AUTOMA A STATI FINITI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "AUTOMA A STATI FINITI"

Transcript

1 Gli Automi Un Automa è un dispositivo, o un suo modello in forma di macchina sequenziale, creato per eseguire un particolare compito, che può trovarsi in diverse configurazioni più o meno complesse caratterizzate primariamente da una variabile che appartiene ad un determinato insieme di stati, e che evolve in base agli stimoli od ordini ricevuti in ingresso schematizzati da simboli appartenenti ad un determinato alfabeto. Sono così esempi di automi una lavatrice, un distributore automatico di bibite..ecc E' possibile studiare un automa da due punti di vista: da un punto di vista tecnico ci s interessa dei suoi componenti materiali, meccanici o elettronici, e dei suoi principi fisici che ne rendono possibile il funzionamento; da un punto di vista matematico c'interessa invece la "logica" del suo comportamento e l automa è perciò visto come un oggetto astratto "capace" di eseguire qualche compito. Ad esempio, due automi capaci di eseguire un addizione sono l automa uomo e l automa calcolatrice, molto diversi da un punto di vista tecnico-fisico, ma che si comportano nello stesso modo di fronte a due numeri da addizionare. Il grafo, chiamato diagramma degli stati, ha come nodi gli stati possibili dell automa; gli archi rappresentano le relazioni di passaggio da uno stato all altro, secondo il particolare input. La matrice, chiamata tabella di verità o degli stati, è una tabella in cui ogni casella specifica il successivo stato e l output dell automa se esso si trova in un determinato stato e riceve un certo input. Per esempio osserviamo un distributore automatico di bevande dà una lattina quando s inseriscono due monete. Il diagrammi degli stati è il seguente: Nell arco che va dallo stato di "in attesa" allo stato di "pronto" la scrittura "moneta/lattina" indica che, in corrispondenza dell input "moneta" è fornito l output "lattina". Come si vede, non sempre un automa fornisce un output. La tabella di verità è la seguente:

2 Gli stati di un automa rappresentano i suoi stati di memoria; un automa, infatti, si trova in uno o in un altro stato secondo ciò che è successo in precedenza. Secondo lo stato in cui si trova e dell input che riceve, l automa stabilisce il suo comportamento, passando in un nuovo stato ed eventualmente fornendo un output. Gli automi con memoria limitata, e comunque finita poiché hanno un numero finito di stati: sono chiamati automi a stati finiti. AUTOMA A STATI FINITI Gli automi a stati con memoria limitata, e comunque finita poiché hanno un numero finito di stati: sono chiamati automi a stati finiti. Più precisamente definiamo automa a stati finiti un sistema dinamico, discreto ed invariante, in cui gli insiemi d ingresso, di uscita e di stato sono finiti. Il sistema può trovarsi in un qualsiasi stato interno fra quelli, in numero finito, che definiscono l automa. Una classe di automi particolarmente importante è quella degli automi in grado di riconoscere se una stringa fa parte o meno di un determinato linguaggio: automi riconoscitori. Gli automi riconoscitori, in pratica, sono sistemi che, dopo l ingresso dell ultimo simbolo della sequenza, rispondono con un "si" se questa è stata riconosciuta e con un "no" in caso contrario. Un automa a stati finiti di questo tipo consiste di un insieme finito di stati e di un insieme finito di transizioni da uno stato all altro. Per ogni coppia distinta formata da uno stato dell automa (stato di partenza) e da un simbolo dell alfabeto, esiste una transizione ad uno stato di arrivo. Il simbolo della coppia si dice associato alla transizione, o anche che la transizione "accetta il simbolo". Lo stato di arrivo può anche coincidere con lo stato di partenza. Ogni automa a stati finiti è associato univocamente ad un grafo orientato (in inglese direct graph) chiamato diagramma di transizione (in inglese transition diagram). I nodi del grafo coincidono con gli stati dell automa. Se esiste una transizione dallo stato q allo stato p con a come simbolo associato, allora esiste un arco orientato dal nodo q al nodo p ed etichettato con il simbolo a. Per questa ragione gli automi a stati finiti vengono anche detti reti di transizione a stati finiti (FSTN, finite state transition network, in inglese). Si dice che il grafo accetta la stringa x, costruita con i simboli dell alfabeto predeterminato, se esiste una sequenza di transizioni tali che, componendo la sequenza dei rispettivi simboli associati, si ottenga x. Inoltre la prima transizione di questa sequenza deve partire dallo stato iniziale e l ultima arrivare ad uno stato finale. Anche molti modelli astratti usati per rappresentare sistemi molto complessi come i sistemi economici, le reti di neuroni, i problemi di trasporto, e così via, possono essere agevolmente rappresentati attraverso automi a stati finiti. Per descrivere un automa occorre un modello matematico formato dalla quintupla: A = {S, I, U, f, g} dove: S è l insieme degli stati interni in cui può trovarsi; I è l insieme degli ingressi che è in grado di leggere; U è l insieme delle uscite che può produrre; f è la funzione di transizione che fa passare da uno stato al successivo g è la funzione che determina il valore delle uscite

