ( La Nazione, La Repubblica ) Lingua in ( Inglese, Giapponese ) 79 Data cube Schemi Star schema: Un singolo oggetto (fact table) in mezzo connessa ad un numero di oggetti (dimension tables) Snowflake schema: Un raffinamento dello star schema in cui la gerarchia dimensionale è rappresentata esplicitamente (normalizzando le tabelle delle dimensioni) Fact constellations: più tabelle dei fatti condividono tabelle dimensionali 80 40

41 Star schema - Fact Table 1/5 fatto ora VENDITA cliente dimensioni negozio Unità Incasso prodotto dimensioni misure 81 Star Schema - caratteristiche 2/5 Una singola fact table e una singola tabella per ogni dimensione (dimensional table) Ogni fatto referenzia ad una tupla in ognuna delle dimensioni ed ha attributi addizionali Chiavi surrogate (generate) vengono utilizzate per performance 82 41

42 Star Schema - Esempio 3/5 83 Tempo Codice orario Ora Giorno Settimana Mese Trimestre Anno Luogo Codice luogo Negozio Indirizzo Codice Città Città Codice Regione Regione Codice Stato Stato Star Schema Esempio Vendite Codice orario Codice luogo Codice prodotto Codice cliente Unità Incasso Prodotto Codice prodotto Descrizione Colore Modello Codice categoria Categoria Cliente Codice cliente Nome Cognome Indirizzo Età Codice professione Professione 4/

43 DW (Star Schema) - Esempio Fatti: unità, incasso Dimensioni: prodotti, tempo 5/5 Si vuole: analizzare unità e incasso per categoria di prodotto CREATE VIEW vendite_per_cat(categoria,tempo_k,unità_cat,incasso_cat) AS SELECT categoria, tempo_k, SUM(unità),SUM(incasso) FROM Vendite,prodotti WHERE vendite.prodotto_k = prodotti.prodotto_k GROUP BY categoria, tempo_k 85 Riferimenti - Libri Inmon, W.H. Building the Data Warehouse: Third Edition. New York: John Wiley & Sons. 2002, per una progettazione razionale e puntuale. Inmon, W.H. and Hackathorn, R. Using The Datawarehouse. New York: John Wiley & Sons. 1994, per un analisi di un DW e delle sue capacità. Tannenbaum, A., Metadata Solutions. Reading: Addison Wesley. 2002, per rivedere l importanza dei metadati nel processo. Golfarelli M., Rizzi S., Teoria e Pratice della progettazione Data Warehouse. 2003, affronta le problematiche di base con un linguaggio molto semplice. R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, New York, A. Lavezzari, D. Vanzanelli. Tecnologie e organizzazione di un data warehouse. Systech, Milano, Stanford Technology Group. Designing the Data Warehouse on Relational Databases

44 Riferimenti - Siti una sorgente in continuo aggiornamento, con una finestra aperta sull evoluzione del DW: il Corporate Information Factory. una fonte attendibile con la possibilità di certificazione. dex.html?sol_datawarehousing.html per le soluzioni Oracle. per una soluzione IBM Informix Redbrick. 87 Domande & Risposte 88 44

45 Saluti 89 45

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Data warehousing Introduzione A partire dalla metà degli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa

Dettagli

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011 Data warehousing Introduzione A partire dagli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa lezione vedremo

Dettagli

Data warehousing e OLAP

Data warehousing e OLAP Data warehousing e OLAP Introduzione Il contesto, processi aziendali Decision Support Systems Sistemi di Data Warehousing Data mart Architettura Modellazione Concettuale Star Schema, Dimensioni, Livelli

Dettagli

Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2)

Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2) Tecnologie per i sistemi informativi Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2) Letizia Tanca lucidi tratti dal libro: Atzeni, Ceri, Paraboschi, Torlone Introduzione

Dettagli

Architetture per l analisi di dati

Architetture per l analisi di dati Architetture per l analisi di dati Basi di dati: Architetture e linee di evoluzione - Seconda edizione Capitolo 8 Appunti dalle lezioni Motivazioni I sistemi informatici permettono di aumentare la produttività

Dettagli

Introduzione al data warehousing

Introduzione al data warehousing Introduzione al data warehousing, Riccardo Torlone aprile 2012 1 Motivazioni I sistemi informatici permettono di aumentare la produttività delle organizzazioni automatizzandone la gestione quotidiana dei

Dettagli

Data Warehousing e Data Mining

Data Warehousing e Data Mining Università degli Studi di Firenze Dipartimento di Sistemi e Informatica A.A. 2011-2012 I primi passi Data Warehousing e Data Mining Parte 2 Docente: Alessandro Gori a.gori@unifi.it OLTP vs. OLAP OLTP vs.

