Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2)"

Transcript

1 Tecnologie per i sistemi informativi Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2) Letizia Tanca lucidi tratti dal libro: Atzeni, Ceri, Paraboschi, Torlone Introduzione alle Basi di dati, Mc Graw Hill Italia 1 Il problema Una promessa della tecnologia relazionale: flexible data access : Uno strumento per l utente finale in cui tutte le query siano ugualmente formulabili Ma la tecnologia relazionale non ha mantenuto questa promessa: Complessità e rigidità delle applicazioni Enfasi su OLTP Le conseguenze: - Masse di dati per la gestione operativa - Scarso utilizzo dei dati per la gestione strategica 2

2 Le query che vorremmo poter facilmente formulare Incassi registrati lo scorso anno per ciascuna regione e ciascuna categoria di prodotto Correlazione tra l andamento dei titoli azionari dei produttori di computer e i profitti trimestrali degli ultimi 5 anni Quali sono gli ordini che massimizzano gli incassi? Quale di due nuove terapie risulterà in una diminuzione della durata media dei ricoveri? 3 OLTP Tradizionale elaborazione di transazioni, che realizzano i processi operativi dell azienda-ente Operazioni spesso predefinite e relativamente semplici Ogni operazione coinvolge pochi dati Dati di dettaglio, aggiornati Le proprietà acide (atomicità, correttezza, isolamento, durabilità) delle transazioni sono essenziali Le dimensioni delle basi di dati sono dell ordine dei gbyte La principale metrica di prestazione e il throughput delle transazioni 4

3 OLAP Elaborazione di operazioni per il supporto alle decisioni Operazioni complesse e casuali Ogni operazione può coinvolgere molti dati Dati aggregati, storici, anche non attualissimi Le proprietà acide non sono rilevanti, perché le operazioni sono di sola lettura Le dimensioni del warehouse raggiungono facilmente i terabyte Le prestazioni considerate sono il throughput delle interrogazioni e il loro tempo di risposta 5 OLTP vs OLAP On Line Transaction Processing vs On Line Analytical Processing È estremamente difficile far convivere i due carichi di lavoro Diversi ordini di motivi: Ragioni organizzative (disomogeneità di utenti e di requisiti) Ragioni tecniche La configurazione di sistemi dedicati a uno solo dei due compiti è un problema gestibile 6

4 OLTP vs OLAP, requisiti sui dati OLTP OLAP Accuratezza Sul dettaglio Sul consolidato Copertura Funzionale Integrata Ampiezza Limitata Vasta temporale (serie storiche) Aggiornamento Immediato Giorni/Settimane Granularità Dettagli Dettagli e aggregati Query ad hoc Rare Frequenti 7 Ragioni tecniche del conflitto OLTP/OLAP Conflitto di lock OLTP: tante transazioni rapide con lock esclusivi OLAP: poche transazioni lunghe con lock condivisi OLTP+OLAP o le transazioni OLTP sono molto rallentate o le query OLAP non riescono ad essere eseguite 8

5 Ragioni tecniche del conflitto OLTP/OLAP Uso degli indici OLTP: pochi e solo se servono OLAP: tanti per coprire ogni esigenza OLTP+OLAP o le transazioni OLTP rallentano per l aggiornamento di molti indici o le query OLAP non hanno a disposizione gli indici necessari 9 Ragioni tecniche del conflitto OLTP/OLAP Precomputazioni di query, materializzazione di viste OLTP: molto raramente, per problemi di consistenza e di carico OLAP: aspetto chiave per abbassare i tempi di risposta Differenze nel modello logico OLTP: elevata frammentazione e un gran numero di tabelle OLAP: poche tabelle denormalizzate Differenti algoritmi di join 10

6 Considerazioni sul conflitto OLTP/OLAP Il conflitto è intrinseco Non sparisce con l aumentare della potenza di calcolo, anzi può crescere La soluzione migliore consiste nel separare i due ambienti Ciò porta alla realizzazione dei Data Warehouse Fondamentale l asincronicità degli aggiornamenti 11 DATA WAREHOUSE (DW) Tecnica per assemblare e gestire correttamente dati provenienti da sorgenti diverse, al fine di ottenere una visione dettagliata di un sistema economico E una raccolta di dati Integrata Permanente Variabile nel tempo Orientata ad un preciso argomento A supporto di decisioni manageriali 12

7 Altri aspetti di un ambiente OLAP Eterogeneità dei dati di partenza Conservazione di serie storiche Pulizia dei dati Sistema transazionale Collezione di sistemi differenti Enfasi sull automazione Molti utenti Ambito limitato (diviso per funzioni) Data Warehouse Visione sintetica integrata Enfasi sulla generazione di informazione Pochi utenti Ambito globale (a livello di impresa) 13 Fattori critici di successo Replicazione dei dati che non abbia un grande impatto sul sistema transazionale Caricamento dei dati nella finestra temporale assegnata Scalabilità della soluzione Accettazione da parte degli utenti del sistema (vari tipi di presentazione) Correttezza dei dati replicati Uso di standard Congruenza del modello dei dati con la realtà 14

8 Obiettivi di OLAP Definire una versione dei dati aziendali consistente, pubblica, di qualità Facilitare l'accesso ai dati per uso strategico Applicazioni di OLAP Supporto alle decisioni e business planning (finanze, marketing, vendite) 15 Processi processi direzionali processi gestionali processi operativi 16