3 FUNZIONE DI TRANSIZIONE Per fare in modo che la macchina sia in grado di aggiornare lo stato interno in base all input ricevuto, si utilizza la funzione di transizione Diamo ora un esempio di un automa che accetta solo stringhe con un numero pari di 1 o di 0. Un modo per definire l automa è tracciare il diagramma di transizione. Gli stati cerchiati due volte sono stati finali. Definiamo di seguito l automa con una tabella detta tabella degli stati costruita in questo modo: ogni riga è associata a uno stato q di partenza, ogni colonna ad un simbolo a, che in questo caso varrà uno o zero. Il tipo di automa così definito viene detto deterministico, perché per ogni stato è sempre possibile determinare univocamente quale transizione l automa effettui all ingresso di un dato simbolo. Far cadere il vincolo che per ogni stato esista sempre una ed una sola transizione associata ad un simbolo è equivalente ad affermare che possono esistere zero, una, o più transizioni che partono dal medesimo

4 stato con il medesimo simbolo di ingresso. In questo caso non è sempre possibile determinare univocamente quale transizione l automa effettui all ingresso di un dato simbolo. L automa si dice non deterministico. Per esemplificare definiamo un automa non deterministico che accetta qualsiasi stringa che contenga una coppia di 0 o di 1. Il diagramma di transizione è analogo con la differenza che gli archi hanno liste di simboli come etichette. La tabella degli stati sarà: Il linguaggio accettato da un automa a stati finiti è l insieme di tutte le stringhe accettate dall automa.

5 ESEMPI DI AUTOMI Descrizione Questo automa distribuisce lattine di un solo tipo dopo che sono state introdotte due monete di un unico valore. Se il distributore è spento si "mangia" la moneta eventualmente introdotta. Grafo Descrizione L'automa è un distributore di bevande che distribuisce due tipi di bevande emettendo una lattina dopo che sono state introdotte due monete da L.500 ed è stato scelto il tipo di bevanda. L'automa non restituisce monete. Grafo

6 Descrizione L'automa è ancora un distributore di bevande come il precedente. In questo caso però vengono restituite delle monete a richiesta o anche nel caso sia stata introdotta una moneta in eccedenza. Grafo Descrizione L'automa emette un gettone telefonico dopo che sono state inserite 200 lire. L'automa funziona con monete da 100 o da 200 lire e fornisce resto a richiesta. Insiemi

7 Grafo Descrizione L'automa emette in uscita un gettone telefonico dopo che sono state inserite due monete da L.100. L'automa funziona solo con monete da 100 lire. Insiemi Grafo

8 Descrizione L'automa emette un gettone telefonico dopo che sono state inserite 200 lire. L'automa funziona con monete da 100 o da 200 lire e non fornisce resto. Insiemi Grafo

9 Esempio di AUTOMA A STATI FINITI: TEORIA DELLE STRINGHE APPLICATA AGLI AUTOMI

10 RISOLVERE UN PROBLEMA: 1. Formulazione del problema in linguaggio naturale. Calcolare la lunghezza di una stringa 2. Formulazione del problema a blocchi. Stringa ==> Procedimento ==> Lunghezza 3. Individuare i tipi Stringa Lunghezza (N) Procedimento di calcolo della lunghezza (lg) 4. Costruire un semplice esempio: 1bis: Calcolare la lunghezza di "aacb" 2bis: aacb ==> Procedimento ==> 4 3bis: tipi: = (a, b, c) X= aacb Lg (aabc)= 4 5. Individuare cosa si deve calcolare:,,n sono noti. Lg è ignota. 6. Caratterizzare i dettagli ignoti Lg: ==> N Consideriamo casi particolari: 1. Lg( ) = 0 2. ==> Lg( ) =1 3. Lg ( X) = Lg( ) + Lg(X) = 1+ Lg(X) Funzione ricorsiva (Lg): Lg (λ) = 0 Lg( ) =1 ==> Lg ( X) = 1+ Lg(X)

11 7. Risultato in azione Lg (aabc) =1 + lg (abc) = lg (bc) = lg (c) = = 4 Esempio di ESPRESSIONI REGOLARI applicato agli Automi:

un insieme finito di segnali d uscita U (nell ascensore U={stare fermo, salire, scendere})

un insieme finito di segnali d uscita U (nell ascensore U={stare fermo, salire, scendere}) Automi Il termine automa viene usato nel linguaggio corrente per indicare un dispositivo in grado di svolgere un attività senza l intervento dell uomo. Nella quotidianità siamo letteralmente circondati

Dettagli

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi!