Dettagli

Governo Digitale a.a. 2011/12

Governo Digitale a.a. 2011/12 Governo Digitale a.a. 2011/12 I sistemi di supporto alle decisioni ed il Data Warehouse Emiliano Casalicchio Agenda Introduzione i sistemi di supporto alle decisioni Data warehouse proprietà architettura

Dettagli

Data warehouse Introduzione

Data warehouse Introduzione Database and data mining group, Data warehouse Introduzione INTRODUZIONE - 1 Pag. 1 Database and data mining group, Supporto alle decisioni aziendali La maggior parte delle aziende dispone di enormi basi

Dettagli

Cosa è un data warehouse?

Cosa è un data warehouse? Argomenti della lezione Data Warehousing Parte I Introduzione al warehousing cosa è un data warehouse classificazione dei processi aziendali sistemi di supporto alle decisioni elaborazione OLTP e OLAP

Dettagli

Analisi dei Dati. Lezione 10 Introduzione al Datwarehouse

Analisi dei Dati. Lezione 10 Introduzione al Datwarehouse Analisi dei Dati Lezione 10 Introduzione al Datwarehouse Il Datawarehouse Il Data Warehousing si può definire come il processo di integrazione di basi di dati indipendenti in un singolo repository (il

Dettagli

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni Data warehouse Data warehouse La crescita dell importanza dell analisi dei dati ha portato ad una separazione architetturale dell ambiente transazionale (OLTP on-line transaction processing) da quello

Dettagli

Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse

Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse Introduzione data warehose Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa Data Warehouse Che cosa e un data warehouse? Quali sono i modelli dei dati per data warehouse Come si progetta

Dettagli

4 Introduzione al data warehousing

4 Introduzione al data warehousing Che cosa è un data warehouse? Introduzione al data warehousing 22 maggio 2001 Un data warehouse è una base di dati collezione di dati di grandi dimensioni, persistente e condivisa gestita in maniera efficace,

Dettagli

Data Warehousing (DW)

Data Warehousing (DW) Data Warehousing (DW) Il Data Warehousing è un processo per estrarre e integrare dati storici da sistemi transazionali (OLTP) diversi e disomogenei, e da usare come supporto al sistema di decisione aziendale

Dettagli

Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo

Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Obiettivi. Presentare l evoluzione dei sistemi informativi: da supporto alla operatività a supporto al momento decisionale Definire

Dettagli

Data Warehousing: concetti base e metodologie

Data Warehousing: concetti base e metodologie Data Warehousing: concetti base e metodologie Paolo Atzeni (con la collaborazione di Luca Cabibbo e Riccardo Torlone) Università di Roma Tre Dipartimento di Informatica e Automazione atzeni@dia.uniroma3.it

Dettagli

Basi di Dati Complementi Esercitazione su Data Warehouse

Basi di Dati Complementi Esercitazione su Data Warehouse Sommario Basi di Dati Complementi Esercitazione su Data Warehouse 1. Riassunto concetti principali dalle slide della lezione di teoria 2.Studio di caso : progettazione di un Data Warehouse di una catena

Dettagli

Data Warehousing. Argomenti della lezione. Rappresentazioni dei dati. Rappresentazione dei dati. Parte II Analisi multidimensionale

Data Warehousing. Argomenti della lezione. Rappresentazioni dei dati. Rappresentazione dei dati. Parte II Analisi multidimensionale Argomenti della lezione Data Warehousing Parte II Analisi multidimensionale richiami sul data warehousing organizzazione di un data warehouse l analisi multidimensionale data warehousing e internet strumenti

Dettagli

Introduzione a data warehousing e OLAP

Introduzione a data warehousing e OLAP Corso di informatica Introduzione a data warehousing e OLAP La Value chain Information X vive in Z S ha Y anni X ed S hanno traslocato Data W ha del denaro in Z Stile di vita Punto di vendita Dati demografici

