SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I"

Transcript

1 SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I e caratterizzata dalle condizioni f o (x) + i I μ i g i (x) = 0 e dall ammissibilita ( g i (x) = 0, i I ) Si tratta di un sistema non lineare [ euqazioni (numero vincoli+dimensione x ) incognite x e m=(μ 1,..., μ i ) ] Se F(x.m) =0 e il sistema non lineare corrispondente il punto di ottimo puo essere cercato risolvendo F(x,m) = 0 attraverso il metodo di Newton Noto (x,m) stima dell ottimo e dei moltiplicatori si cerca (x,m) + dalla soluzione della linearizzazione F(x,m) + J(x,m)(p x,p m ) = 0 La trasformazione F(x,m) ha come Jacobiano W(x,m) A t (x) A(x) 0 con W(x,m) = 2 f o (x)+ μ i 2 g i (x) ( = 2 x L(x,m) = Hessiano lagrangiana) e A(x) matrice di righe g i (x) Da (x,m) stima dell ottimo e dei moltiplicatori si ottiene il nuovo punto (x +,m + ) calcolando (p x, p m ) e ponendo x + = x + p x m + =m + p m Le equazioni per (p x, p m ) derivano da F(x,m) + J(x,m)(p x,p m ) = 0 ovvero J(x,m) (p x, p m ) = - F(x,m) e sono ( g(x) vettore di componenti g i (x) ) W(x,m) p x + A t (x) p m = -( f(x) + m i g i (x) ) = - f(x)- A t (x)m A(x)p x = -g(x) Per la stuttura della matrice J(x,m) e da m+ = m + p m le equzioni si possono scrivere come W(x,m)p x + f(x) + A t (x) m + = 0 A(x) p x = -g(x)

2 Si tratta delle condizioni di ottimo ( soluzione p x e moltiplicatori m + ) del problema quadratico min 1/2 p x t W(x,m)px + f(x) t p x con vincoli A(x)p x = -g(x) ( vincoli g i (x) + g i (x) p x = 0 i I ) Noto ( x, m) il metodo di Newton per generare (x +,m + ) equivale a 1) considerare il problema quadratico min 1/2 p x t W(x,m)px + f(x) t p x con vincoli g i (x) + g i (x) p x = 0 i I 2) risolvere il problema quadratico e porre x + = x + p x 3) considerare i moltiplicatori ottenuti dal problema quadratico come nuova stima ( = m + ) dei moltiplicatori per il problema originale Vicino alla soluzione la convergenza del metodo di Newton e quadratica Se i vincoli ( o parte di questi ) sono g i (x) 0 si puo i) identificare i soli vincoli attivi ( indici per cui alla soluzione = 0 ) e non considerare gli altri ( se vicini alla soluzione) ii) generare vincoli lineari e risolvere il problema quadratico con vincoli g i (x) p x -g i (x) [ g i (x) + g i (x) p x 0 ] La soluzione del problema quadratico cosi vincolato distingue comunque tra vincoli attivi ( μ i > 0 ) e vincoli superflui ( μ i = 0 ) N.B. Per trovare/avvicinare la soluzione si potrebbe anche considerare il problema sempre quadratico [approx quadratica di f o e lineare dei vincoli g i ] min 1/2 p x t 2 fo (x) p x + f(x) t p x A(x)p x = -g(x) [g i (x) + g i (x) p x = 0 i I ] ma la matrice 2 f o (x) in generale non ha buone proprieta (positiva definita ecc ) se f non e convessa.