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! G R A F I 1 GRAFI Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! 2 cip: cip: Pallogrammi Pallogrammi GRAFI: cosa sono I grafi sono una struttura matematica fondamentale: servono

Dettagli

Macchine sequenziali. Automa a Stati Finiti (ASF)

Macchine sequenziali. Automa a Stati Finiti (ASF) Corso di Calcolatori Elettronici I Macchine sequenziali Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione Corso

Dettagli

Automa a Stati Finiti (ASF)

Automa a Stati Finiti (ASF) Automa a Stati Finiti (ASF) E una prima astrazione di macchina dotata di memoria che esegue algoritmi Introduce il concetto fondamentale di STATO che informalmente può essere definito come una particolare

Dettagli

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Reti Sequenziali

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Reti Sequenziali Reti Logiche Prof. B. Buttarazzi A.A. 29/2 Reti Sequenziali Sommario Analisi di Reti Sequenziali Sintesi di Reti Sequenziali Esercizi 3/6/2 Corso di Reti Logiche 29/ 2 Analisi di Reti Sequenziali Passare

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone Sintesi di Reti Sequenziali Sincrone Maurizio Palesi Maurizio Palesi 1 Macchina Sequenziale Una macchina sequenziale è definita dalla quintupla (I,U,S,δ,λ ) dove: I è l insieme finito dei simboli d ingresso

Dettagli

ESERCIZI SU AUTOMI A STATI FINITI

ESERCIZI SU AUTOMI A STATI FINITI ESERCIZI SU AUTOMI A STATI FINITI ESERCIZIO 1 Progettare un automa che emette in uscita un biglietto dopo che sono state inserite due monete da 0,2. L'automa funziona solo con monete da 0,2. ESERCIZIO

Dettagli

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,...

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,... Automi Con il termine automa 1 s intende un qualunque dispositivo o un suo modello, un qualunque oggetto, che esegue da se stesso un particolare compito, sulla base degli stimoli od ordini ricevuti detti

Dettagli

Sintesi di Reti sequenziali Sincrone

Sintesi di Reti sequenziali Sincrone Sintesi di Reti sequenziali Sincrone alcolatori ElettroniciIngegneria Telematica Sintesi di Reti Sequenziali Sincrone na macchina sequenziale è definita dalla quintupla δ, λ) dove: I è l insieme finito

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Linguaggi regolari Potere espressivo degli automi Costruzione di una grammatica equivalente a un automa Grammatiche regolari Potere espressivo delle grammatiche 1

Dettagli

Prova d esame di Reti Logiche T 10 Giugno 2016

Prova d esame di Reti Logiche T 10 Giugno 2016 Prova d esame di Reti Logiche T 10 Giugno 2016 COGNOME:.. NOME:.. MATRICOLA: Si ricorda il divieto di utilizzare qualsiasi dispositivo elettronico (computer, tablet, smartphone,..) eccetto la calcolatrice,

Dettagli

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010 ASF

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010 ASF Reti Logiche 1 Prof. B. Buttarazzi A.A. 2009/2010 ASF Sommario Introduzione alle reti sequnziali La definizione di ASF ASF di Mealy e Moore Diagrammi di stato e Tabelle di flusso Automi equivalenti Minimizzazione

Dettagli

Fondamenti di informatica II 1. Sintesi di reti logiche sequenziali

Fondamenti di informatica II 1. Sintesi di reti logiche sequenziali Titolo lezione Fondamenti di informatica II 1 Sintesi di reti logiche sequenziali Reti combinatorie e sequenziali Fondamenti di informatica II 2 Due sono le tipologie di reti logiche che studiamo Reti

Dettagli

Macchine di Turing. Francesco Paoli. Istituzioni di logica, Francesco Paoli (Istituzioni di logica, ) Macchine di Turing 1 / 29

Macchine di Turing. Francesco Paoli. Istituzioni di logica, Francesco Paoli (Istituzioni di logica, ) Macchine di Turing 1 / 29 Macchine di Turing Francesco Paoli Istituzioni di logica, 2016-17 Francesco Paoli (Istituzioni di logica, 2016-17) Macchine di Turing 1 / 29 Alan M. Turing (1912-1954) Francesco Paoli (Istituzioni di logica,

Dettagli

Introduzione agli Algoritmi 4. Problemi. Dal Problema alla Soluzione

Introduzione agli Algoritmi 4. Problemi. Dal Problema alla Soluzione Sommario Problemi e soluzioni Definizione informale di algoritmo e esempi Proprietà degli algoritmi Input/Output, Variabili Algoritmi senza input o output 1 2 Problema Definizione (dal De Mauro Paravia):

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo

Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Università Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A Linguaggi Formali e Compilatori. Automi. Giacomo PISCITELLI

Corso di Laurea Magistrale in Ingegneria Informatica A.A Linguaggi Formali e Compilatori. Automi. Giacomo PISCITELLI Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2013-2014 Linguaggi Formali e Compilatori Automi Giacomo PISCITELLI Generalità sugli Automi Automi In informatica teorica e in matematica discreta,

Dettagli

Descrizione delle operazioni di calcolo. Espressioni costanti semplici

Descrizione delle operazioni di calcolo. Espressioni costanti semplici Descrizione delle operazioni di calcolo Come abbiamo detto l interprete è in grado di generare nuovi valori a partire da valori precedentemente acquisiti o generati. Il linguaggio di programmazione permette

Dettagli

Concetti di base sugli automi e sui linguaggi formali

Concetti di base sugli automi e sui linguaggi formali Concetti di base sugli automi e sui linguaggi formali Andrea Burattin 18 marzo 2005 Sommario Piccolo insieme di concetti sul funzionamento degli automi (a stati finiti, a pila,...), delle grammatiche libere