Dettagli

Sistema informativo. Combinazione di risorse umane, materiali e procedure per la gestione. (raccolta, archiviazione, elaborazione, scambio )

Sistema informativo. Combinazione di risorse umane, materiali e procedure per la gestione. (raccolta, archiviazione, elaborazione, scambio ) Data Warehousing 1 Ripasso 2 Sistema informativo Combinazione di risorse umane, materiali e procedure per la gestione (raccolta, archiviazione, elaborazione, scambio ) delle informazioni necessarie per

Dettagli

Data Warehouse Architettura e Progettazione

Data Warehouse Architettura e Progettazione Introduzione Data Warehouse Architettura! Nei seguenti lucidi verrà fornita una panoramica del mondo dei Data Warehouse.! Verranno riportate diverse definizioni per identificare i molteplici aspetti che

Dettagli

Rassegna sui principi e sui sistemi di Data Warehousing

Rassegna sui principi e sui sistemi di Data Warehousing Università degli studi di Bologna FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI Rassegna sui principi e sui sistemi di Data Warehousing Tesi di laurea di: Emanuela Scionti Relatore: Chiar.mo Prof.Montesi

Dettagli

Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi

Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Sistemi Informativi La Modellazione Dimensionale dei Fatti Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Obiettivi Nelle lezioni precedenti abbiamo modellato i processi

Dettagli

Data warehouse (parte 1)

Data warehouse (parte 1) Data warehouse (parte 1) La maggior parte delle aziende dispone di enormi basi di dati contenenti dati di tipo operativo: queste basi di dati costituiscono una potenziale miniera di informazioni utili.

Dettagli

On Line Analytical Processing

On Line Analytical Processing On Line Analytical Processing Data integra solitamente Warehouse(magazzino dati) èun sorgenti un unico schema globalel informazione estratta da piu puo replicazioneai puo essere èinterrogabile, non modificabile

Dettagli

IT FOR BUSINESS AND FINANCE

IT FOR BUSINESS AND FINANCE IT FOR BUSINESS AND FINANCE Business Intelligence Siena 14 aprile 2011 AGENDA Cos è la Business Intelligence Terminologia Perché la Business Intelligence La Piramide Informativa Macro Architettura Obiettivi

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing

Dettagli

Thematica Software Technologies

Thematica Software Technologies Sperimentazione di Servizi Innovativi alle Imprese Produttrici di Software Università della Calabria 21-10-2004 Giovanni Laboccetta Thematica s.r.l. www.thematica.it glaboccetta@thematica.it Perché i data

Dettagli

Il modello dimensionale

Il modello dimensionale aprile 2012 1 L organizzazione dei dati del data warehouse costituisce la pietra angolare dell intero sistema DW/BI le applicazioni BI, di supporto alle decisioni, accedono i dati direttamente dal DW l

Dettagli

Introduzione alla Business Intelligence. E-mail: infobusiness@zucchetti.it

Introduzione alla Business Intelligence. E-mail: infobusiness@zucchetti.it Introduzione alla Business Intelligence E-mail: infobusiness@zucchetti.it Introduzione alla Business Intelligence Introduzione Definizione di Business Intelligence: insieme di processi per raccogliere

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data

Dettagli

Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse

Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse Riferimenti Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse Queste trasparenze parte 4 Testo di Atzeni et al. Basi di dati R.Kimball, The Data Warehouse Lifecycle Toolkit, 2nd Ed.,

Dettagli

SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione

SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione 1 SOMMARIO 2 9- Basi di dati direzionali Basi di Dati per la gestione dell Informazione A. Chianese, V. Moscato, A. Picariello, L. Sansone Sistemi Informativi Direzionali (SID) Architettura dei SID La

Dettagli

Progettazione Logica. Sviluppo di un Database/DataWarehouse

Progettazione Logica. Sviluppo di un Database/DataWarehouse Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Progettazione Logica Dal Capitolo 8 e 9 del libro Data Warehouse - teoria e pratica della Progettazione Autori: Matteo

Dettagli

Miriam Gotti m.gotti@cineca.it

Miriam Gotti m.gotti@cineca.it Cenni sul Dat a Warehouse Ravenna 5 Novembre 2007 Miriam Gotti m.gotti@cineca.it www. cineca.it Agenda Fondamenti di Data Warehouse Modello Multidimensionale Analisi OLAP Introduzione a Statportal www.cineca.it

