Circuiti di base e ALU. Lorenzo Dematte

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Circuiti di base e ALU. Lorenzo Dematte"

Transcript

1 Circuiti di base e ALU Lorenzo Dematte (dematte@ieee.org)

2 Multiplexer

3 Multiplexer

4 Decodificatore demux

5 CPU ALU: Arithmetic Logic Unit CU: Control Unit

6

7 Aritmetica con reti logiche I circuiti realizzano solamente funzioni logiche di singoli bit Le operazioni algebriche hanno senso su gruppi di bit interpretati come numeri binari Funzioni algebriche come funzioni logiche dei bit che compongono i numeri. Reti logiche per somma, comparazione, shift, divisione, moltiplicazione

8 Comparatore Comparatore per numeri interi positivi a 4 bit: Otto input, tre output Tre tabelle da 256 righe? A A A2 A3 A>B A<B A=B B B B2 B3 A>B = A3B3' + (A3B3+A3'B3')(A2B2' + (A2B2+A2'B2')( AB +(AB+A'B')AB') )

9 Design funzionale Comparatore a bit! A B A > B A < B A = B A>B = AB A<B = A B A=B = AB + A B OPPURE??

10 Comparatore (cont)

11 Sommatore X + Y Z 7 = + 6 = + 3 Carry-out c i + x i y i s i Carry-in c i i x i y i c i s i c i +

12 Full-adder y i c i x i y s c i i i + x i c i c i x i x i y i y i c i + Full adder (F A) s i c i x(i) y(i) c(i) s(i) c(i+)

13 Sommatori ripple carry x n - y n - x y x y c n F A c n - F A c F A c MSB s n - s s LSB

14 Sottrattore n - Add/Sub control x n - x x c n n-bit adder c s n - s s

15 Generazione del bit di overflow Il bit di overflow di puo' calcolare come segue: OW x n y n s n x n y n s n In realtà si puo' dimostrare che tale valore è uguale a: OW= c n XOR c n Utilizzare l'induzione

16 Velocità ripple carry Quanto è veloce? Cosa vuol dire veloce? Ritardi di porta logica: attraversare tutto i FA c(n-) in 2(n-); s(n-) in 2(n-) + c(n) in 2n Come si può rendere più veloce? Consideriamo c(i+) c(i+) = x(i)y(i) + x(i)c(i) + y(i)c(i) [slide 2] Chiamiamo x(i)y(i) = G(i) [generate] (questo caso genera sicuramente un riporto) Chiamiamo x(i)c(i) + y(i)c(i) = c(i)(x(i) + y(i)) = c(i)p(i) [propagate] (c era carry e va riportato ) c(i+) = G(i) + P(i)c(i) y i c i x i c i x i y i x i y i c i c i + x i Full adder s i s i y i c i + c i

17 B-cell Possiamo semplificare e usare xor, perchè quando x(i) e y(i) sono uguali a G(i) è e porta a l'intera funzione indipendentemente da P(i) x i y i c(i+) = G(i) + P(i)c(i) X(i) Y(i) C(i) X(i) xor y(i) Xor c(i) c i B cell G i x(i)y(i) = G(i) P i s i c(i)(x(i) + y(i)) = c(i)p(i)

18 Carry-lookahead c(i+) = G(i) + P(i)c(i) Espandendo le relazioni che consentono di trovare C i in funzione di C i- si possono trovare i valori di tutti i bit di carry in un solo passo C i+ =G i + P i (G i- + P i- (G i-2 + P i-2 (...(G P c )))) C i+ =G i + P i G i- + P i P i- G i P i P i-2 P i-3...g i-k P i P i-...p P c Ad esempio per un sommatore a 4 bit si ha: C = G + P c C 2 = G + P C = G + P (G + P c ) = = G + P G + P P c C 3 = G 2 + P 2 G + P 2 P G + P 2 P P c C 4 = G 3 + P 3 G 2 + P 3 P 2 G + P 3 P 2 P G + P 3 P 2 P P c

19 Sommatore a 4 bit con B-cells x 3 y 3 x 2 y 2 x y x y c 4 c 3 c 2 B cell B cell B cell B cell c c s 3 s 2 s s G 3 P 3 G 2 P 2 G P G P C 3 = G 2 + P 2 G + P 2 P G + P 2 P P c Carry-lookahead logic G I P I