Dettagli

Contatore avanti-indietro Modulo 4

Contatore avanti-indietro Modulo 4 Contatore avanti-indietro Modulo 4 Un contatore avanti-indietro modulo 4 è un dispositivo a due uscite, che genera su queste la sequenza dei numeri binari da 0 a 4 cioè: 00->01->10->11 Il sistema dispone

Dettagli

Parole note, nuovi significati: linguaggio, determinismo e infinito

Parole note, nuovi significati: linguaggio, determinismo e infinito Parole note, nuovi significati: linguaggio, determinismo e infinito Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario Filosofico

Dettagli

Corso di elettrotecnica Materiale didattico: i grafi

Corso di elettrotecnica Materiale didattico: i grafi Corso di elettrotecnica Materiale didattico: i grafi A. Laudani 12 ottobre 2005 I grafi costituiscono uno strumento matematico che permette di descrivere e schematizzare una grande varietà di problemi

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Programmi Un elaboratore riceve dei dati in ingresso, li elabora secondo una sequenza predefinita di operazioni e infine restituisce il risultato sotto forma

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Potenza espressiva degli automi Potenza espressiva delle grammatiche 9/11/2004 Programmazione - Luca Tesei 1 Linguaggi Regolari Tutti i linguaggi che possono essere

Dettagli

AUTOMI A STATI FINITI AUTOMI

AUTOMI A STATI FINITI AUTOMI AUTOMI A STATI FINITI Nella quotidianità siamo letteralmente circondati da automi: sono infatti automi la lavatrice, la lavastoviglie, il frullino, i sistemi di regolazione degli orologi che si "vincono"

Dettagli

Problemi, algoritmi, calcolatore

Problemi, algoritmi, calcolatore Problemi, algoritmi, calcolatore Informatica e Programmazione Ingegneria Meccanica e dei Materiali Università degli Studi di Brescia Prof. Massimiliano Giacomin Problemi, algoritmi, calcolatori Introduzione

Dettagli

Fondamenti d Informatica: Le Macchine di Turing. Barbara Re, Phd

Fondamenti d Informatica: Le Macchine di Turing. Barbara Re, Phd Fondamenti d Informatica: Le Macchine di Turing Barbara Re, Phd Agenda } Introdurremo } il formalismo delle Macchine di Turing nelle varie versioni } la nozione di calcolabilità e di decidibilità 2 La

Dettagli

Informatica teorica Lez. n 7 Macchine di Turing. Macchine di Turing. Prof. Giorgio Ausiello Università di Roma La Sapienza

Informatica teorica Lez. n 7 Macchine di Turing. Macchine di Turing. Prof. Giorgio Ausiello Università di Roma La Sapienza Macchine di Turing Argomenti della lezione Definizione della macchina di Turing Riconoscimento e accettazione di linguaggi Macchine a più nastri La macchina di Turing èun è automa che può leggere e scrivere

Dettagli

Sistemi Web per il turismo - lezione 3 -

Sistemi Web per il turismo - lezione 3 - Sistemi Web per il turismo - lezione 3 - Software Si definisce software il complesso di comandi che fanno eseguire al computer delle operazioni. Il termine si contrappone ad hardware, che invece designa

Dettagli

Certificati dei problemi in NP

Certificati dei problemi in NP Certificati dei problemi in NP La stringa y viene in genere denominata un certificato Un Certificato è una informazione ausiliaria che può essere utilizzata per verificare in tempo polinomiale nella dimensione

Dettagli

ITLCC 2006/10/6 19:09 page 7 #3

ITLCC 2006/10/6 19:09 page 7 #3 ITLCC 2006/10/6 19:09 page 7 #3 Capitolo 2 Macchine di Turing SOMMARIO In questo capitolo introdurremo il modello di calcolo proposto dal logico matematico inglese Alan Turing, in un suo famoso articolo

Dettagli

Sommario Codifica dei dati Macchina Astratta Definizioni Esempi

Sommario Codifica dei dati Macchina Astratta Definizioni Esempi Sommario Codifica dei dati Macchina Astratta Definizioni Esempi 1 2 Codifica dei dati È possibile introdurre la teoria della computabilità facendo riferimento ad algoritmi che elaborano numeri naturali

Dettagli

Algoritmi. Pagina 1 di 5

Algoritmi. Pagina 1 di 5 Algoritmi Il termine algoritmo proviene dalla matematica e deriva dal nome di in algebrista arabo del IX secolo di nome Al-Khuwarizmi e sta ad indicare un procedimento basato su un numero finito operazioni

Dettagli

Automi a stati finiti

Automi a stati finiti 1. Automi a stati finiti: introduzione Automi a stati finiti Supponiamo di avere un sistema che si può trovare in uno stato appartenente ad un insieme finito di stati possibili. Ex: Immaginiamo un incrocio

Dettagli

Introduzione alla programmazione

Introduzione alla programmazione Introduzione alla programmazione Risolvere un problema Per risolvere un problema si procede innanzitutto all individuazione Delle informazioni, dei dati noti Dei risultati desiderati Il secondo passo consiste

Dettagli

Forme Normali. Forma normale di Chomsky. E caratterizzata da regole di due tipi. A! BC dove A, B, C $ V N A! a con a $ V T. Forma normale di Greibach

Forme Normali. Forma normale di Chomsky. E caratterizzata da regole di due tipi. A! BC dove A, B, C $ V N A! a con a $ V T. Forma normale di Greibach Forme Normali A partire da una grammatica Context-free G è sempre possibile costruire una grammatica equivalente G ovvero L(G) = L(G ) che abbiano le produzioni in forme particolari, dette forme normali.