3 In ipotesi ragionevoli vicino all ottimo la matrice W(x,m) soddisfa le condizioni per la programmazione quadratica ( 2 x L(x,m) positiva definita se g i (x) t w = 0 ) Il problema quadratico ha una soluzione e tale soluzione ha un chiaro significato ( = metodo di Newton) Si puo partire da qualunque coppia (x,m) (punto x) e proseguire Il vettore m serve per generare esplicitamente la matrice W(x,m) o per calcoli che usano L(x,m) Si risolve problema quadratico ad ogni passo. Occorre avere f(x), f(x) e per ogni vincolo g i (x) g i (x). La matrice (Hessiano lagrangiana) W(x,m) = 2 f(x) + m i 2 g i (x) puo essere approssimata attraverso tecniche tipo quasi newton ( serve solo l inversa) Il punto iniziale puo essere distante dalla soluzione Puo servire introdurre un vincolo p x < Δ [tipo trust region] sul passo p x e una qualche funzione (merit function) che controlli l andamento complessivo [La funzione f deve scendere e i vincoli non devono essere violati. Se in x (iniziale) sono violati la violazione deve scendere ] Vicino alla soluzione x* i valori p x correggono l approssimazione (passo di Newton ) e sono uno spostamento. [ ma possibile αp x con 0<α<1] Lontano dalla soluzione p x sono una direzione che puo essere seguita se il modello e ragionevole [ possibile αp x con 0< α <?, passi lunghi possibili ma passi brevi necessari se l andamento di f e g e diverso dal modello ] ecc Si puo introdurre una funzione (di semplice calcolo) che diminuisca spostandosi verso la soluzione. Si segue la direzione p x fino a che la funzione (merit function ) scende Merit function Potrebbe andare bene una funzione tipo lagrangiana o lagrangiana aumentata Sono piu utilizzate altre funzioni Caso 1 Dato il problema min 1/2 d t Qd + f(x) t d e vincoli g i (x)+ g i (x) t d=0, i I Se Q definita positiva la soluzione d individua una direzione di discesa per la funzione ( se p > p* ) P(x) = f(x) + p g(x) 1 dove g(x) 1 rappresenta la norma 1 del vettore g = (g 1 (x),,g i (x),... )

4 P(x) non e continuamente differenziabile ma si puo calcolare la derivata nella direzione d (soluzione problema quadratico) fissata. Infatti se g i (x) + g i (x) t d = 0 g i (x) = - g i (x) t d e per 0<α<1 g i (x+αd) = g i (x) + α g i (x) t d + 0(α 2 ) = (1-α) g i (x) + 0(α 2 ) Segue P(x+αd) = f(x+αd) + p g(x+αd) 1 = f(x) +α f(x) t d + p(1-α) g(x) 1 + 0(α2 ) Per ottimalita di d Qd+ f(x) + μ i g i (x) = 0 e Quindi f(x) t d = -d t Qd - μ i g i (x) t d = -d t Qd + μ i g i (x) α f(x) t d = α (-d t Qd + μ i g i (x) ) P(x+αd) = f(x) + α (-d t Qd + μ i g i (x) ) + p(1-α) g(x) 1 + 0(α2 ) E allora Siccome P(x+αd) = P(x) + α (- d t Qd + μ i g i (x) - p g(x) 1 ) +0(α 2 ) se p > max ( μ i ) μ i g i (x) max ( μ i ) g(x) 1 la derivata direzionale (- d t Qd + μ i g i (x) - p g(x) 1 ) e < 0 Caso 2 Con il problema min 1/2 d t Qd + f(x) t d e vincoli g i (x)+ g i (x) t d 0, i I Se Q e definita positiva la soluzione d individua una direzione di discesa per la funzione ( se p > p* )