9 Data warehouse Una base di dati utilizzata principalmente per il supporto alle decisioni direzionali integrata aziendale e non dipartimentale orientata ai dati non alle applicazioni storici con un ampio orizzonte temporale, e indicazione (di solito) di elementi di tempo non volatile i dati sono caricati e acceduti fuori linea mantenuta separatamente dalle basi di dati operazionali integrata... I dati di interesse provengono da tutte le sorgenti informative ciascun dato proviene da una o più di esse Il data warehouse rappresenta i dati in modo univoco riconciliando le eterogeneità dalle diverse rappresentazioni nomi codifica rappresentazione multipla 18

10 ... orientata ai dati... Le basi di dati operazionali sono costruite a supporto dei singoli processi operativi o applicazioni produzione vendita Il data warehouse è costruito attorno alle principali entità del patrimonio informativo aziendale prodotto cliente dati storici... Le basi di dati operazionali mantengono il valore corrente delle informazioni L orizzonte temporale di interesse è dell ordine dei pochi mesi Nel data warehouse è di interesse l evoluzione storica delle informazioni L orizzonte temporale di interesse è dell ordine degli anni 20

11 ... non volatile... In una base di dati operazionale, i dati vengono acceduti, inseriti, modificati, cancellati pochi record alla volta Nel data warehouse, abbiamo operazioni di accesso e interrogazione diurne operazioni di caricamento e aggiornamento dei dati notturne che riguardano milioni di record una base di dati separata... Per tanti motivi non esiste un unica base di dati operazionale che contiene tutti i dati di interesse la base di dati deve essere integrata non è tecnicamente possibile fare l integrazione in linea i dati di interesse sarebbero comunque diversi devono essere mantenuti dati storici devono essere mantenuti dati aggregati l analisi dei dati richiede per i dati organizzazioni speciali e metodi di accesso specifici degrado generale delle prestazioni senza la separazione 22

12 Architettura per il data warehousing Monitoraggio & Amministrazione Sorgenti esterne Basi di dati operazionali Metadati Enterprise Data Warehouse Strumenti di analisi Analisi dimensionale Visualizzazione Data mining Sorgenti dei dati Data Mart 23 DW e Data Mart Una DW spesso integra diversi Data Mart Gli utenti normalmente si rivolgono a un particolare Data Mart I Data Mart condividono dati tra di loro Ciascun Data Mart è responsabile di un particolare aspetto della realtà aziendale 24

13 MODELLI DEI DATI PER OLAP devono supportare analisi e calcoli sofisticati su diverse dimensioni e gerarchie il modello logico dei dati piu adatto e una struttura multidimensionale - il data cube le dimensioni del cubo sono costituite dagli attributi secondo i quali si vogliono fare le ricerche (chiavi) ogni dimensione puo contenere a sua volta una gerarchia DATA {GIORNO - MESE TRIMESTRE - ANNO} PRODOTTO {NOME - TIPO - CATEGORIA} (LAND ROVER - FUORISTRADA - AUTOVEICOLI) le celle del cubo contengono i valori metrici relativi ai valori dimensionali 25 MODELLI LOGICI DEI DATI PER OLAP ESEMPIO PER UNA COMPAGNIA DI ASSICURAZIONI DIMENSIONI VALORI METRICI NUMERO DI POLIZZE, VALORE DEI PREMI ANNO < >80 MALATTIE-VITA RC-FAMIGLIA FURTO-INCENDIO RC-AUTO TIPO ETA 26

14 Rappresentazione multidimensionale Concetti rilevanti: fatto un concetto sul quale centrare l analisi - modella un evento che accade nell azienda misura una proprietà atomica di un fatto da analizzare ne descrive un aspetto quantitativo dimensione descrive una prospettiva lungo la quale effettuare l analisi 27 Esempi di fatti/misure/dimensioni Catena di negozi Fatto: vendite Misure: quantità venduta, incasso Dimensioni: prodotto, tempo, zona Compagnia telefonica Fatto: telefonata Misure: costo, durata Dimensioni: chiamante, chiamato, tempo 28

15 Rappresentazione multidimensionale dei dati Mercati Quantità Prodotti Periodi di tempo Vendite 29 Viste su dati multidimensionali Mercati Prodotti Tempo 30

16 Il manager regionale esamina la vendita dei prodotti in tutti i periodi relativamente ai propri mercati Mercati Prodotti Tempo 31 Il manager di prodotto esamina la vendita di un prodotto in tutti i periodi e in tutti i mercati Mercati Prodotti Tempo 32

17 Il manager finanziario esamina la vendita dei prodotti in tutti i mercati relativamente al periodo corrente e quello precedente Mercati Prodotti Tempo 33 Il manager strategico si concentra su una categoria di prodotti, una area regionale e un orizzonte temporale medio Mercati Prodotti Tempo 34

18 Dimensioni e gerarchie di livelli Ciascuna dimensione è organizzata in una gerarchia che rappresenta i possibili livelli di aggregazione per i dati regione provincia città negozio categoria marca prodotto anno trimestre mese giorno 35 OPERAZIONI OLAP SUL WAREHOUSE roll-up (accumulare) aumenta il livello di aggregazione dei dati - volume di vendita totale dello scorso anno per categoria di prodotto e regione drill-down (perforare) aumenta il livello di dettaglio dei dati - per una particolare categoria di prodotto e regione, mostra le vendite giornaliere slice-and-dice (affettare e tagliare a cubetti) seleziona e proietta riducendo la dimensionalita dei dati pivoting (far perno) seleziona due dimensioni attorno alle quali aggregare i dati metrici (ri-orienta il cubo) ranking (attribuire una classe di merito) ordina i dati secondo criteri predefiniti operazioni tradizionali (selezione, attributi calcolati, ecc.) 36