Dettagli

1. Automi a stati finiti: introduzione

1. Automi a stati finiti: introduzione 1. Automi a stati finiti: introduzione Supponiamo di avere un sistema che si può trovare in uno stato appartenente ad un insieme finito di stati possibili. Ex: Immaginiamo un incrocio tra due strade regolate

Dettagli

Grammatiche. Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione

Grammatiche. Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione Grammatiche Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione Esempio dei numeri interi Si consideri il linguaggio

Dettagli

Forma Normale di Chomsky

Forma Normale di Chomsky 2. Eliminazione delle produzioni unitarie Forma Normale di Chomsky Una produzione si dice unitaria se è della forma A! B. Le produzioni unitarie in pratica consistono in una ridenominazione di variabili,

Dettagli

Altrimenti, il M.C.D. di a e b è anche divisore di r (e.g. a=15,b=6,r=3 che è il M.C.D.)

Altrimenti, il M.C.D. di a e b è anche divisore di r (e.g. a=15,b=6,r=3 che è il M.C.D.) Elaboratore Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni sui dati digitale l informazione è rappresentata in forma numerica

Dettagli

(competenze digitali) ESERCIZI SUI CIRCUITI SEQUENZIALI

(competenze digitali) ESERCIZI SUI CIRCUITI SEQUENZIALI LICEO Scientifico LICEO Scientifico Tecnologico LICEO delle Scienze Umane ITIS (Meccanica, Meccatronica e Energia- Elettronica ed Elettrotecnica Informatica e Telecomunicazioni) ITIS Serale (Meccanica,

Dettagli

Corso di Reti Logiche

Corso di Reti Logiche Corso di Reti Logiche Minimizzazione degli Stati nelle Macchine Sequenziali Dipartimento di Informatica e Sistemistica Università Degli Studi di Napoli Federico II 1 Le Macchine o Automi E necessario individuare

Dettagli

Il concetto di calcolatore e di algoritmo

Il concetto di calcolatore e di algoritmo Il concetto di calcolatore e di algoritmo Elementi di Informatica e Programmazione Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin Informatica

Dettagli

Introduzione. Il routing permette la comunicazione tra due nodi differenti anche se non sono collegati direttamente

Introduzione. Il routing permette la comunicazione tra due nodi differenti anche se non sono collegati direttamente Routing Introduzione Il livello 3 della pila ethernet ha il compito di muovere i pacchetti dalla sorgente attraversando più sistemi Il livello di network deve quindi: Scegliere di volta in volta il cammino

Dettagli

Luigi Piroddi

Luigi Piroddi Automazione industriale dispense del corso (a.a. 2008/2009) 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul

Dettagli

Circuiti sequenziali: macchine a stati finiti

Circuiti sequenziali: macchine a stati finiti Architettura degli Elaboratori e delle Reti Lezione 9 Circuiti sequenziali: macchine a stati finiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell nformazione Università degli Studi di Milano

Dettagli

Introduzione. Sintesi Sequenziale Sincrona. Modello del circuito sequenziale. Progetto e strumenti. Il modello di un circuito sincrono può essere

Introduzione. Sintesi Sequenziale Sincrona. Modello del circuito sequenziale. Progetto e strumenti. Il modello di un circuito sincrono può essere Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone di Macchine Senza Processo di Ottimizzate a Livello Comportamentale Sintesi comportamentale e architettura generale Diagramma

Dettagli

Corso di Informatica Modulo T1 1 - Il concetto di problema

Corso di Informatica Modulo T1 1 - Il concetto di problema Corso di Informatica Modulo T1 1 - Il concetto di problema 1 Prerequisiti Concetti intuitivi di: Proporzione Problema Variabile Numeri interi e reali 2 1 Introduzione Nel risolvere un problema abbiamo

Dettagli

MATEMATICA SCUOLA PRIMARIA CLASSE SECONDA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE RELATIVI A NUMERI

MATEMATICA SCUOLA PRIMARIA CLASSE SECONDA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE RELATIVI A NUMERI MATEMATICA SCUOLA PRIMARIA CLASSE SECONDA NUMERI L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di ricorrere a una calcolatrice. OBIETTIVI

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

Concetti di base dell ICT

Concetti di base dell ICT Informatica Linguaggio di programmazione Computer Bit Algoritmo Linguaggio macchina Informatica: Informazione automatica Gli anglosassoni usano il termine Computer Science = Scienza dei Calcolatori Computer:

Dettagli

La codifica digitale

La codifica digitale La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore

Dettagli

Esercizi proposti 10

Esercizi proposti 10 Esercizi proposti 10 In questo gruppo di esercizi assumiamo, dove non sia specificato diversamente, di rappresentare i grafi mediante liste di archi, con il tipo di dati così dichiarato: type a graph =

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: Camillo Fiorentini 8 gennaio 8 Il problema è simile all esercizio 5.6 del libro di testo di algoritmi (Introduzione agli algoritmi e strutture dati, T.