Dettagli

Introduzione alla Business Intelligence

Introduzione alla Business Intelligence SOMMARIO 1. DEFINIZIONE DI BUSINESS INTELLIGENCE...3 2. FINALITA DELLA BUSINESS INTELLIGENCE...4 3. DESTINATARI DELLA BUSINESS INTELLIGENCE...5 4. GLOSSARIO...7 BIM 3.1 Introduzione alla Pag. 2/ 9 1.DEFINIZIONE

Dettagli

Introduzione al Data Warehousing

Introduzione al Data Warehousing Il problema - dati IPERVENDO Via Vai 111 P.I.11223344 Vendite II Trim. (Milioni!) Introduzione al Data Warehousing tecnologia abilitante per il data mining ACQUA MIN 0.40 LATTE INTERO 1.23 SPAZZ.DENTI

Dettagli

MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati:

MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati: DAI DATI ALLE DECISIONI MODELLI DEI DATI PER DW Le aziende per competere devono usare metodi di analisi, con tecniche di Business Intelligence, dei dati interni, accumulati nel tempo, e di dati esterni,

Dettagli

Lezione 3. Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing

Lezione 3. Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing Lezione 3 Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing 27/02/2010 1 Modello multidimensionale Nasce dall esigenza

Dettagli

Introduzione al Data Warehousing

Introduzione al Data Warehousing Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Introduzione al Data Warehousing Molte di queste slide sono state realizzate dal Prof. Stefano Rizzi (http://www-db.deis.unibo.it/~srizzi/)

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

Agenda. I sistemi a supporto delle decisioni Information Directory Sviluppi futuri. Cinque anni di Data Warehouse:dai dati alle decisioni 1

Agenda. I sistemi a supporto delle decisioni Information Directory Sviluppi futuri. Cinque anni di Data Warehouse:dai dati alle decisioni 1 Cinque anni di Data Warehouse: dai dati alle decisioni Mario ANCILLI SETTORE SISTEMI INFORMATIVI ED INFORMATICA DIREZIONE ORGANIZZAZIONE; PIANIFICAZIONE, SVILUPPO E GESTIONE DELLE RISORSE UMANE Torino,

Dettagli

PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE

PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE Tesi in: ARCHITETTURA DEI SISTEMI INFORMATIVI PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE IN UN AMBIENTE DI DISTRIBUZIONE FARMACEUTICA RELATORE: Prof. Crescenzio Gallo LAUREANDO: Alessandro Balducci

Dettagli

OLAP On Line Analytical Processing

OLAP On Line Analytical Processing OLAP On Line Analytical Processing Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria cuzzocrea@si.deis.unical.it Testo di Riferimento: J. Han, M.

Dettagli

Il Data Warehousing. Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna

Il Data Warehousing. Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna Il Data Warehousing Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna 1 Sommario Il ruolo della business intelligence e del sistema informativo 9 Il ruolo dell informatica in azienda 9 La

Dettagli

Sistemi Informativi Aziendali I

Sistemi Informativi Aziendali I Modulo 6 Sistemi Informativi Aziendali I 1 Corso Sistemi Informativi Aziendali I - Modulo 6 Modulo 6 Integrare verso l alto e supportare Managers e Dirigenti nell Impresa: Decisioni più informate; Decisioni

Dettagli

MICHAEL SCHMITZ. ETL per il ROMA 21-23 APRILE 2008 ROMA 24 APRILE 2008 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231

MICHAEL SCHMITZ. ETL per il ROMA 21-23 APRILE 2008 ROMA 24 APRILE 2008 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231 LA TECHNOLOGY TRANSFER PRESENTA MICHAEL SCHMITZ Tecniche avanzate di Database Design per Sistemi di Business Intelligence e Data Warehouse ETL per il Data Warehouse: un approccio Template-Driven ROMA 21-23

Dettagli

Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17

Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17 Lorenzo Braidi Database design Libro_datadesign.indb 1 23-11-2004 10:06:17 Sommario Introduzione...XI Capitolo 1 Le basi di dati relazionali... 1 Le basi di dati... 1 Un po di storia... 2 I database gerarchici...