20 Vantaggi sommatore a B-cells Su un sommatore a quattro bit il ritardo totale accumulato è dato da: c(4) una porta per generare G(i) e P(i) un banco di and un banco di or totale: 3 ritardi s(3): tempo necessario per generare c(3) una porta xor totale 4 ritardi Lo schema a carrier ripple richiede 8 ritardi per originare c(4) e 7 per calcolare s(3)

21 Limitazioni sommatore a B-cells Problema è rappresentato dal fan-in richiesto dal banco di or I gate moderni non consentono di superare un fan-in di 5 E possibile combinare vari sommatori a B- cells (applicando ricorsivamente l'algoritmo mostrato o secondo lo schema mostrato per gli adder più semplici)

22 Carry look-ahead multipli

23 Realizzazione come vettore di FA

24 Design cella b b a a b b ab ab ab ab a singola cella p3 p2 p p m j a q i FA FA Carry-out FA Carry-in p3 p2 p p

25 Analisi dei ritardi Assumendo che la prima riga sia fatta solo di AND (non serve il full adder) che il ritardo di attraversamento del FA sia 2 gate Si puo' dimostrare che il ritardo massimo è dato da 6(n-)- (dove n è il numero di bit) La dimostrazione si puo' fare per induzione Noi ci limitiamo a vedere un esempio annotando i ritardi accumulati nel nostro moltiplicatore

26 Realizzazione come vettore di FA Multiplicand m 3 m 2 m m p q p q singola cella 7 p p p 5 3 p p q 3 p 2 q 2 Carry-out FA m j q i Carry-in Questo è subito disponibile a tutti gli stadi

27 Use shift registers Addizioni sequenziali

28 Sequenziale, con segno

29 Divisione, sequenziale Dividendo nella meta inferiore, meta superiore. Q bit counter to. Shift dividendo sx Sottrai. Se positiva, shift nel quoziente, negativo shift Se Q bit counter < m, ripeti Resto nella parte superiore del dividendo

30 Schema FPU Blocchi base gia visti: sottrattore, MUX, shifter Lead zeros counter Normalize Sign computation

Architetture aritmetiche

Architetture aritmetiche Architetture aritmetiche Sommatori: : Full Adder, Ripple Carry Sommatori: Carry Look-Ahead Ahead, Carry Save, Add/Subtract Moltiplicatori: Combinatori, Wallace,, Sequenziali Circuiti per aritmetica in

Dettagli

Circuiti combinatori notevoli

Circuiti combinatori notevoli Architettura degli Elaoratori e delle Reti Lezione 5 Circuiti cominatori notevoli F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 5 1 Comparatore! Confronta parole

Dettagli

Lezione 7 ALU: Moltiplicazione e divisione

Lezione 7 ALU: Moltiplicazione e divisione Architettura degli Elaboratori e delle Reti Lezione 7 ALU: Moltiplicazione e divisione F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 1/34 Sommario! Sommatori

Dettagli

Lezione 7 Sommatori e Moltiplicatori

Lezione 7 Sommatori e Moltiplicatori Architettura degli Elaboratori e delle Reti Lezione 7 Sommatori e Moltiplicatori Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 /36 Sommario

Dettagli

Componenti di un sistema digitale

Componenti di un sistema digitale Componenti di un sistema digitale Il Multiplexer 2x a b Dispositivo che permette di selezionare uno degli n ingressi e presentarlo in uscita Con n linee di ingresso un multiplexer richiede un numero di

Dettagli

Porte logiche di base. Cenni circuiti, reti combinatorie, reti sequenziali

Porte logiche di base. Cenni circuiti, reti combinatorie, reti sequenziali Porte logiche di base Cenni circuiti, reti combinatorie, reti sequenziali NOT AND A R A B R OR A R B Quindi NAND o NOR sono complete circuiti con solo porte NAND o solo porte NOR. Reti combinatorie Rete

Dettagli

Il Livello Logico-Digitale. Blocchi funzionali combinatori

Il Livello Logico-Digitale. Blocchi funzionali combinatori Il Livello Logico-Digitale Blocchi funzionali combinatori 21-10-2015 Blocchi funzionali combinatori Esiste una ben nota e ormai stabilizzata libreria di blocchi funzionali predefiniti di tipo combinatorio

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino Corso di Unità Logico-Aritmetica Anno Accademico 24/25 Francesco Tortorella Progetto di una ALU ALU n. [Arthritic Logic Unit or (rare) Arithmetic Logic Unit] A random-number generator supplied as standard