Dettagli

3. Indicare cosa sta a significare la figura geometrica del rombo in un diagramma a blocchi

3. Indicare cosa sta a significare la figura geometrica del rombo in un diagramma a blocchi 0.1.1.1 Definire un algoritmo 1. Con il termine algoritmo si intende: a) il software utilizzato in un calcolatore b) l elenco finito di istruzioni necessario per risolvere un problema c) un elaboratore

Dettagli

Il Concetto Intuitivo di Calcolatore. Esercizio. I Problemi e la loro Soluzione. (esempio)

Il Concetto Intuitivo di Calcolatore. Esercizio. I Problemi e la loro Soluzione. (esempio) Il Concetto Intuitivo di Calcolatore Elementi di Informatica e Programmazione Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini Variabile di uscita Classe di domande

Dettagli

LA METAFORA DELL UFFICIO

LA METAFORA DELL UFFICIO LA METAFORA DELL UFFICIO Lavagna di lavoro Lavagna di programma Sportello utenti Impiegato Capo Ufficio LAVAGNA DI LAVORO Chiamiamo variabili le posizioni sulla lavagna, identificate ognuna da un nome

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

1) Codici convoluzionali. 2) Circuito codificatore. 3) Diagramma a stati e a traliccio. 4) Distanza libera. 5) Algoritmo di Viterbi

1) Codici convoluzionali. 2) Circuito codificatore. 3) Diagramma a stati e a traliccio. 4) Distanza libera. 5) Algoritmo di Viterbi Argomenti della Lezione 1) Codici convoluzionali 2) Circuito codificatore 3) Diagramma a stati e a traliccio 4) Distanza libera 5) Algoritmo di Viterbi 1 Codici convoluzionali I codici convoluzionali sono

Dettagli

Lez. 5 La Programmazione. Prof. Salvatore CUOMO

Lez. 5 La Programmazione. Prof. Salvatore CUOMO Lez. 5 La Programmazione Prof. Salvatore CUOMO 1 2 Programma di utilità: Bootstrap All accensione dell elaboratore (Bootsrap), parte l esecuzione del BIOS (Basic Input Output System), un programma residente

Dettagli

controllo stringa a a b a b b c c b a b x y z pila di memoria

controllo stringa a a b a b b c c b a b x y z pila di memoria Gli automi a pila Dagli automi finiti iti agli automi a pila Possiamo ottenere un automa a pila a partire da un automa finito (così come l abbiamo definito in precedenza), attraverso l introduzione di

Dettagli

PROBLEMI ALGORITMI E PROGRAMMAZIONE

PROBLEMI ALGORITMI E PROGRAMMAZIONE PROBLEMI ALGORITMI E PROGRAMMAZIONE SCIENZE E TECNOLOGIE APPLICATE CLASSE SECONDA D PROGRAMMARE = SPECIFICARE UN PROCEDIMENTO CAPACE DI FAR SVOLGERE AD UNA MACCHINA UNA SERIE ORDINATA DI OPERAZIONI AL

Dettagli

Sviluppo di programmi

Sviluppo di programmi Sviluppo di programmi Per la costruzione di un programma conviene: 1. condurre un analisi del problema da risolvere 2. elaborare un algoritmo della soluzione rappresentato in un linguaggio adatto alla

Dettagli

Corso di Informatica di Base

Corso di Informatica di Base Corso di Informatica di Base A.A. 2011/2012 Algoritmi e diagrammi di flusso Luca Tornatore Cos è l informatica? Calcolatore: esecutore di ordini o automa Programma: insieme di istruzioni che possono essere

Dettagli

Come ragiona il computer. Problemi e algoritmi

Come ragiona il computer. Problemi e algoritmi Come ragiona il computer Problemi e algoritmi Il problema Abbiamo un problema quando ci poniamo un obiettivo da raggiungere e per raggiungerlo dobbiamo mettere a punto una strategia Per risolvere il problema

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

Pumping lemma per i linguaggi Context-free

Pumping lemma per i linguaggi Context-free Pumping lemma per i linguaggi Context-free Sia L un linguaggio context-free. E possibile determinare una costante k, dipendente da L, tale che qualunque stringa z! L con z > k si può esprimere come z=

Dettagli

Corso di Automazione industriale

Corso di Automazione industriale Corso di Automazione industriale Lezione 13 Reti di Petri Proprietà Università degli Studi di Bergamo, Automazione Industriale, A.A. 2016/2017, A. L. Cologni 1 Proprietà Raggiungibilità Una marcatura M

Dettagli

Reti Sequenziali. Reti Sequenziali. Corso di Architetture degli Elaboratori

Reti Sequenziali. Reti Sequenziali. Corso di Architetture degli Elaboratori Reti Sequenziali Reti Sequenziali Corso di Architetture degli Elaboratori Caratteristiche 1 Caratteristiche delle reti sequenziali Reti combinatorie: il valore in uscita è funzione (con il ritardo indotto