5 dove g i (x) + = max {0, g i (x) } P(x) = f(x) + p g i (x) + In questo caso g i (x) t d g i (x) g i (x+αd) = g i (x) + α g i (x) t d + 0(α 2 ) (1-α) g i (x) +0(α 2 ) e g i (x) < 0 [ g i (x) + = 0 ] g i (x+αd) 0 [ g i (x+αd) + = 0 ] (localmente) Si pone J ={i I / g i (x) 0 } e vale P(x) = f(x) + p i J g i (x) P(x+αd) = f(x+αd) + p g i (x+αd) + e per piccoli α si ha P(x+αd) = f(x) +α f(x) t d + p i J (1-α) g i (x) + 0(α 2 ) Per ottimalita f(x) t d = -d t Qd - μ i g i (x) t d = - d t Qd + μ i g i (x) Alla soluzione μ i (g i (x)+ g i (x) t d) = 0 - μ i g i (x) t d = μ i g i (x) e f(x) t d = -d t Qd + μ i g i (x) -d t Qd + i J μ i g i (x) [ da μ i 0 ] e se α > 0 Quindi α f(x) t d α ( -d t Qd + i J μ i g i (x) ) P(x+αd) f(x) +α ( -d t Qd + i J μ i g i (x) ) + p i J g i (x) - α p i J g i (x) + 0(α 2 ) P(x+αd) P(x) + α (-d t Qd + i J μ i g i (x) - p i J g i (x) ) +0(α 2 ) e se p > max (μ i ) P(x+αd) < P(x) N.B. La funzione P(x) scende se Q e definita positiva. Si puo partire lontano dalla soluzione con Q arbitraria ( W(x,m) ). Le direzioni individuate producono una discesa di P(x) e possono essere seguite per un passo 0<α <α*. La discesa di P(x) garantisce che o la funzione o la violazione dei vincoli diminuisce. Il valore di p va scelto dalla definizione (= max ( μ i )+ δ o = max (μ i ) + δ con δ piccolo ) IMPORTANTE In alcuni casi la Merit function limita troppo il passo e riduce la velocita di convergenza ( effetto Maratos)

6 CALCOLO [ soliti metodi : da si ha W(x,m)p x + f(x) + A t (x) m + = 0 W(x,m) p x + A t (x)m + = - f(x) p x + W(x,m) -1 A t (x)m + = -W(x,m) -1 f(x) e quindi [A(x)W(x,m) -1 A t (x)] m + = g(x) -A(x)W(x,m) -1 f(x) da cui si ricava m + e p x per differenza Oppure si decompone A t in rango (A t ) e ker(a) Se Y = base rango A t e Z = base kera p x = Yp y + Zp z A p x = A(Yp y + Zp z ) = AYp y = -g(x) e W(x,m) (Yp y + Zp z ) + A t (x) m + = - f(x) e moltiplicando per Z t Z t W(x,m) (Yp y + Zp z ) + A t (x) m + = -Z t f(x) Z t W(x,m) Zp z = -Z t f(x) - Z t W(x,m)Yp y Per piccoli valori di p x ( prossimi alla soluzione ) l equazione W(x,m) p x +A t (x) m + = - f(x) e quasi A t (x) m + = - f(x) che si puo risolvere/stimare minimizzando A t (x) m + + f(x) 2 [ soluzione m + = -( A(x)A t (x) ) -1 A(x) f(x) ]

NLP KKT 1. Le condizioni necessarie di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J

NLP KKT 1. Le condizioni necessarie di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J NLP KKT 1 Le condizioni necessarie di ottimo per il problema min f o (x) g i (x) 0 i I h j (x) = 0 j J sono, riferite ad un punto ammissibile x*, μ 0 f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0

Dettagli

LAGRANGIANE AUMENTATE

LAGRANGIANE AUMENTATE LAGRANGIANE AUMENTATE Le condizioni di minimo vincolato per min f o (x) g i (x) = 0, i I sono legate sia alla funzione P(x,k) = f o (x) +(k/2) g i (x) 2 a al suo minimo x k che alla funzione lagrangiana

Dettagli

Progr. Non Lineare: algoritmi

Progr. Non Lineare: algoritmi Progr. Non Lineare: algoritmi Fabio Schoen schoen@ing.unifi.it http://globopt.dsi.unifi.it/users/schoen A.A. 22-23 Programmazione Non Lineare: Cenni sugli algoritmi di ottimizzazione locale Schema generale

Dettagli

7.9 Il caso vincolato: vincoli di disuguaglianza

7.9 Il caso vincolato: vincoli di disuguaglianza 7.9 Il caso vincolato: vincoli di disuguaglianza Il problema con vincoli di disuguaglianza: g i (x) 0, i = 1,..., p, (51) o, in forma vettoriale: g(x) 0, può essere trattato basandosi largamente su quanto