19 OPERAZIONI OLAP DRILL-DOWN TIPO TIPO ETA ROLL-UP ETA ANNO MESE 37 OPERAZIONI OLAP ANNO PIVOTING ANNO ETA TIPO TIPO ETA ETA TIPO ANNO 38

20 OPERAZIONI OLAP ANNO SLICE AND DICE ANNO ETA TIPO ETA TIPO 39 Visualizzazione dei dati I dati vengono infine visualizzati in veste grafica, in maniera da essere facilmente comprensibili. Si fa uso di: tabelle, istogrammi, grafici, torte, superfici 3D, bolle, area in pila, ecc. 40

21 Tabella di partenza mese febbraio marzo aprile prodotto Somma ammontare Somma quantità Drill-down: aggiunta di una dimensione Drill-down sulla zona mese febbraio febbraio febbraio marzo marzo marzo aprile aprile aprile prodotto zona nord est centro nord est centro nord est centro Somma quantità

22 Roll-up: eliminazione di una dimensione Roll-up sul mese prodotto zona nord est centro Somma quantità Query aggregate Esempi: Totale delle vendite per categoria di prodotto per supermercato per giorno Totale delle vendite mensili di prodotti per supermercato Totale delle vendite mensili per categoria per supermercato Media delle vendite mensili per categoria su tutti i supermercati 44

23 Aggregazione in SQL : data cube Esprime tutte le aggregazioni possibili delle tuple di una tabella Utilizza il nuovo valore polimorfo 45 Data cube in SQL select Modello, Anno, Colore, sum(vendite) from Vendite where Modello in {'Fiat','Ford'} and Colore = 'Rosso' and Anno between and 1995 group by Modello, Anno, Colore with cube 46

24 47 Fatti rilevanti modello ford colore anno 1995 vendite Dati nel data cube modello ford ford ford ford colore anno sum (vendite)

25 Visualizzazione del data cube.. rossȯ ford 49 Roll up select Modello, Anno, Colore, sum(vendite) from Vendite where Modello in {'Fiat','Ford'} and Colore = 'Rosso' and Anno between and 1995 group by Modello, Anno, Colore with roll up 50

26 Dati nel roll up modello anno coloresum(vendite) ford ford ford Tipiche dimensioni della data warehouse tempo: 730 giorni magazzini: 300 prodotti: vendite quotidiane: promozioni: non piu' di una per prodotto venduto vendite: 730 x 300 x 3000 x 1 = 657 milioni. dimensioni: 657 milioni x 8 attributi x 4 byte = 21gb. 52

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni Data warehouse Data warehouse La crescita dell importanza dell analisi dei dati ha portato ad una separazione architetturale dell ambiente transazionale (OLTP on-line transaction processing) da quello

Dettagli

Cosa è un data warehouse?

Cosa è un data warehouse? Argomenti della lezione Data Warehousing Parte I Introduzione al warehousing cosa è un data warehouse classificazione dei processi aziendali sistemi di supporto alle decisioni elaborazione OLTP e OLAP

Dettagli

Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse

Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse Introduzione data warehose Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa Data Warehouse Che cosa e un data warehouse? Quali sono i modelli dei dati per data warehouse Come si progetta

Dettagli

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Data warehousing Introduzione A partire dalla metà degli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa

Dettagli

Data Warehousing. Argomenti della lezione. Rappresentazioni dei dati. Rappresentazione dei dati. Parte II Analisi multidimensionale

Data Warehousing. Argomenti della lezione. Rappresentazioni dei dati. Rappresentazione dei dati. Parte II Analisi multidimensionale Argomenti della lezione Data Warehousing Parte II Analisi multidimensionale richiami sul data warehousing organizzazione di un data warehouse l analisi multidimensionale data warehousing e internet strumenti

Dettagli

Data Warehousing: concetti base e metodologie

Data Warehousing: concetti base e metodologie Data Warehousing: concetti base e metodologie Paolo Atzeni (con la collaborazione di Luca Cabibbo e Riccardo Torlone) Università di Roma Tre Dipartimento di Informatica e Automazione atzeni@dia.uniroma3.it

Dettagli

Basi di Dati Complementi Esercitazione su Data Warehouse

Basi di Dati Complementi Esercitazione su Data Warehouse Sommario Basi di Dati Complementi Esercitazione su Data Warehouse 1. Riassunto concetti principali dalle slide della lezione di teoria 2.Studio di caso : progettazione di un Data Warehouse di una catena

Dettagli

Architetture per l analisi di dati

Architetture per l analisi di dati Architetture per l analisi di dati Basi di dati: Architetture e linee di evoluzione - Seconda edizione Capitolo 8 Appunti dalle lezioni Motivazioni I sistemi informatici permettono di aumentare la produttività

Dettagli

Data Warehousing (DW)

Data Warehousing (DW) Data Warehousing (DW) Il Data Warehousing è un processo per estrarre e integrare dati storici da sistemi transazionali (OLTP) diversi e disomogenei, e da usare come supporto al sistema di decisione aziendale

Dettagli

Governo Digitale a.a. 2011/12

Governo Digitale a.a. 2011/12 Governo Digitale a.a. 2011/12 I sistemi di supporto alle decisioni ed il Data Warehouse Emiliano Casalicchio Agenda Introduzione i sistemi di supporto alle decisioni Data warehouse proprietà architettura

Dettagli

Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo

Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Obiettivi. Presentare l evoluzione dei sistemi informativi: da supporto alla operatività a supporto al momento decisionale Definire

Dettagli

Analisi dei Dati. Lezione 10 Introduzione al Datwarehouse

Analisi dei Dati. Lezione 10 Introduzione al Datwarehouse Analisi dei Dati Lezione 10 Introduzione al Datwarehouse Il Datawarehouse Il Data Warehousing si può definire come il processo di integrazione di basi di dati indipendenti in un singolo repository (il