Dettagli

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Introduzione al Data Warehousing per a. Modello Multidimensionale & OLAP 1 Cos è il Data Warehousing Collezione di metodi,

Dettagli

Sistemi direzionali e modello multidimensionale. Prof. Piercarlo Giolito

Sistemi direzionali e modello multidimensionale. Prof. Piercarlo Giolito Sistemi direzionali e modello multidimensionale Prof. Piercarlo Giolito 1 Data warehousing e tecnologia OLAP Argomenti trattati. Evoluzione dei Sistemi Informativi Decisionali Il modello dei dati multidimensionale

Dettagli

Ambienti Operativi per OLAP. Casi di Studio

Ambienti Operativi per OLAP. Casi di Studio Ambienti Operativi per OLAP. Casi di Studio Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria cuzzocrea@deis.unical.it Sommario Installazione e Configurazione

Dettagli

13. Datawarehouse (parte 2) Analisi e riconciliazione delle fonti dati progettista amministratori dei database modello a tre livelli

13. Datawarehouse (parte 2) Analisi e riconciliazione delle fonti dati progettista amministratori dei database modello a tre livelli 13. Datawarehouse (parte 2) Analisi e riconciliazione delle fonti dati Questa fase richiede di definire e documentare lo schema del livello dei dati operazionali, a partire dal quale verrà alimentato il

Dettagli

PBI Passepartout Business Intelligence

PBI Passepartout Business Intelligence PBI Passepartout Business Intelligence TARGET DEL MODULO Il prodotto, disponibile come modulo aggiuntivo per il software gestionale Passepartout Mexal, è rivolto alle Medie imprese che vogliono ottenere,

Dettagli

SQL Server BI Development Studio

SQL Server BI Development Studio Il Data warehouse SQL Server Business Intelligence Development Studio Analysis Service Sorgenti dati operazionali DB relazionali Fogli excel Data warehouse Staging Area e dati riconciliati Cubi Report

Dettagli

Introduzione. La misurazione dei sistemi di Data Warehouse. Definizioni & Modelli. Sommario. Data Warehousing. Introduzione. Luca Santillo (CFPS)

Introduzione. La misurazione dei sistemi di Data Warehouse. Definizioni & Modelli. Sommario. Data Warehousing. Introduzione. Luca Santillo (CFPS) Introduzione La misurazione dei sistemi di Data Warehouse Luca Santillo (CFPS) AIPA, 17/5/01 In pratica I concetti generali, le definizioni e le regole di conteggio possono essere difficili da applicare

Dettagli

02/mag/2012. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale

02/mag/2012. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale Modello semplice ed intuitivo Si presta bene a descrivere dei FATTI in modo grafico (CUBO o IPERCUBO) Es. di FATTI: Vendite Spedizioni Ricoveri Interventi chirurgici Andamento borsistico 62 Un cubo multidimensionale

Dettagli

Sistemi informativi aziendali

Sistemi informativi aziendali Sistemi informativi aziendali Lezione 12 prof. Monica Palmirani Sistemi informativi e informatici Sistemi informativi = informazioni+processi+comunicazione+persone Sistemi informatici = informazioni+hardware+software

Dettagli

Appunti per il Corso di Data Warehousing

Appunti per il Corso di Data Warehousing Università degli Studi Mediterranea di Reggio Calabria Corsi per il Personale Tecnico Amministrativo Appunti per il Corso di Data Warehousing Autori: Ing. Giovanni Quattrone, Prof. Domenico Ursino Anno

Dettagli

Lezione 7. Data Warehouse & OLAP

Lezione 7. Data Warehouse & OLAP Lezione 7 Data Warehouse & OLAP Che cos'è un Data Warehouse? Termine inventato da Bill Inmon alla fine degli anni 1980. È una base di dati contenente dati provenienti da uno o più basi di dati operative

Dettagli

Introduzione ad OLAP (On-Line Analytical Processing)

Introduzione ad OLAP (On-Line Analytical Processing) Introduzione ad OLAP (On-Line Analytical Processing) Metodi e Modelli per il Supporto alle Decisioni 2002 Dipartimento di Informatica Sistemistica e Telematica (Dist) Il termine OLAP e l acronimo di On-Line

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Data Warehousing. Introduzione 1/2 I data warehousing

Dettagli

E-Mail. Scheduling. Modalità d invio. E-Mail

E-Mail. Scheduling. Modalità d invio. E-Mail BI BI Terranova, azienda leader in Italia per le soluzioni Software rivolte al mercato delle Utilities, propone la soluzione Software di Business Intelligence RETIBI, sviluppata per offrire un maggiore