Dettagli

7.5 Il caso vincolato: preliminari

7.5 Il caso vincolato: preliminari 7.5 Il caso vincolato: preliari Consideriamo ora il problema vincolato 3, che qui riscriviamo: fx gx 0 hx = 0, 13 con g : IR n IR p e h : IR n IR m, m n. Ricordiamo che F = {x IR n : gx 0, hx = 0}, denota

Dettagli

LEZIONE ICO

LEZIONE ICO LEZIONE ICO 9-10-2009 Argomento. Rassegna dei metodi numerici utilizzabili per la soluzione di problemi di ottimizzazione statica. Metodi del gradiente e di Newton e loro derivati. Metodi di penalita e

Dettagli

4.4 Programmazione quadratica

4.4 Programmazione quadratica 4.4 Programmazione quadratica Minimizzare una funzione quadratica soggetta a vincoli lineari: min 1 2 xt Qx + c t x s.v. a t i x b i i D (P) a t i x = b i i U x R n dove Q matrice n n, D e U sono gli insiemi

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate. min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate. min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

Esercizi di ottimizzazione vincolata

Esercizi di ottimizzazione vincolata Esercizi di ottimizzazione vincolata A. Agnetis, P. Detti Esercizi svolti 1 Dato il seguente problema di ottimizzazione vincolata max x 1 + x 2 x 1 4x 2 3 x 1 + x 2 2 0 x 1 0 studiare l esistenza di punti

Dettagli

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 27 Gennaio 21 ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno Cognome : Nome : Esercizio 1. Si consideri il seguente problema: min

Dettagli

Le condizioni di Karush-Kuhn-Tucker

Le condizioni di Karush-Kuhn-Tucker Capitolo 9 Le condizioni di Karush-Kuhn-Tucker 9. Introduzione In questo capitolo deriveremo le condizioni necessarie di Karush-Kuhn-Tucker (KKT) per problemi vincolati in cui S è descritto da vincoli

Dettagli

5.5 Programmazione quadratica (PQ)

5.5 Programmazione quadratica (PQ) 5.5 Programmazione quadratica (PQ Minimizzare una funzione quadratica soggetta a vincoli lineari: 1 min x t Qx + c t x 2 s.v. a t i x b i i D (P a t i x = b i i U x R n dove Q matrice n n, D e U sono gli

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte II. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte II. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte II E. Amaldi DEI, Politecnico di Milano 3.3 Metodi basati su direzioni di ricerca Problema di ottimizzazione non vincolata: min x R n f(x) con f : R n R di

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f (x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

3.7 Metodi quasi-newton

3.7 Metodi quasi-newton 3.7 Metodi quasi-newton Varianti del metodo di Newton in cui invece di usare/invertire la matrice Hessiana di f si estraggono informazioni relative alle derivate seconde dalle variazioni di f. Si genera

Dettagli

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI 3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:

Dettagli

Università degli Studi di Roma La Sapienza

Università degli Studi di Roma La Sapienza Università degli Studi di Roma La Sapienza Dipartimento di Informatica e Sistemistica A. Ruberti Proff. Gianni Di Pillo and Laura Palagi Note per il corso di OTTIMIZZAZIONE (a.a. 2007-08) Dipartimento

Dettagli

Metodi di Ricerca Lineare

Metodi di Ricerca Lineare Metodi di Ricerca Lineare Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

Approssimazione numerica

Approssimazione numerica Approssimazione numerica Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Approssimazione numerica p.1/10 Problema

Dettagli

Esercizi su ottimizzazione vincolata

Esercizi su ottimizzazione vincolata Esercizi su ottimizzazione vincolata 1. Rispondere alle seguenti domande (a) Quando un vincolo di disuguaglianza è detto attivo? (b) Cosa è l insieme delle soluzioni ammissibili? Gli algoritmi di ricerca

Dettagli

9.1 Ottimizzazione di portafoglio: selezione di titoli in presenza di rischio

9.1 Ottimizzazione di portafoglio: selezione di titoli in presenza di rischio 9.1 Ottimizzazione di portafoglio: selezione di titoli in presenza di rischio Consideriamo il problema di costituire un portafoglio di titoli, sfruttando un budget B. Il mercato offre n titoli, con un