Dettagli

Introduzione al data warehousing

Introduzione al data warehousing Introduzione al data warehousing, Riccardo Torlone aprile 2012 1 Motivazioni I sistemi informatici permettono di aumentare la produttività delle organizzazioni automatizzandone la gestione quotidiana dei

Dettagli

Data warehouse Introduzione

Data warehouse Introduzione Database and data mining group, Data warehouse Introduzione INTRODUZIONE - 1 Pag. 1 Database and data mining group, Supporto alle decisioni aziendali La maggior parte delle aziende dispone di enormi basi

Dettagli

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011 Data warehousing Introduzione A partire dagli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa lezione vedremo

Dettagli

I data warehouse e la loro progettazione

I data warehouse e la loro progettazione Tecnologie per i sistemi informativi I data warehouse e la loro progettazione Docente: Letizia Tanca Politecnico di Milano tanca@elet.polimi.it 1 Processi processi direzionali processi gestionali processi

Dettagli

Introduzione al Data Warehousing

Introduzione al Data Warehousing Il problema - dati IPERVENDO Via Vai 111 P.I.11223344 Vendite II Trim. (Milioni!) Introduzione al Data Warehousing tecnologia abilitante per il data mining ACQUA MIN 0.40 LATTE INTERO 1.23 SPAZZ.DENTI

Dettagli

Rassegna sui principi e sui sistemi di Data Warehousing

Rassegna sui principi e sui sistemi di Data Warehousing Università degli studi di Bologna FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI Rassegna sui principi e sui sistemi di Data Warehousing Tesi di laurea di: Emanuela Scionti Relatore: Chiar.mo Prof.Montesi

Dettagli

4 Introduzione al data warehousing

4 Introduzione al data warehousing Che cosa è un data warehouse? Introduzione al data warehousing 22 maggio 2001 Un data warehouse è una base di dati collezione di dati di grandi dimensioni, persistente e condivisa gestita in maniera efficace,

Dettagli

02/mag/2012. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale

02/mag/2012. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale Modello semplice ed intuitivo Si presta bene a descrivere dei FATTI in modo grafico (CUBO o IPERCUBO) Es. di FATTI: Vendite Spedizioni Ricoveri Interventi chirurgici Andamento borsistico 62 Un cubo multidimensionale

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing

Dettagli

Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse

Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse Riferimenti Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse Queste trasparenze parte 4 Testo di Atzeni et al. Basi di dati R.Kimball, The Data Warehouse Lifecycle Toolkit, 2nd Ed.,

Dettagli

Introduzione alla Business Intelligence

Introduzione alla Business Intelligence SOMMARIO 1. DEFINIZIONE DI BUSINESS INTELLIGENCE...3 2. FINALITA DELLA BUSINESS INTELLIGENCE...4 3. DESTINATARI DELLA BUSINESS INTELLIGENCE...5 4. GLOSSARIO...7 BIM 3.1 Introduzione alla Pag. 2/ 9 1.DEFINIZIONE

Dettagli

Data Warehousing e Data Mining

Data Warehousing e Data Mining Università degli Studi di Firenze Dipartimento di Sistemi e Informatica A.A. 2011-2012 I primi passi Data Warehousing e Data Mining Parte 2 Docente: Alessandro Gori a.gori@unifi.it OLTP vs. OLAP OLTP vs.

Dettagli

On Line Analytical Processing

On Line Analytical Processing On Line Analytical Processing Data integra solitamente Warehouse(magazzino dati) èun sorgenti un unico schema globalel informazione estratta da piu puo replicazioneai puo essere èinterrogabile, non modificabile

Dettagli

Lezione 3. Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing

Lezione 3. Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing Lezione 3 Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing 27/02/2010 1 Modello multidimensionale Nasce dall esigenza

Dettagli

PBI Passepartout Business Intelligence

PBI Passepartout Business Intelligence PBI Passepartout Business Intelligence TARGET DEL MODULO Il prodotto, disponibile come modulo aggiuntivo per il software gestionale Passepartout Mexal, è rivolto alle Medie imprese che vogliono ottenere,

Dettagli

Introduzione ad OLAP (On-Line Analytical Processing)

Introduzione ad OLAP (On-Line Analytical Processing) Introduzione ad OLAP (On-Line Analytical Processing) Metodi e Modelli per il Supporto alle Decisioni 2002 Dipartimento di Informatica Sistemistica e Telematica (Dist) Il termine OLAP e l acronimo di On-Line

Dettagli

Data warehouse (parte 1)

Data warehouse (parte 1) Data warehouse (parte 1) La maggior parte delle aziende dispone di enormi basi di dati contenenti dati di tipo operativo: queste basi di dati costituiscono una potenziale miniera di informazioni utili.