Dettagli

Moduli Combinatori. Moduli Combinatori. Corso di Architetture degli Elaboratori

Moduli Combinatori. Moduli Combinatori. Corso di Architetture degli Elaboratori Moduli Combinatori Moduli Combinatori Corso di Architetture degli Elaboratori Coder Circuito codificatore x x z z k n=2 k x n La linea su cui si ha valore viene codificata in uscita mediante log 2 n bit

Dettagli

Moltiplicatori HW e ALU

Moltiplicatori HW e ALU Moltiplicatori HW e ALU Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti: Appendice B5 prima parte. Per approfondimenti

Dettagli

Unità Aritmetico-Logica

Unità Aritmetico-Logica Unità Aritmetico-Logica A ritmethic L ogic U nit E l unità che esegue le operazioni aritmetiche e le operazioni logiche AND e OR 1-bit ALU : è una componente dell ALU che produce un singolo bit sui 32

Dettagli

Arithmetic and Logic Unit e moltiplicatore

Arithmetic and Logic Unit e moltiplicatore Arithmetic and Logic Unit e moltiplicatore M. Favalli Engineering Department in Ferrara (ENDIF) ALU - multiplier Analisiesintesideicircuitidigitali 1 / 34 Sommario 1 Arithmetic and Logic Unit - ALU 2 Moltiplicatore

Dettagli

Reti combinatorie. Reti combinatorie (segue)

Reti combinatorie. Reti combinatorie (segue) Reti combinatorie Sommatore Sottrattore Reti sequenziali Generatore di sequenze Riconoscitore di sequenze Reti combinatorie PROGRAMMAZIONE Il programmatore riporta le istruzioni che il calcolatore dovrà

Dettagli

Codifica e aritmetica binaria

Codifica e aritmetica binaria Codifica e aritmetica binaria Corso ACSO prof. Cristina Silvano, Politecnico di Milano Codifica binaria dell informazione Il calcolatore utilizza un alfabeto binario: usiamo dispositivi elettronici digitali

Dettagli

Componenti notevoli combinatori

Componenti notevoli combinatori Corso di Laurea in Informatica Componenti notevoli combinatori Architettura dei Calcolatori Prof. Andrea Marongiu andrea.marongiu@unimore.it Anno accademico 2018/19 Demultiplexer / Decoder (1/2) Il demultiplexer

Dettagli

Architettura degli Elaboratori A Modulo 2

Architettura degli Elaboratori A Modulo 2 ALU Architettura degli Elaboratori A Modulo 2 ALU slides a cura di Andrea Torsello e Salvatore Orlando ( Unit ALU (Arithmetic Logic circuito combinatorio all interno del processore per l esecuzione di

Dettagli

Aritmetica dei Calcolatori - Operazioni

Aritmetica dei Calcolatori - Operazioni Aritmetica dei Calcolatori - Operazioni Luca Abeni March 2, 2016 Implementazione di Operazioni su Numeri Interi Abbiamo visto come rappresentare numeri naturali ed interi in un computer... Sequenze di

Dettagli

Progetto di Circuiti Aritmetici

Progetto di Circuiti Aritmetici Progetto di Circuiti Aritmetici Maurizio Palesi Maurizio Palesi 1 Introduzione Caratteristiche principali di valutazione Velocità Valutata per il caso peggiore Costo Precisione Es., operazioni in virgola

Dettagli

$GGL]LRQDWRULPHWRGR &DUU\/RRNDKHDG

$GGL]LRQDWRULPHWRGR &DUU\/RRNDKHDG $GGL]LRQDWRULPHWRGR &DUU\/RRNDKHDG Salvatore Orlando & Marta Simeoni Arch. Elab. - S. Orlando 1 $GGL]LRQDWRUL Il circuito combinatorio che implementa l addizionatore a n bit è costruito collegando in sequenza

Dettagli

Componenti per l aritmetica binaria

Componenti per l aritmetica binaria Componenti per l aritmetica binaria M. Favalli Engineering Department in Ferrara (ENDIF) Reti logiche 1 / 29 Sommario 1 Introduzione 2 Sommatori binari 3 Applicazioni di n-bit adder 4 Sommatore CLA (ENDIF)