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno

ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno ESAME di OTTIMIZZAZIONE 12 gennaio pomeriggio 2005 ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : Nome : VALUTAZIONE Per gli esercizi 1,2,3,4 le risposte

Dettagli

Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare

Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare A. Agnetis 1 Richiami su condizioni di Karush-Kuhn-Tucker e convessità Si consideri il problema di ottimizzazione vincolata: min f(x) (1) x X R

Dettagli

Soluzione. 8.1 Campagna pubblicitaria. Exercise session 8 Optimization Prof. E. Amaldi. Insiemi. I = {1,...,m}: insieme delle radio

Soluzione. 8.1 Campagna pubblicitaria. Exercise session 8 Optimization Prof. E. Amaldi. Insiemi. I = {1,...,m}: insieme delle radio Soluzione 8.1 Campagna pubblicitaria Insiemi I = {1,...,m}: insieme delle radio J = {1,...,n}: insieme dei giornali Variabili r i r 1 i : minuti sulla stazione radiofonica i I (sotto i 25) : minuti sulla

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

8.3 Condizioni di ottimalità (qualifica dei vincoli e KKT) 2

8.3 Condizioni di ottimalità (qualifica dei vincoli e KKT) 2 8.1 Campagna pubblicitaria Una agenzia di pubblicità deve effettuare una campagna promozionale con due mezzi di comunicazione: gli annunci alla radio e quelli sui giornali. Vengono considerate m stazioni

Dettagli

1 Il metodo dei tagli di Gomory

1 Il metodo dei tagli di Gomory Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare

Dettagli

Scuola di Dottorato in Ingegneria L. da Vinci. Problemi di estremo vincolato ed applicazioni. Introduzione ai problemi di estremo

Scuola di Dottorato in Ingegneria L. da Vinci. Problemi di estremo vincolato ed applicazioni. Introduzione ai problemi di estremo Scuola di Dottorato in Ingegneria L. da Vinci Problemi di estremo vincolato ed applicazioni Pisa, 28-29 Maggio, 2009 Introduzione ai problemi di estremo G. Mastroeni Ricercatore, Dipartimento di Matematica

Dettagli

UNIVERSITÀ DEGLI STUDI DI GENOVA

UNIVERSITÀ DEGLI STUDI DI GENOVA UNIVERSITÀ DEGLI STUDI DI GENOVA Corso di Laurea Specialistica in Ingegneria Gestionale Corso di Ricerca Operativa 2 (CD) codice 60204 A.A. 2011/2012 Docente: Mauro Gaggero PROGRAMMA DEL CORSO 1. Introduzione

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

(a) Si proponga una formulazione di programmazione nonlineare a variabili misto-intere per problema.

(a) Si proponga una formulazione di programmazione nonlineare a variabili misto-intere per problema. 6. Clustering In molti campi applicativi si presenta il problema del data mining, che consiste nel suddividere un insieme di dati in gruppi e di assegnare un centro a ciascun gruppo. Ad esempio, in ambito

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Programmazione lineare: basi e soluzioni di base

Programmazione lineare: basi e soluzioni di base Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

Dettagli

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 17 gennaio A(x) =

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 17 gennaio A(x) = Calcolo Numerico Corso di Laurea in Ingegneria Elettronica Appello del 7 gennaio 204 Sia M = F (2, 3). Dopo aver mostrato che 20 M, determinare tutti gli elementi ξ M tali che: ξ > 20 Per ogni x R, sia:

Dettagli

Prova Intermedia Scritta di Ricerca Operativa

Prova Intermedia Scritta di Ricerca Operativa Prova Intermedia Scritta di Ricerca Operativa (Prof. Fasano Giovanni) Università Ca Foscari Venezia - Sede di via Torino 30 novembre 2015, ore 08.45 Aula Delta 1b Regole per l esame: la violazione delle

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

Viceversa stabilito il flusso dei pagamenti/incassi se esiste un unico tasso t per cui

Viceversa stabilito il flusso dei pagamenti/incassi se esiste un unico tasso t per cui 1 TIR/IRR Esistenza del TIR (unico ecc ) Operazioni ai tempi 0,.n rappresentate da un vettore di dimensione n+1 Ogni componente a i rappresenta i pagamenti (se 0) relativi all operazione.