Dettagli

Introduzione a data warehousing e OLAP

Introduzione a data warehousing e OLAP Corso di informatica Introduzione a data warehousing e OLAP La Value chain Information X vive in Z S ha Y anni X ed S hanno traslocato Data W ha del denaro in Z Stile di vita Punto di vendita Dati demografici

Dettagli

PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE

PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE Tesi in: ARCHITETTURA DEI SISTEMI INFORMATIVI PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE IN UN AMBIENTE DI DISTRIBUZIONE FARMACEUTICA RELATORE: Prof. Crescenzio Gallo LAUREANDO: Alessandro Balducci

Dettagli

MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati:

MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati: DAI DATI ALLE DECISIONI MODELLI DEI DATI PER DW Le aziende per competere devono usare metodi di analisi, con tecniche di Business Intelligence, dei dati interni, accumulati nel tempo, e di dati esterni,

Dettagli

SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione

SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione 1 SOMMARIO 2 9- Basi di dati direzionali Basi di Dati per la gestione dell Informazione A. Chianese, V. Moscato, A. Picariello, L. Sansone Sistemi Informativi Direzionali (SID) Architettura dei SID La

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data

Dettagli

Introduzione alla Business Intelligence. E-mail: infobusiness@zucchetti.it

Introduzione alla Business Intelligence. E-mail: infobusiness@zucchetti.it Introduzione alla Business Intelligence E-mail: infobusiness@zucchetti.it Introduzione alla Business Intelligence Introduzione Definizione di Business Intelligence: insieme di processi per raccogliere

Dettagli

Informazioni generali sul corso

Informazioni generali sul corso Informazioni generali sul corso Principi di Datawarehouse 1 Obiettivi del corso Conoscere i Datawarehouse 2 1 Argomenti Il contesto I sistemi DSS Architettura DW Proprietà DW Utilizzo DW Elementi OLAP:

Dettagli

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Introduzione al Data Warehousing per a. Modello Multidimensionale & OLAP 1 Cos è il Data Warehousing Collezione di metodi,

Dettagli

Il modello dimensionale

Il modello dimensionale aprile 2012 1 L organizzazione dei dati del data warehouse costituisce la pietra angolare dell intero sistema DW/BI le applicazioni BI, di supporto alle decisioni, accedono i dati direttamente dal DW l

Dettagli

Basi di Dati. prof. Letizia Tanca. Le transazioni e il database server, cenni sui nuovi sistemi per Big Data

Basi di Dati. prof. Letizia Tanca. Le transazioni e il database server, cenni sui nuovi sistemi per Big Data Basi di Dati prof. Letizia Tanca Le transazioni e il database server, cenni sui nuovi sistemi per Big Data (lucidi parzialmente tratti dal libro: Atzeni, Ceri, Paraboschi, Torlone Introduzione alle Basi

Dettagli

Sistemi Informativi Aziendali I

Sistemi Informativi Aziendali I Modulo 6 Sistemi Informativi Aziendali I 1 Corso Sistemi Informativi Aziendali I - Modulo 6 Modulo 6 Integrare verso l alto e supportare Managers e Dirigenti nell Impresa: Decisioni più informate; Decisioni

Dettagli

marca (1,n) (1,1) nome prezzou prodotto nome responsabile quantità nome datai dataf (0,n) vendite (0,n) (0,n) (0,n) tempo acquisti quantità (0,n)

marca (1,n) (1,1) nome prezzou prodotto nome responsabile quantità nome datai dataf (0,n) vendite (0,n) (0,n) (0,n) tempo acquisti quantità (0,n) marca (1,n) di descrizione (1,1) prodotto (1,1) in (1,n) categoria città (1,n) (1,n) nella indirizzo responsabile quantità (1,1) supermercato vendite ricavo promozione datai dataf %sconto costo acquisti

Dettagli

Data Warehouse Architettura e Progettazione

Data Warehouse Architettura e Progettazione Introduzione Data Warehouse Architettura! Nei seguenti lucidi verrà fornita una panoramica del mondo dei Data Warehouse.! Verranno riportate diverse definizioni per identificare i molteplici aspetti che

Dettagli

Data warehousing e OLAP

Data warehousing e OLAP Data warehousing e OLAP Introduzione Il contesto, processi aziendali Decision Support Systems Sistemi di Data Warehousing Data mart Architettura Modellazione Concettuale Star Schema, Dimensioni, Livelli

Dettagli

ANALISI DEI DATI. OLAP (On Line Analytical Processing) Data Warehousing Data Mining

ANALISI DEI DATI. OLAP (On Line Analytical Processing) Data Warehousing Data Mining ANALISI DEI DATI OLAP (On Line Analytical Processing) Data Warehousing Data Mining Dall OLTP all OLAP La tecnologia delle basi di dati è finalizzata prevalentemente alla gestione dei dati in linea, si

Dettagli

SQL Server. Applicazioni principali

SQL Server. Applicazioni principali SQL Server Introduzione all uso di SQL Server e utilizzo delle opzioni OLAP Applicazioni principali SQL Server Enterprise Manager Gestione generale di SQL Server Gestione utenti Creazione e gestione dei

Dettagli

Per capire meglio l ambito di applicazione di un DWhouse consideriamo la piramide di Anthony, L. Direzionale. L. Manageriale. L.

Per capire meglio l ambito di applicazione di un DWhouse consideriamo la piramide di Anthony, L. Direzionale. L. Manageriale. L. DATA WAREHOUSE Un Dataware House può essere definito come una base di dati di database. In molte aziende ad esempio ci potrebbero essere molti DB, per effettuare ricerche di diverso tipo, in funzione del

Dettagli

Introduzione al Data Warehousing

Introduzione al Data Warehousing Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Introduzione al Data Warehousing Molte di queste slide sono state realizzate dal Prof. Stefano Rizzi (http://www-db.deis.unibo.it/~srizzi/)

Dettagli

DATABASE. Progettare una base di dati. Database fisico e database logico

DATABASE. Progettare una base di dati. Database fisico e database logico DATABASE Progettare una base di dati Database fisico e database logico Un DB è una collezione di tabelle, le cui proprietà sono specificate dai metadati Attraverso le operazioni sulle tabelle è possibile

Dettagli

SQL/OLAP. Estensioni OLAP in SQL

SQL/OLAP. Estensioni OLAP in SQL SQL/OLAP Estensioni OLAP in SQL 1 Definizione e calcolo delle misure Definire una misura significa specificare gli operatori di aggregazione rispetto a tutte le dimensioni del fatto Ipotesi: per ogni misura,