Dettagli

Reti sequenziali asincrone

Reti sequenziali asincrone Reti sequenziali asincrone Esercizio Una rete sequenziale asincrona è caratterizzata da due segnali di ingresso (E, X) e da un segnale di uscita (Z). I segnali di ingresso non variano mai contemporaneamente,

Dettagli

Lez. 8 La Programmazione. Prof. Pasquale De Michele (Gruppo 2) e Raffaele Farina (Gruppo 1) 1

Lez. 8 La Programmazione. Prof. Pasquale De Michele (Gruppo 2) e Raffaele Farina (Gruppo 1) 1 Lez. 8 La Programmazione Prof. Pasquale De Michele (Gruppo 2) e Raffaele Farina (Gruppo 1) 1 Dott. Pasquale De Michele Dott. Raffaele Farina Dipartimento di Matematica e Applicazioni Università di Napoli

Dettagli

Aniello Murano Automi e Pushdown

Aniello Murano Automi e Pushdown Aniello Murano Automi e Pushdown 2 Lezione n. Parole chiave: Automi e PDA Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009 Calcolabilità, complessità e macchine computazionali

Dettagli

Problema: dati i voti di tutti gli studenti di una classe determinare il voto medio della classe.

Problema: dati i voti di tutti gli studenti di una classe determinare il voto medio della classe. Problema: dati i voti di tutti gli studenti di una classe determinare il voto medio della classe. 1) Comprendere il problema 2) Stabilire quali sono le azioni da eseguire per risolverlo 3) Stabilire la

Dettagli

Analizzatore lessicale o scanner. Lo scanner rappresenta un'interfaccia fra il programma sorgente e l'analizzatore sintattico o parser.

Analizzatore lessicale o scanner. Lo scanner rappresenta un'interfaccia fra il programma sorgente e l'analizzatore sintattico o parser. Analizzatore lessicale o scanner Dispensa del corso di Linguaggi e Traduttori A.A. 2005-2006 Lo scanner rappresenta un'interfaccia fra il programma sorgente e l'analizzatore sintattico o parser. Lo scanner,

Dettagli

Costruzione dell insieme dei Follow

Costruzione dell insieme dei Follow Costruzione dell insieme dei Follow E! T E - T E E! + T E - T E " T! F T T! *F T " F! (E) i Per evitare che alcuni insiemi siano vuoti si aggiunge per default il simbolo speciale $ che demarca la fine

Dettagli

Scopo del laboratorio

Scopo del laboratorio p. 1/1 Scopo del laboratorio Imparare ad usare programmi che implementino metodi di ottimizzazione: simplesso, branch and bound ecc. utilizzarli per risolvere un problema proposto Modellatori Solver p.

Dettagli

Luigi Piroddi

Luigi Piroddi Automazione industriale dispense del corso 9. Reti di Petri: analisi dinamica e metodi di riduzione Luigi Piroddi piroddi@elet.polimi.it Metodi di analisi di Reti di Petri Ci sono 2 modi per analizzare

Dettagli

Alberi e alberi binari I Un albero è un caso particolare di grafo

Alberi e alberi binari I Un albero è un caso particolare di grafo Alberi e alberi binari Un albero è un caso particolare di grafo È costituito da un insieme di nodi collegati tra di loro mediante archi Gli archi sono orientati (ogni arco esce da un nodo origine ed entra

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Circuiti Sequenziali & Somma FP

Circuiti Sequenziali & Somma FP Circuiti Sequenziali & Somma FP Circuiti Sequenziali : Esercizio 1 Esercizio 1: progettare una rete sequenziale per il controllo di un motore elettrico. La rete riceve in input i segnali relativi a due

Dettagli

Esercitazioni di Reti Logiche. Lezione 5

Esercitazioni di Reti Logiche. Lezione 5 Esercitazioni di Reti Logiche Lezione 5 Circuiti Sequenziali Zeynep KIZILTAN zeynep@cs.unibo.it Argomenti Circuiti sequenziali Flip-flop D, JK Analisi dei circuiti sequenziali Progettazione dei circuiti

Dettagli

Fondamenti di informatica per la sicurezza anno accademico docente: Stefano Ferrari

Fondamenti di informatica per la sicurezza anno accademico docente: Stefano Ferrari Corso di Laurea in icurezza dei sistemi e delle reti informatiche Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: tefano Ferrari 14.01.2005 del secondo compitino vers. D valutazioni

Dettagli

Fondamenti d Informatica: linguaggi formali. Barbara Re, Phd

Fondamenti d Informatica: linguaggi formali. Barbara Re, Phd Fondamenti d Informatica: linguaggi formali Barbara Re, Phd Agenda } Introdurremo } La nozione di linguaggio } Strumenti per definire un linguaggio } Espressioni Regolari 2 Linguaggio } Da un punto di

Dettagli

Rappresentazione con i diagrammi di flusso (Flow - chart)