Dettagli

LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE. L'ipotesi di razionalità implica che un decisore cerchi di

LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE. L'ipotesi di razionalità implica che un decisore cerchi di LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE L'ipotesi di razionalità implica che un decisore cerchi di individuare la migliore tra tutte le alternative a sua disposizione. Problemi di ottimizzazione =

Dettagli

Problemi di ottimizzazione non vincolata

Problemi di ottimizzazione non vincolata Capitolo 6 Problemi di ottimizzazione non vincolata 6. Introduzione Con riferimento al problema di ottimizzazione min x R n f(x), iniziamo in questo capitolo lo studio delle condizioni di ottimalità. Nei

Dettagli

Il metodo di Newton. Enrico Bertolazzi

Il metodo di Newton. Enrico Bertolazzi 1 Il metodo di Newton Enrico Bertolazzi 2 Metodo di Newton Scelta del punto iniziale: x 0 Ciclo: per k = 0, 1, 2,... Calcolo direzione avanzamento J(x k )s k = F(x k ) Aggiorna approssimazione della radice

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

La ricerca di punti di estremo assoluto

La ricerca di punti di estremo assoluto La ricerca di punti di estremo assoluto Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Estremi assoluti (I) Analisi Matematica B 1 / 29 Richiami di teoria

Dettagli

Ricerca Operativa A.A. 2007/ Analisi di sensitività

Ricerca Operativa A.A. 2007/ Analisi di sensitività Ricerca Operativa A.A. 7/8. Analisi di sensitività Luigi De Giovanni - Ricerca Operativa -. Analisi di sensitività. Analisi di Sensitività: motivazioni I parametri (A, b e c) di un problema di programmazione

Dettagli

EH. Equazioni di Hamilton

EH. Equazioni di Hamilton EH. Equazioni di Hamilton Iniziamo questo capitolo con un osservazione di carattere preliminare. Consideriamo, per esempio, un sistema differenziale costituito da N equazioni ciascuna del secondo ordine,

Dettagli

Analisi cinematica di meccanismi articolati

Analisi cinematica di meccanismi articolati Analisi cinematica di meccanismi articolati metodo dei numeri complessi rev 10 1 Il quadrilatero articolato b β a c α d γ Posizione a + b = c + d a e iα + b e iβ = c e iγ + d a cos α + b cos β = c cos

Dettagli

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = =

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = = ESERCIZI PROPOSTI Risolvere i seguenti sistemi lineari )-0), utilizzando, dove possibile, sia il metodo di Cramer sia quello della matrice inversa, dopo aver analizzato gli esempi a)-d): 2x + + 4z 5 a)

Dettagli

Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento

Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento Esercizio Si considerino 3 popolazioni P, P, P 3 che vivono nelle regioni A, B, C le cui numerosità sono

Dettagli

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem Introduzione al Column Generation Caso di Studio: il Bin Packing Problem November 15, 2014 1 / 26 Introduzione Il column generation è una metodologia che può essere usata per risolvere problemi di ottimizzazione

Dettagli

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista)

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Domenico Salvagnin 2011-06-12 1 Introduzione Dato un problema di programmazione lineare intera (mista), non è sempre possibile (o conveniente)

Dettagli

5.5.6 Convergenza del metodo del simplesso

5.5.6 Convergenza del metodo del simplesso 5.5.6 Convergenza del metodo del simplesso Per concludere l analisi del metodo del simplesso, vogliamo ora mostrare che, sotto opportune ipotesi, il numero di iterazioni è finito, ovvero che, in un numero

Dettagli

dati due vettori di lunghezza, rispettivamente, a, b e l angolo α tra essi, la loro distanza euclidea al quadrato è pari a: a 2 +b 2 2abcos(α).

dati due vettori di lunghezza, rispettivamente, a, b e l angolo α tra essi, la loro distanza euclidea al quadrato è pari a: a 2 +b 2 2abcos(α). 7.1 Il poligono più grande Formulare in termini di programmazione matematica il seguente problema: fissato un intero n, trovare il poligono di n lati (n-gono) con diametro (massima distanza tra due vertici)