Dettagli

Data Mining a.a. 2010-2011

Data Mining a.a. 2010-2011 Data Mining a.a. 2010-2011 Docente: mario.guarracino@cnr.it tel. 081 6139519 http://www.na.icar.cnr.it/~mariog Informazioni logistiche Orario delle lezioni A partire dall 19.10.2010, Martedì h: 09.50 16.00

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing

Dettagli

Lezione 1. Introduzione e Modellazione Concettuale

Lezione 1. Introduzione e Modellazione Concettuale Lezione 1 Introduzione e Modellazione Concettuale 1 Tipi di Database ed Applicazioni Database Numerici e Testuali Database Multimediali Geographic Information Systems (GIS) Data Warehouses Real-time and

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

Sistema informativo. Combinazione di risorse umane, materiali e procedure per la gestione. (raccolta, archiviazione, elaborazione, scambio )

Sistema informativo. Combinazione di risorse umane, materiali e procedure per la gestione. (raccolta, archiviazione, elaborazione, scambio ) Data Warehousing 1 Ripasso 2 Sistema informativo Combinazione di risorse umane, materiali e procedure per la gestione (raccolta, archiviazione, elaborazione, scambio ) delle informazioni necessarie per

Dettagli

Archivi e database. Lezione n. 7

Archivi e database. Lezione n. 7 Archivi e database Lezione n. 7 Dagli archivi ai database (1) I dati non sempre sono stati considerati dall informatica oggetto separato di studio e di analisi Nei primi tempi i dati erano parte integrante

Dettagli

Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi

Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Sistemi Informativi La Modellazione Dimensionale dei Fatti Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Obiettivi Nelle lezioni precedenti abbiamo modellato i processi

Dettagli

InfoTecna ITCube Web

InfoTecna ITCube Web InfoTecna ITCubeWeb ITCubeWeb è un software avanzato per la consultazione tramite interfaccia Web di dati analitici organizzati in forma multidimensionale. L analisi multidimensionale è il sistema più

Dettagli

Le Basi di Dati. Le Basi di Dati

Le Basi di Dati. Le Basi di Dati Le Basi di Dati 20/05/02 Prof. Carlo Blundo 1 Le Basi di Dati Le Base di Dati (database) sono un insieme di tabelle di dati strutturate in maniera da favorire la ricerca di informazioni specializzate per

Dettagli

OLAP On Line Analytical Processing

OLAP On Line Analytical Processing OLAP On Line Analytical Processing Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria cuzzocrea@si.deis.unical.it Testo di Riferimento: J. Han, M.

Dettagli

Analisi dei dati. analisi dei dati 1

Analisi dei dati. analisi dei dati 1 Analisi dei dati analisi dei dati 1 Il problema... Limitazioni della tecnologia relazionale - Difficoltà d'uso - Rigidità Conseguenze - Uso operativo: buono - Uso strategico: scarso Soluzioni: tecniche,

Dettagli

Biglietti e Ritardi: schema E/R

Biglietti e Ritardi: schema E/R Biglietti e Ritardi: schema E/R Ritardi: Progettazione dello schema di Fatto! Definire uno schema di fatto per analizzare i ritardi; in particolare l analisi deve considerare l aeroporto di partenza, mentre

Dettagli

Basi di Dati Distribuite

Basi di Dati Distribuite Basi di Dati Distribuite P. Atzeni, S. Ceri, S. Paraboschi, R. Torlone (McGraw-Hill Italia) Basi di dati: architetture linee di evoluzione - seconda edizione Capitolo 3 Appunti dalle lezioni SQL come DDL

Dettagli

Pianificazione del data warehouse

Pianificazione del data warehouse Pianificazione del data warehouse Dalla pianificazione emergono due principali aree d interesse: area commerciale focalizzata sulle agenzie di vendita e area marketing concentrata sulle vendite dei prodotti.

Dettagli

INDICE CONROLLO DI GESTIONE E SISTEMI INFORMATIVI AZIENDALI IL CONTROLLO DI GESTIONE E GLI ALTRI MECCANISMI OPERATIVI

INDICE CONROLLO DI GESTIONE E SISTEMI INFORMATIVI AZIENDALI IL CONTROLLO DI GESTIONE E GLI ALTRI MECCANISMI OPERATIVI INDICE PREMESSA...1 PARTE PRIMA CONROLLO DI GESTIONE E SISTEMI INFORMATIVI AZIENDALI CAPITOLO PRIMO IL CONTROLLO DI GESTIONE E GLI ALTRI MECCANISMI OPERATIVI 1. I concetti di pianificazione strategica

Dettagli

B C I un altro punto di vista Introduzione

B C I un altro punto di vista Introduzione Bollicine Community B C Intelligence B C I un altro punto di vista Introduzione Graziano Guazzi General Manager Data Flow Settembre 2007 pag, 1 Cosa misurare La definizione di quale domanda di mercato

Dettagli

INFORMATICA. Applicazioni WEB a tre livelli con approfondimento della loro manutenzione e memorizzazione dati e del DATABASE.