Dettagli

CAPITOLO 9 Piattaforme di Business Intelligence e DSS

CAPITOLO 9 Piattaforme di Business Intelligence e DSS CAPITOLO 9 Piattaforme di Business Intelligence e DSS Lucidi di Gianmario Motta 2010 OBIETTIVI DI APPRENDIMENTO Identificare quali sono le applicazioni d uso dei sistemi di BI Spiegare quali sono le caratteristiche

Dettagli

Risorsa N 002994 DATI ANAGRAFICI: FORMAZIONE E CORSI: ISTRUZIONE E CERTIFICAZIONI: LINGUE STRANIERE: COMPETENZE INFORMATICHE:

Risorsa N 002994 DATI ANAGRAFICI: FORMAZIONE E CORSI: ISTRUZIONE E CERTIFICAZIONI: LINGUE STRANIERE: COMPETENZE INFORMATICHE: Risorsa N 002994 DATI ANAGRAFICI: Nato il : 1971 Residente a : Pavia FORMAZIONE E CORSI: Nel 02/2013: Corso di Oracle Business Intelligence Enterprise Edition (OBIEE) 11.1.3 Nel 04/2007: Corso di Analisi

Dettagli

Dynamic Warehousing: la tecnologia a supporto della Business Intelligence 2.0. Giulia Caliari Software IT Architect

Dynamic Warehousing: la tecnologia a supporto della Business Intelligence 2.0. Giulia Caliari Software IT Architect Dynamic Warehousing: la tecnologia a supporto della Business Intelligence 2.0 Giulia Caliari Software IT Architect Business Intelligence: la nuova generazione Infrastruttura Flessibilità e rapidità di

Dettagli

Estensioni del linguaggio SQL per interrogazioni OLAP

Estensioni del linguaggio SQL per interrogazioni OLAP Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Estensioni del linguaggio SQL per interrogazioni OLAP Outline! Esempio introduttivo e motivazioni! Introduzione al modello

Dettagli

I data warehouse e la loro progettazione

I data warehouse e la loro progettazione Tecnologie per i sistemi informativi I data warehouse e la loro progettazione Docente: Letizia Tanca Politecnico di Milano tanca@elet.polimi.it 1 Processi processi direzionali processi gestionali processi

Dettagli

DATA MINING E DATA WAREHOUSE

DATA MINING E DATA WAREHOUSE Reti e sistemi informativi DATA MINING E DATA WAREHOUSE Marco Gottardo FONTI Wikipedia Cineca Università di Udine, Dipartimento di fisica, il data mining scientifico thepcweb.com DATA MINING 1/2 Il Data

Dettagli

Sistemi Informativi. Catena del valore di PORTER

Sistemi Informativi. Catena del valore di PORTER Sistemi Informativi Catena del valore di PORTER La catena del valore permette di considerare l'impresa come un sistema di attività generatrici del valore, inteso come il prezzo che il consumatore è disposto

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing

Dettagli

Pianificazione del data warehouse

Pianificazione del data warehouse Pianificazione del data warehouse Dalla pianificazione emergono due principali aree d interesse: area commerciale focalizzata sulle agenzie di vendita e area marketing concentrata sulle vendite dei prodotti.

Dettagli

Business Intelligence: Data warehouse & Data mining

Business Intelligence: Data warehouse & Data mining Business Intelligence Business Intelligence: Data warehouse & Data mining Termine generico per indicare: un insieme di processi per raccogliere ed analizzare informazioni strategiche la tecnologia utilizzata

Dettagli

Lezione 9. Ambienti Operativi per OLAP Casi di Studio 08/03/2010 1

Lezione 9. Ambienti Operativi per OLAP Casi di Studio 08/03/2010 1 Lezione 9 Ambienti Operativi per OLAP Casi di Studio 08/03/2010 1 Ambienti Operativi per OLAP. Casi di Studio Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della

Dettagli

SQL Server. Applicazioni principali

SQL Server. Applicazioni principali SQL Server Introduzione all uso di SQL Server e utilizzo delle opzioni OLAP Applicazioni principali SQL Server Enterprise Manager Gestione generale di SQL Server Gestione utenti Creazione e gestione dei