Dettagli

LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE

LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE 1. EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE ESEMPIO Della funzione y = f(x) si sa che y' 2x = 1. Che cosa si può dire della funzione

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Matematica Finanziaria 29 novembre 2000

Matematica Finanziaria 29 novembre 2000 Matematica Finanziaria 29 novembre 2000 Ottimizzazione. Cognome Nome FILA A ESERCIZIO 1: Gestione del rischio a) Ricavare l espressione del vettore dei coe cienti nella tecnica dei minimi quadrati. b)

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Se A rango max & G pos def su ker (A) K non singolare

Se A rango max & G pos def su ker (A) K non singolare Programmazion quadratica min Q(x)= 1/2 x t Gx +d t x vincoli Ax=b Q(x)= Gx+d, (Ax-b)= A t S x* ottimo sist vttor m* (Gx* +d ) +A t m*=0 & Ax* = b S K la matric G A t A 0 K (x,m)= (-d,b) S x (punto ) stima

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 23 Marzo Il Metodo del Simplesso Java API Problema di Trasporto

Ricerca Operativa. G. Liuzzi. Lunedí 23 Marzo Il Metodo del Simplesso Java API Problema di Trasporto 1 Lunedí 23 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR SHHHHH... Simplesso in 2 fasi Fase I (rg(a) m) Se P non è ammissibile, STOP Altrimenti 1 elimina da (A... b) eventuali

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

2.6 Calcolo degli equilibri di Nash

2.6 Calcolo degli equilibri di Nash 92 2 Giochi non Cooperativi Per queste estensioni di giochi non finiti si possono provare risultati analoghi a quelli visti per i giochi finiti. Rimandiamo alla bibliografia per uno studio più approfondito

Dettagli

OTTIMIZZAZIONE LINEARE MULTICRITERIO

OTTIMIZZAZIONE LINEARE MULTICRITERIO OTTIMIZZAZIONE LINEARE MULTICRITERIO NOTAZIONE Siano x ed y vettori di R n indicati estesamente con x x x x 1 Μ i Μ n, y y1 Μ yi Μ y n e si ponga N = {1,2,, n}. Scriveremo allora: x y ( x è diverso da

Dettagli

Programmazione Non Lineare

Programmazione Non Lineare Capitolo 1 Programmazione Non Lineare 1.1 Introduzione Un problema di ottimizzazione viene definito come la minimizzazione o la massimizzazione di una funzione a valori reali su un insieme specificato.

Dettagli

Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4

Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4 Macchine parallele M 1 J 1 J 2 LAVORI M 2 J 3 J 4 M 3 Macchine parallele Scheduling su macchine parallele scorrelate R C max Descrizione del problema n lavori devono essere processati da m macchine diverse

Dettagli

Capitolo 2. non lineari. 2.1 Metodo di Newton per sistemi di equazioni. Consideriamo il sistema di equazioni non lineari. f N (x 1,x 2,...

Capitolo 2. non lineari. 2.1 Metodo di Newton per sistemi di equazioni. Consideriamo il sistema di equazioni non lineari. f N (x 1,x 2,... Capitolo ODEs non lineari Metodo di Newton per sistemi di equazioni non lineari Consideriamo il sistema di equazioni non lineari f (x,x,,x N ) = f (x,x,,x N ) = f N (x,x,,x N ) = che può essere riscritto,

Dettagli

INTERPOLAZIONE. Introduzione

INTERPOLAZIONE. Introduzione Introduzione INTERPOLAZIONE Quando ci si propone di indagare sperimentalmente la legge di un fenomeno, nel quale intervengono due grandezze x, y simultaneamente variabili, e una dipendente dall altra,

Dettagli

Regola dei trapezi. a, b punti fissi a priori. non fissi a priori (indeterminati) errore di integrazione. a, b