INFORMATICA. Applicazioni WEB a tre livelli con approfondimento della loro manutenzione e memorizzazione dati e del DATABASE. INFORMATICA Applicazioni WEB a tre livelli con approfondimento della loro manutenzione e memorizzazione dati e del DATABASE. APPLICAZIONI WEB L architettura di riferimento è quella ampiamente diffusa ed

Dettagli

Sistemi Informativi. Catena del valore di PORTER

Sistemi Informativi. Catena del valore di PORTER Sistemi Informativi Catena del valore di PORTER La catena del valore permette di considerare l'impresa come un sistema di attività generatrici del valore, inteso come il prezzo che il consumatore è disposto

Dettagli

Applicazioni OLAP in ambiente Analysis Service

Applicazioni OLAP in ambiente Analysis Service Applicazioni OLAP in ambiente Analysis Service Pasquale De Meo DIMET Università Mediterranea di Reggio Calabria Via Graziella, Località Feo di Vito demeo@unirc.it Corso di Sistemi Informativi- A.A. 2004-2005

Dettagli

Sistemi informativi secondo prospettive combinate

Sistemi informativi secondo prospettive combinate Sistemi informativi secondo prospettive combinate direz acquisti direz produz. direz vendite processo acquisti produzione vendite INTEGRAZIONE TRA PROSPETTIVE Informazioni e attività sono condivise da

Dettagli

Introduzione. La misurazione dei sistemi di Data Warehouse. Definizioni & Modelli. Sommario. Data Warehousing. Introduzione. Luca Santillo (CFPS)

Introduzione. La misurazione dei sistemi di Data Warehouse. Definizioni & Modelli. Sommario. Data Warehousing. Introduzione. Luca Santillo (CFPS) Introduzione La misurazione dei sistemi di Data Warehouse Luca Santillo (CFPS) AIPA, 17/5/01 In pratica I concetti generali, le definizioni e le regole di conteggio possono essere difficili da applicare

Dettagli

slogan Datawarehouse e Datamining Una verità attuale Esigenze degli utenti (Kimball 1996) a.a. 2006/2007 Introduzione

slogan Datawarehouse e Datamining Una verità attuale Esigenze degli utenti (Kimball 1996) a.a. 2006/2007 Introduzione Datawarehouse e Datamining a.a. 2006/2007 Introduzione slogan Conoscere i propri numeri per modellare il proprio business Il successo o il fallimento di una impresa dipendono dal modo in cui si raccolgono,

Dettagli

SQL prima parte D O C E N T E P R O F. A L B E R T O B E L U S S I. Anno accademico 2011/12

SQL prima parte D O C E N T E P R O F. A L B E R T O B E L U S S I. Anno accademico 2011/12 SQL prima parte D O C E N T E P R O F. A L B E R T O B E L U S S I Anno accademico 2011/12 DEFINIZIONE Il concetto di vista 2 È una relazione derivata. Si specifica l espressione che genera il suo contenuto.

Dettagli

Gestione di ordini (studio di caso)

Gestione di ordini (studio di caso) (studio di caso) aprile 2012 1 Il processo di gestione degli ordini La gestione degli ordini intesi come ordini di vendita, e non di acquisto comprende diversi processi aziendali critici compresa l elaborazione

Dettagli

DSCube. L analisi dei dati come strumento per i processi decisionali

DSCube. L analisi dei dati come strumento per i processi decisionali DSCube L analisi dei dati come strumento per i processi decisionali Analisi multi-dimensionale dei dati e reportistica per l azienda: DSCube Introduzione alla suite di programmi Analyzer Query Builder

Dettagli

SISTEMI INFORMATIVI AVANZATI -2010/2011 1. Introduzione

SISTEMI INFORMATIVI AVANZATI -2010/2011 1. Introduzione SISTEMI INFORMATIVI AVANZATI -2010/2011 1 Introduzione In queste dispense, dopo aver riportato una sintesi del concetto di Dipendenza Funzionale e di Normalizzazione estratti dal libro Progetto di Basi

Dettagli

Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17

Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17 Lorenzo Braidi Database design Libro_datadesign.indb 1 23-11-2004 10:06:17 Sommario Introduzione...XI Capitolo 1 Le basi di dati relazionali... 1 Le basi di dati... 1 Un po di storia... 2 I database gerarchici...

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Sistemi informazionali La crescente diffusione dei

Dettagli

IT FOR BUSINESS AND FINANCE

IT FOR BUSINESS AND FINANCE IT FOR BUSINESS AND FINANCE Business Intelligence Siena 14 aprile 2011 AGENDA Cos è la Business Intelligence Terminologia Perché la Business Intelligence La Piramide Informativa Macro Architettura Obiettivi

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data

Dettagli

DATABASE RELAZIONALI

DATABASE RELAZIONALI 1 di 54 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI DISCIPLINE STORICHE ETTORE LEPORE DATABASE RELAZIONALI Dott. Simone Sammartino Istituto per l Ambiente l Marino Costiero I.A.M.C. C.N.R.

Dettagli

Sistemi di supporto alle decisioni

Sistemi di supporto alle decisioni Sistemi di supporto alle decisioni Introduzione I sistemi di supporto alle decisioni, DSS (decision support system), sono strumenti informatici che utilizzano dati e modelli matematici a supporto del decision

Dettagli

Miriam Gotti m.gotti@cineca.it

Miriam Gotti m.gotti@cineca.it Cenni sul Dat a Warehouse Ravenna 5 Novembre 2007 Miriam Gotti m.gotti@cineca.it www. cineca.it Agenda Fondamenti di Data Warehouse Modello Multidimensionale Analisi OLAP Introduzione a Statportal www.cineca.it

Dettagli

Il Data Warehousing. Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna

Il Data Warehousing. Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna Il Data Warehousing Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna 1 Sommario Il ruolo della business intelligence e del sistema informativo 9 Il ruolo dell informatica in azienda 9 La

Dettagli

DATA WAREHOUSING CON JASPERSOFT BI SUITE

DATA WAREHOUSING CON JASPERSOFT BI SUITE UNIVERSITÁ DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Ingegneria di Enzo Ferrari Corso di Laurea Magistrale in Ingegneria Informatica (270/04) DATA WAREHOUSING CON JASPERSOFT BI SUITE Relatore

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Data Warehousing. Introduzione 1/2 I data warehousing

Dettagli

SQL Server 2005. Introduzione all uso di SQL Server e utilizzo delle opzioni Olap. Dutto Riccardo - SQL Server 2005.