Dettagli

emanager La soluzione a supporto dei processi di Clinical Governance www.dedalus.eu

emanager La soluzione a supporto dei processi di Clinical Governance www.dedalus.eu emanager La soluzione a supporto dei processi di Clinical Governance www.dedalus.eu 3 La Clinical Governance Nell ambito dell erogazione di servizi sanitari è sempre più evidente l esigenza di poter disporre

Dettagli

MICHAEL SCHMITZ ROMA 20-22 NOVEMBRE 2006 ROMA 23-24 NOVEMBRE 2006 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231

MICHAEL SCHMITZ ROMA 20-22 NOVEMBRE 2006 ROMA 23-24 NOVEMBRE 2006 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231 LA TECHNOLOGY TRANSFER PRESENTA MICHAEL SCHMITZ DATA WAREHOUSING Aspetti avanzati di Design e di Implementazione ETL PER IL DATA WAREHOUSE Un approccio Template-Driven ROMA 20-22 NOVEMBRE 2006 ROMA 23-24

Dettagli

SQL Server 2005. Introduzione all uso di SQL Server e utilizzo delle opzioni Olap. Dutto Riccardo - SQL Server 2005.

SQL Server 2005. Introduzione all uso di SQL Server e utilizzo delle opzioni Olap. Dutto Riccardo - SQL Server 2005. SQL Server 2005 Introduzione all uso di SQL Server e utilizzo delle opzioni Olap SQL Server 2005 SQL Server Management Studio Gestione dei server OLAP e OLTP Gestione Utenti Creazione e gestione DB SQL

Dettagli

slogan Datawarehouse e Datamining Una verità attuale Esigenze degli utenti (Kimball 1996) a.a. 2006/2007 Introduzione

slogan Datawarehouse e Datamining Una verità attuale Esigenze degli utenti (Kimball 1996) a.a. 2006/2007 Introduzione Datawarehouse e Datamining a.a. 2006/2007 Introduzione slogan Conoscere i propri numeri per modellare il proprio business Il successo o il fallimento di una impresa dipendono dal modo in cui si raccolgono,

Dettagli

Introduzione al Data Warehousing per Sistemi Informativi Aziendali

Introduzione al Data Warehousing per Sistemi Informativi Aziendali Università La Sapienza di Roma AA 2009-2010 Prof. Introduzione al Data Warehousing per Cos è il Data Warehousing Collezione di metodi, tecnologie e strumenti di ausilio al lavoratore della conoscenza (manager,

Dettagli

Database Commerciali/ Marketing. Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing

Database Commerciali/ Marketing. Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing Database Commerciali/ Marketing Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing Database Commerciali/ Marketing Gli elementi chiave del db

Dettagli

DEFINIZIONI FONDAMENTALI

DEFINIZIONI FONDAMENTALI Consorzio per la formazione e la ricerca in Ingegneria dell'informazione DEFINIZIONI FONDAMENTALI Per vincere ci vuole una buona partenza... Docente: Cesare Colombo CEFRIEL colombo@cefriel.it http://www.cefriel.it

Dettagli

ESEMPIO: RITARDI & BIGLIETTI

ESEMPIO: RITARDI & BIGLIETTI ESEMPIO: RITARDI & BIGLIETTI Fatto Ritardi: l analisi a livello volo giornaliero, considerando l aeroporto di partenza, la città e lo stato di arrivo e la compagnia Fatto Biglietti: l analisi deve considerare

Dettagli

DBMS (Data Base Management System)

DBMS (Data Base Management System) Cos'è un Database I database o banche dati o base dati sono collezioni di dati, tra loro correlati, utilizzati per rappresentare una porzione del mondo reale. Sono strutturati in modo tale da consentire

Dettagli

Sistemi informativi aziendali

Sistemi informativi aziendali Sistemi informativi aziendali Lezione 12 prof. Monica Palmirani Sistemi informativi e informatici Sistemi informativi = informazioni+processi+comunicazione+persone Sistemi informatici = informazioni+hardware+software

Dettagli

Data Warehousing. Esercitazione 1

Data Warehousing. Esercitazione 1 Esercitazione 1 IBM DB2 UDB DB2 Universal Database Suite di strumenti per la gestione dei dati Funzioni avanzate per soluzioni business intelligence Dispone di strumenti di sviluppo del data warehouse

Dettagli

ALTA GAMMA. business intelligence. il software per pilotare la tua Azienda con successo