Regola dei trapezi. a, b punti fissi a priori. non fissi a priori (indeterminati) errore di integrazione. a, b INTEGRAZIONE NUMERICA (Quadratura di Gauss) Regola dei trapezi I ( b a) f ( a) + f ( b) f (x) errore di integrazione f (x) f (a) f (b) a b x a a ' b' b x a, b punti fissi a priori a, b non fissi a priori

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

LE EQUAZIONI DIFFERENZIALI del PRIMO e del SECONDO ORDINE

LE EQUAZIONI DIFFERENZIALI del PRIMO e del SECONDO ORDINE LE EQUAZIONI DIFFERENZIALI del PRIMO e del SECONDO ORDINE EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE ESEMPIO Della funzione y = f(x) si sa che y' 2x = 1. Che cosa si può dire della

Dettagli

1. Calcolo dell indice di condizionamento di una matrice

1. Calcolo dell indice di condizionamento di una matrice 1 Esercizi sul condizionamento con matlab laboratorio di Calcolo Scientifico per Geofisici Prof. A. Murli a.a. 2006/07 1. Calcolo dell indice di condizionamento di una matrice Determinare una function

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.   Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di equazioni differenziali

Dettagli

MATEMATICA GENERALE APPLICAZIONI DI MATEMATICA PER L ECONOMIA 1/6/2011 A. NOME e COGNOME Matricola. x = x 3 + 1

MATEMATICA GENERALE APPLICAZIONI DI MATEMATICA PER L ECONOMIA 1/6/2011 A. NOME e COGNOME Matricola. x = x 3 + 1 1/6/2011 A NOME e COGNOME Matricola I parte: quesiti preliminari (riportare le soluzioni su questo foglio, giusti cando la risposta) i) Si risolva l equazione: x + 5 7 = x 3 + 1 ii) Si risolva la disequazione:

Dettagli

Metodi Numerici per l Approssimazione degli Zeri di una Funzione

Metodi Numerici per l Approssimazione degli Zeri di una Funzione Metodi Numerici per l Approssimazione degli Zeri di una Funzione Luca Gemignani luca.gemignani@unipi.it 29 marzo 2018 Indice Lezione 1: Il Metodo di Bisezione. 1 Lezione 2: Metodi di Iterazione Funzionale.

Dettagli

Equazioni di Hamilton

Equazioni di Hamilton Equazioni di Hamilton Osservazione di carattere preliminare Consideriamo un sistema differenziale costituito da N equazioni ciascuna del secondo ordine, in forma normale: y h = f h (x, y l, y l), h, l

Dettagli

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2 Calcolo di forme indeterminate del tipo 0/0 Quando si deve calcolare il limite di rapporto di funzioni infintesime per x 0, si raccoglie la potenza di x al minimo esponente. Es. lim x 0 x 3 2x 2 + 6x x

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

Equazioni differenziali con valori al bordo

Equazioni differenziali con valori al bordo Equazioni differenziali con valori al bordo Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Equazioni di diffusione reazione 2 Equazioni di diffusione reazione Si consideri

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Metodi per il calcolo degli zeri di funzioni non lineari

Metodi per il calcolo degli zeri di funzioni non lineari Metodi per il calcolo degli zeri di funzioni non lineari N. Del Buono 1 Introduzione Le radici di un equazione non lineare f(x) = 0 non possono, in generale, essere espresse esplicitamente e anche quando

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Matematica Finanziaria 13 settembre 2001

Matematica Finanziaria 13 settembre 2001 Matematica Finanziaria 3 settembre 00 Prova Generale. ESERCIZIO : Algebra Lineare ² Dire se le seguenti applicazioni sono lineari e in caso a ermativo indicarne la matrice associata A: a)f : R >R : b)f

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Problema e definizioni Metodo di Newton-Raphson Test d arresto Algoritmo ed esercizi

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Istituzioni di Analisi 2 (programma, domande ed esercizi)

Istituzioni di Analisi 2 (programma, domande ed esercizi) Istituzioni di Analisi programma, domande ed esercizi) nona settimana Argomenti trattati Dal libro di testo: 3. punti critici vincolati), 3.3. estremi assoluti), 0.3. e 0.3. solo la definizione di compatto

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli