LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE
|
|
|
- Domenico Fantini
- 9 anni fa
- Visualizzazioni
Transcript
1 LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE
2 1. EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE ESEMPIO Della funzione y = f(x) si sa che y' 2x = 1. Che cosa si può dire della funzione incognita y = f(x)? Riscriviamo l equazione: y' = 2x + 1. Integriamo entrambi i membri : y = x 2 + x + c è un fascio di parabole, con l asse sulla retta E, risolvendo gli integrali, troviamo : e il vertice nel punto dove c è una costante reale. Per ogni valore reale di c, la funzione y = x 2 + x + c soddisfa l equazione: y' 2x = 1.
3 1. EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE Equazione differenziale E un equazione che ha per incognita una funzione y = f(x) e che stabilisce una relazione tra - la variabile indipendente x, - la funzione incognita f(x), - e almeno una delle sue derivate. Equazione differenziale del primo ordine E un equazione differenziale che stabilisce una relazione tra - la variabile indipendente x, - la funzione incognita y = f(x), - e la derivata prima y'. ESEMPIO y''' 2 y' = 3 x y y = f(x) : incognita, x : var. indipendente, y''' e y' : derivate di f(x). Nella forma più generale: F(x; y; y' ) = 0. L equazione è in forma normale quando si può scrivere: y' = G(x; y).
4 1. EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE Dal nostro esempio iniziale. Equazione : y' 2x = 1. Integrale generale : y = x 2 + x + c, c. Soluzione particolare (c = 0) : y = x 2 + x. L integrale generale è l insieme di tutte le funzioni y = f(x) che risolvono l equazione. Nel nostro esempio, l integrale generale contiene infinite funzioni, che differiscono per il valore di c. Soluzioni di un equazione differenziale del primo ordine In generale l integrale generale di un equazione del primo ordine F(x; y; y' ) = 0 è dato dalla famiglia di funzioni y = f(x; c). Le soluzioni particolari si ottengono assegnando valori determinati al parametro c. Una soluzione particolare è una determinata funzione che risolve l equazione.
5 2. EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE Il problema di Cauchy Spesso in un equazione differenziale del primo ordine si cerca la soluzione particolare di il cui grafico contiene un determinato punto (x 0 ; y 0 ). ESEMPIO In una coltura batterica, la velocità di crescita del numero N di batteri è uguale a kn. Dato il numero N 0 dei batteri inseriti all istante t = 0, quanto vale N dopo un tempo t? Impostiamo il calcolo: Un problema del genere è detto problema di Cauchy: ESEMPIO Determiniamo la soluzione del problema di Cauchy: L integrale generale è y = x 2 + x + c, in cui la costante c deve essere determinata in modo da soddisfare la condizione iniziale 5 = f(2) : 5 = c. Dunque, si ha c = 1 e y = x 2 + x 1...
6 2. EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE Il problema di Cauchy si rivela particolarmente interessante perché descrive molti problemi pratici e perché vale il seguente teorema. TEOREMA Teorema di Cauchy Sia G(x; y) una funzione di due variabili reali, continua in un sottoinsieme aperto A del piano e dotata di derivata parziale rispetto a y, anch essa continua in A. Sia poi P(x 0 ; y 0 ) un punto qualsiasi appartenente ad A. Allora il problema di Cauchy, espresso dal sistema ammette una e una sola soluzione y = f(x), definita in un intorno di x 0.
7 3. LE EQUAZIONI DIFFERENZIALI DEL TIPO y' = f (x) ESEMPIO Risolviamo l equazione differenziale y' 2 cos x = 0. Isoliamo y' : y' = 2 cos x. Integriamo entrambi i membri rispetto alla variabile x:, cioè con x. METODO Per risolvere un equazione differenziale del primo ordine, riconducibile al tipo y' = f (x), - si isola y' ; - si integrano entrambi i membri: (osservando che ); - si calcola l integrale indefinito di f (x); le primitive di f (x) sono le soluzioni.
8 4. ALTRE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE RISOLUBILI DEFINIZIONE Un equazione differenziale del primo ordine è detta a variabili separabili quando può essere scritta nella forma y' = g(x) h(y), con g(x) e h(y) funzioni continue. DEFINIZIONE Una equazione differenziale del tipo si dice omogenea del primo ordine quando i due polinomi A(x; y) e B(x; y) sono omogenei di grado n.
9 4. ALTRE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE RISOLUBILI DEFINIZIONE Un equazione differenziale del primo ordine si dice lineare quando la funzione incognita y e la sua derivata prima y' compaiono solamente in termini di primo grado. DEFINIZIONE Un equazione differenziale del primo ordine si dice di Bernoulli se può assumere la forma: y' + a(x) y = b(x) y a, con.