SQL Server 2005. Introduzione all uso di SQL Server e utilizzo delle opzioni Olap. Dutto Riccardo - SQL Server 2005. SQL Server 2005 Introduzione all uso di SQL Server e utilizzo delle opzioni Olap SQL Server 2005 SQL Server Management Studio Gestione dei server OLAP e OLTP Gestione Utenti Creazione e gestione DB SQL

Dettagli

Appunti per il Corso di Data Warehousing

Appunti per il Corso di Data Warehousing Università degli Studi Mediterranea di Reggio Calabria Corsi per il Personale Tecnico Amministrativo Appunti per il Corso di Data Warehousing Autori: Ing. Giovanni Quattrone, Prof. Domenico Ursino Anno

Dettagli

un insieme di processi per raccogliere e analizzare informazioni e dare risposta a esigenze di:

un insieme di processi per raccogliere e analizzare informazioni e dare risposta a esigenze di: InfoBusiness: cos è La business intelligence è: un insieme di processi per raccogliere e analizzare informazioni e dare risposta a esigenze di: supporto alle decisioni (DSS) controllo di performance aziendali

Dettagli

Modelli matematici avanzati per l azienda a.a. 2010-2011

Modelli matematici avanzati per l azienda a.a. 2010-2011 Modelli matematici avanzati per l azienda a.a. 2010-2011 Docente: Pasquale L. De Angelis deangelis@uniparthenope.it tel. 081 5474557 http://www.economia.uniparthenope.it/siti_docenti P.L.DeAngelis Modelli

Dettagli

Informatica Generale Andrea Corradini. 19 - Sistemi di Gestione delle Basi di Dati

Informatica Generale Andrea Corradini. 19 - Sistemi di Gestione delle Basi di Dati Informatica Generale Andrea Corradini 19 - Sistemi di Gestione delle Basi di Dati Sommario Concetti base di Basi di Dati Il modello relazionale Relazioni e operazioni su relazioni Il linguaggio SQL Integrità

Dettagli

Progettazione Logica. Sviluppo di un Database/DataWarehouse

Progettazione Logica. Sviluppo di un Database/DataWarehouse Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Progettazione Logica Dal Capitolo 8 e 9 del libro Data Warehouse - teoria e pratica della Progettazione Autori: Matteo

Dettagli

Corso di Informatica (Basi di Dati)

Corso di Informatica (Basi di Dati) Corso di Informatica (Basi di Dati) Lezione 1 (12 dicembre 2008) Introduzione alle Basi di Dati Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati Lucidi del Corso di Basi di Dati 1, Prof. Carlo Batini,

Dettagli

Organizzazione delle informazioni: Database

Organizzazione delle informazioni: Database Organizzazione delle informazioni: Database Laboratorio Informatico di base A.A. 2013/2014 Dipartimento di Scienze Aziendali e Giuridiche Università della Calabria Dott. Pierluigi Muoio (pierluigi.muoio@unical.it)

Dettagli

ESEMPIO: RITARDI & BIGLIETTI

ESEMPIO: RITARDI & BIGLIETTI ESEMPIO: RITARDI & BIGLIETTI Fatto Ritardi: l analisi a livello volo giornaliero, considerando l aeroporto di partenza, la città e lo stato di arrivo e la compagnia Fatto Biglietti: l analisi deve considerare

Dettagli

Business Intelligence CRM

Business Intelligence CRM Business Intelligence CRM CRM! Customer relationship management:! L acronimo CRM (customer relationship management) significa letteralmente gestione della relazione con il cliente ;! la strategia e il

Dettagli

Informatica (Basi di Dati)

Informatica (Basi di Dati) Corso di Laurea in Biotecnologie Informatica (Basi di Dati) Introduzione alle Basi di Dati Anno Accademico 2009/2010 Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati Lucidi del Corso di Basi di Dati

Dettagli

Al giorno d oggi, i sistemi per la gestione di database

Al giorno d oggi, i sistemi per la gestione di database Introduzione Al giorno d oggi, i sistemi per la gestione di database implementano un linguaggio standard chiamato SQL (Structured Query Language). Fra le altre cose, il linguaggio SQL consente di prelevare,

Dettagli

Basi di Dati Direzionali

Basi di Dati Direzionali Basi di Dati Direzionali Angelo Chianese, Vincenzo Moscato, Antonio Picariello, Lucio Sansone Basi di dati per la gestione dell'informazione 2/ed McGraw-Hill Capitolo 9 Appunti dalle lezioni SQL come DDL

Dettagli

SQL Server BI Development Studio

SQL Server BI Development Studio Il Data warehouse SQL Server Business Intelligence Development Studio Analysis Service Sorgenti dati operazionali DB relazionali Fogli excel Data warehouse Staging Area e dati riconciliati Cubi Report

Dettagli

Introduzione. Elenco telefonico Conti correnti Catalogo libri di una biblioteca Orario dei treni aerei

Introduzione. Elenco telefonico Conti correnti Catalogo libri di una biblioteca Orario dei treni aerei Introduzione Elenco telefonico Conti correnti Catalogo libri di una biblioteca Orario dei treni aerei. ESEMPI DI INSIEMI DI DATI DA ORGANIZZARE ED USARE IN MANIERA EFFICIENTE Introduzione Più utenti con

Dettagli