ALTA GAMMA. business intelligence. il software per pilotare la tua Azienda con successo ALTA GAMMA business intelligence il software per pilotare la tua Azienda con successo Chi è TeamSystem Da venticinque anni presente sul mercato del SW gestionale italiano. Oltre 44 milioni di EURO di fatturato

Dettagli

Lezione 1. Introduzione e Modellazione Concettuale

Lezione 1. Introduzione e Modellazione Concettuale Lezione 1 Introduzione e Modellazione Concettuale 1 Tipi di Database ed Applicazioni Database Numerici e Testuali Database Multimediali Geographic Information Systems (GIS) Data Warehouses Real-time and

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Sistema informativo. Prima definizione Un sistema

Dettagli

Sistemi informativi aziendali

Sistemi informativi aziendali Operatore giuridico d impresa Informatica Giuridica A.A 2002/2003 II Semestre Sistemi informativi aziendali prof. Monica Palmirani Sistemi informativi e informatici Sistemi informativi = informazioni+processi+comunicazione+persone

Dettagli

Glossario. Termini tecnici. Termini di business. Acronimi

Glossario. Termini tecnici. Termini di business. Acronimi Glossario Il glossario è suddiviso in tre sezioni: la prima riporta i termini tecnici più frequentemente utilizzati in tutti i progetti di Data Warehouse la seconda è specifica di progetto e tratta i termini

Dettagli

Misure. Definizione delle misure

Misure. Definizione delle misure Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Misure In parte dal Capitolo 5 del libro Data Warehouse - teoria e pratica della Progettazione Autori: Matteo Golfarelli,

Dettagli

INDICE CONROLLO DI GESTIONE E SISTEMI INFORMATIVI AZIENDALI IL CONTROLLO DI GESTIONE E GLI ALTRI MECCANISMI OPERATIVI

INDICE CONROLLO DI GESTIONE E SISTEMI INFORMATIVI AZIENDALI IL CONTROLLO DI GESTIONE E GLI ALTRI MECCANISMI OPERATIVI INDICE PREMESSA...1 PARTE PRIMA CONROLLO DI GESTIONE E SISTEMI INFORMATIVI AZIENDALI CAPITOLO PRIMO IL CONTROLLO DI GESTIONE E GLI ALTRI MECCANISMI OPERATIVI 1. I concetti di pianificazione strategica

Dettagli

Data Mining e Analisi dei Dati

Data Mining e Analisi dei Dati e Analisi dei Dati Rosaria Lombardo Dipartimento di Economia, Seconda Università di Napoli La scienza che estrae utili informazioni da grandi databases è conosciuta come E una disciplina nuova che interseca

Dettagli

E.T.L. (Extract.Tansform.Load) IBM - ISeries 1/8

E.T.L. (Extract.Tansform.Load) IBM - ISeries 1/8 E.T.L. (Extract.Tansform.Load) IBM - ISeries Quick-EDD/ DR-DRm ETL 1/8 Sommario ETL... 3 I processi ETL (Extraction, Transformation and Loading - estrazione, trasformazione e caricamento)... 3 Cos è l

Dettagli

ANALISI DEI DATI. OLAP (On Line Analytical Processing) Data Warehousing Data Mining

ANALISI DEI DATI. OLAP (On Line Analytical Processing) Data Warehousing Data Mining ANALISI DEI DATI OLAP (On Line Analytical Processing) Data Warehousing Data Mining Dall OLTP all OLAP La tecnologia delle basi di dati è finalizzata prevalentemente alla gestione dei dati in linea, si

Dettagli

Data Mining: Applicazioni

Data Mining: Applicazioni Sistemi Informativi Universitá degli Studi di Milano Facoltá di Scienze Matematiche, Fisiche e Naturali Dipartimento di Tecnologie dell Informazione 1 Giugno 2007 Data Mining Perché il Data Mining Il Data

Dettagli

Per capire meglio l ambito di applicazione di un DWhouse consideriamo la piramide di Anthony, L. Direzionale. L. Manageriale. L.

Per capire meglio l ambito di applicazione di un DWhouse consideriamo la piramide di Anthony, L. Direzionale. L. Manageriale. L. DATA WAREHOUSE Un Dataware House può essere definito come una base di dati di database. In molte aziende ad esempio ci potrebbero essere molti DB, per effettuare ricerche di diverso tipo, in funzione del

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data

Dettagli