10 5. ESERCIZI: EQUAZIONI DIFFERENZIALI
11 6. ESERCIZI: LE EQUAZIONI DIFFERENZIALI DEL TIPO y' = f (x)
12 1. EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE ESEMPIO Della funzione y = f(x) si sa che y' 2x = 1. Che cosa si può dire della funzione incognita y = f(x)? Riscriviamo l equazione: y' = 2x + 1. Integriamo entrambi i membri : y = x 2 + x + c è un fascio di parabole, con l asse sulla retta E, risolvendo gli integrali, troviamo : e il vertice nel punto dove c è una costante reale. Per ogni valore reale di c, la funzione y = x 2 + x + c soddisfa l equazione: y' 2x = 1. RITORNA PROSEGUI
Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte
Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine
Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:
42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)
Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1
5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore
7. Equazioni differenziali
18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non
appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti
appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2014-15 autore: Giovanni Alberti Equazioni differenziali [versione: 2 gennaio 2015] Richiamo delle nozioni fondamentali
Equazioni differenziali
4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.
Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.
Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.
Equazioni differenziali
Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale
ESERCITAZIONE: ESPONENZIALI E LOGARITMI
ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione
EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.
EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema
1 Equazioni Differenziali
Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
Equazioni differenziali
Equazioni differenziali Equazioni differenziali ordinarie del primo ordine: Equazioni del tipo x (t) = f(t) Equazioni lineari del tipo x (t) + ax(t) = b Equazioni a variabili separabili del tipo x t =
ESERCIZI SULLE EQUAZIONI DIFFERENZIALI
ESERCIZI SULLE EQUAZIONI DIFFERENZIALI a cura di Michele Scaglia ESERCIZI SULLE EQUAZIONI DIFFERENZIALI LINEARI DEL PRIMO OR- DINE A VARIABILI SEPARABILI TRATTI DA TEMI D ESAME 3) [TE /0/00] Determinare
Analisi Matematica 1+2
Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali
DERIVATE E LORO APPLICAZIONE
DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente
Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti
Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a
Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.
Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto
Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:
Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0
Equazioni differenziali
Capitolo 2 Equazioni differenziali I modelli matematici per lo studio di una popolazione isolata sono equazioni differenziali. Premettiamo dunque allo studio dei modelli di popolazioni isolate una breve
LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.
LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri
Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa
Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
EQUAZIONI DIFFERENZIALI Esercizi con soluzione
EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y
ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni di
PARABOLA La parabola si ottiene intersecando un cono con un piano come nella figura sotto. L equazione della parabola è f(x) = ax 2 +bx+c ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni
LEZIONI DI ANALISI MATEMATICA I. Equazioni Differenziali Ordinarie. Sergio Lancelotti
LEZIONI DI ANALISI MATEMATICA I Equazioni Differenziali Ordinarie Sergio Lancelotti Anno Accademico 2006-2007 2 Equazioni differenziali ordinarie 1 Equazioni differenziali ordinarie di ordine n.................
CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata
Equazioni differenziali
Equazioni differenziali Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ.
y 3y + 2y = 1 + x x 2.
Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere
A.A. 2016/17 - Analisi Matematica 1
A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.
Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila
Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sommario Poliedri Poliedri compatibili Diseguaglianzeimplicate Proiezione di un poliedro Definizione
Precorso di Matematica
Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,
Studia il seguente fascio di parabole: 3= 1. Determiniamo la forma canonica: 2. Determiniamo le coordinate dei vertici al variare del parametro a :
Fascio di parabole Esercizi Esercizio 362.341 Studia il seguente fascio di parabole: 3= = +3 2. Determiniamo le coordinate dei vertici al variare del parametro a : = = =0 = 0 +3=3 Il vertice non dipende
Applicazioni lineari e diagonalizzazione. Esercizi svolti
. Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
MATRICI E SISTEMI LINEARI
- - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle
Matematica - Prova d esame (25/06/2004)
Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z
Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler
Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.
Soluzioni degli esercizi
Equazioni differenziali Soluzioni degli esercizi Premessa: in tutti gli esercizi x denota la variabile indipendente, y la funzione (di x) incognita dell equazione differenziale. Un equazione differenziale
Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini
Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,
Appunti di matematica per le Scienze Sociali Parte 1
Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici
3 Equazioni e disequazioni.
3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti
a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;
ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti
CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI
CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare
Esercitazioni di Geometria A: curve algebriche
Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione
LE EQUAZIONI DI SECONDO GRADO
LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere
Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 4 Novembre Trinomi di secondo grado
Esercitazioni di Matematica Generale AA 016/017 Pietro Pastore Lezione del 4 Novembre 016 Trinomi di secondo grado Possiamo usare le soluzioni dell equazione di secondo grado per scomporre il trinomio
COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1
www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 7 - QUESTIONARIO QUESITO Definito il numero E come: E = xe x dx, dimostrare che risulta: x e x dx = e E esprimere x e x dx in termini di e ed E. Cerchiamo