Rappresentazione con i diagrammi di flusso (Flow - chart) Rappresentazione con i diagrammi di flusso (Flow - chart) Questo tipo di rappresentazione grafica degli algoritmi, sviluppato negli anni 50, utilizza una serie di simboli grafici dal contenuto evocativo

Dettagli

«Sciente e Tecnologie dei Beni Culturali»

«Sciente e Tecnologie dei Beni Culturali» 5 Informatica CdS in «Sciente e Tecnologie dei Beni Culturali» AA 2014-2015 Mini-sito dell insegnamento: http://www.unife.it/scienze/beni.culturali/insegnamenti/informatica Prof. Giorgio Poletti giorgio.poletti@unife.it

Dettagli

1. TEORIA DEI SISTEMI

1. TEORIA DEI SISTEMI 1. TEORIA DEI SISTEMI La teoria generale dei sistemi è una disciplina che si occupa di fornire un metodo rigoroso di analisi e di sintesi di una situazione reale attraverso lo studio del comportamento

Dettagli

LOGICA SEQUENZIALE. Un blocco di logica puramente combinatoria è un. blocco con N variabili di ingresso e M variabili di uscita

LOGICA SEQUENZIALE. Un blocco di logica puramente combinatoria è un. blocco con N variabili di ingresso e M variabili di uscita LOGICA SEQUENZIALE Logica combinatoria Un blocco di logica puramente combinatoria è un blocco con N variabili di ingresso e M variabili di uscita che sono funzione (booleana) degli ingressi in un certo

Dettagli

Note sulle Catene di Markov

Note sulle Catene di Markov Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra

Dettagli

Luigi Piroddi

Luigi Piroddi Automazione industriale dispense del corso (a.a. 2008/2009) 9. Reti di Petri: analisi dinamica e metodi di riduzione Luigi Piroddi piroddi@elet.polimi.it Metodi di analisi di Reti di Petri Ci sono 2 modi

Dettagli

LA METAFORA DELL UFFICIO

LA METAFORA DELL UFFICIO LA METAFORA DELL UFFICIO Lavagna di lavoro Lavagna di programma Sportello utenti Impiegato Capo Ufficio LAVAGNA DI LAVORO Chiamiamo variabili le posizioni sulla lavagna, identificate ognuna da un nome

Dettagli

LA CODIFICA DELL INFORMAZIONE

LA CODIFICA DELL INFORMAZIONE LA CODIFICA DELL INFORMAZIONE Prof. Enrico Terrone A. S: 20/2 Lo schema di Tanenbaum Il livello al quale ci interessiamo in questa lezione è il linguaggio macchina, l unico dove le informazioni e istruzioni

Dettagli

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei

Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei Alberi Alberi: definizioni Alberi Binari Esercizi su alberi binari: metodi ricorsivi Struttura dati per alberi generici 1 Alberi Gli alberi sono strutture dati naturalmente ricorsive Un albero è un particolare

Dettagli

Dispensa 2. Data una grammatica context free esistono tre metodi diversi per costruirne la parsing table per un parser LR:

Dispensa 2. Data una grammatica context free esistono tre metodi diversi per costruirne la parsing table per un parser LR: Dispensa 2 2.1 Costruzione Parsing Table LR: generalità Come tutti i parser tabellari predittivi, anche i parser LR possono essere applicati solo a parsing table senza conflitti (ossia entrate multiple)

Dettagli

Esercizio 1. Utilizzare FF di tipo D (come ovvio dalla figura, sensibili al fronte di discesa del clock). Progettare il circuito con un PLA.

Esercizio 1. Utilizzare FF di tipo D (come ovvio dalla figura, sensibili al fronte di discesa del clock). Progettare il circuito con un PLA. a Esercizio 1. Sintetizzare un circuito sequenziale sincrono in base alle specifiche temporali riportate nel seguito. Il circuito riceve in input solo il segnale di temporizzazione (CK) e produce tre uscite,

Dettagli

Analisi interazione domanda/offerta: modelli di assegnazione

Analisi interazione domanda/offerta: modelli di assegnazione Corso di Laurea Ingegneria Civile e Ambientale - AA Corso di: Fondamenti di Trasporti Lezione: Analisi interazione domanda/offerta: modelli di assegnazione Giuseppe Inturri Università di Catania Dipartimento

Dettagli

Fondamenti di Informatica. Algoritmo. Algoritmo funzionale. Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a.

Fondamenti di Informatica. Algoritmo. Algoritmo funzionale. Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. Fondamenti di Informatica Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2011-2012 Algoritmo L algoritmo è una sequenza finita di istruzioni, mediante le quali un qualunque operatore

Dettagli

ELEMENTI DI PROGRAMMAZIONE a.a. 2013/14 UNA GERARCHIA DI MACCHINE

ELEMENTI DI PROGRAMMAZIONE a.a. 2013/14 UNA GERARCHIA DI MACCHINE ELEMENTI DI PROGRAMMAZIONE a.a. 23/4 UNA GERARCHIA DI MACCHINE Andrea Prevete, UNINA2 24 UNA GERARCHIA DI MACCHINE macchine combinatorie macchine sequenziali (automi a numero finito di stati)... macchine

Dettagli