Dettagli

Le operazioni. di somma. e sottrazione

Le operazioni. di somma. e sottrazione Le operazioni di somma e sottrazione S. Salvatori marzo 2016 (36 di 171) L'unità aritmetico-logica La ALU rappresenta l'elemento principale di una CPU quale dispositivo di elaborazione. ALU AI BUS ESTERNI

Dettagli

Logica binaria. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna

Logica binaria. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna Logica binaria Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Logica binaria 2 Rappresentazione dell'informazione I calcolatori

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino Corso di Reti combinatorie Anno Accademico 27/28 Francesco Tortorella Reti combinatorie una rete combinatoria è un circuito logico avente n ingressi (x,x 2,,x n ) ed m uscite (y,y 2,,y m ), ciascuno dei

Dettagli

Progetto di Circuiti Aritmetici

Progetto di Circuiti Aritmetici Progetto di Circuiti Aritmetici Maurizio Palesi Maurizio Palesi 1 Introduzione Caratteristiche principali di valutazione Velocità Valutata per il caso peggiore Costo Precisione Es., operazioni in virgola

Dettagli

senza stato una ed una sola

senza stato una ed una sola Reti Combinatorie Un calcolatore è costituito da circuiti digitali (hardware) che provvedono a realizzare fisicamente il calcolo. Tali circuiti digitali possono essere classificati in due classi dette

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori circuiti combinatori: ALU slide a cura di Salvatore Orlando, Marta Simeoni, Andrea Torsello 1 ALU ALU (Arithmetic Logic Unit) circuito combinatorio all interno del processore per l esecuzione di istruzioni

Dettagli

Sommatori e Moltiplicatori

Sommatori e Moltiplicatori Sommatori e Moltiplicatori Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti: Appendice C5 prima parte. Per approfondimenti

Dettagli

Circuiti Combinatori

Circuiti Combinatori Circuiti Combinatori circuiti combinatori sono circuiti nei quali le uscite dipendono solo dalla combinazione delle variabili logiche presenti nello stesso istante all ingresso Essi realizzano: Operazioni

Dettagli

PSPICE simulazione di circuiti digitali Flip Flop M/S, Moltiplicatore parallelo, Memoria SRAM, sommatore, comparatore

PSPICE simulazione di circuiti digitali Flip Flop M/S, Moltiplicatore parallelo, Memoria SRAM, sommatore, comparatore PSPICE simulazione di circuiti digitali Flip Flop M/S, Moltiplicatore parallelo, Memoria SRAM, sommatore, comparatore Laboratorio di Architettura degli Elaboratori - A.A. 24/25 Il flip flop di tipo Master/Slave

Dettagli

una rete combinatoria è un circuito logico avente n ingressi (x 1

una rete combinatoria è un circuito logico avente n ingressi (x 1 Reti combinatorie una rete combinatoria è un circuito logico avente n ingressi (x,,,x n ) ed m uscite (y,y 2,,y m ), ciascuno dei quali assume valori binari (/), e tale che a ciascuna combinazione degli

Dettagli

Logica binaria. Cap. 1.1 e 2.1 dispensa

Logica binaria. Cap. 1.1 e 2.1 dispensa Logica binaria Cap.. e 2. dispensa Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Logica binaria 2 / 24 Rappresentazione

Dettagli

Il livello logico digitale

Il livello logico digitale Il livello logico digitale porte logiche e moduli combinatori Algebra di commutazione Algebra booleana per un insieme di due valori Insieme di elementi A={,} Operazioni NOT (operatore unario) => = e =

Dettagli

Aritmetica binaria e circuiti aritmetici

Aritmetica binaria e circuiti aritmetici Aritmetica binaria e circuiti aritmetici Architetture dei Calcolatori (lettere A-I) Addizioni binarie Le addizioni fra numerali si effettuano cifra a cifra (come in decimale) portando il riporto alla cifra

Dettagli

Aritmetica dei calcolatori. La rappresentazione dei numeri

Aritmetica dei calcolatori. La rappresentazione dei numeri Aritmetica dei calcolatori Rappresentazione dei numeri naturali e relativi Addizione a propagazione di riporto Addizione veloce Addizione con segno Moltiplicazione con segno e algoritmo di Booth Rappresentazione

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri CEFRIEL Consorzio per la Formazione e la Ricerca in Ingegneria dell Informazione Aritmetica dei calcolatori Rappresentazione dei numeri naturali e relativi Addizione a propagazione di riporto Addizione

Dettagli

circuiti combinatori: ALU

circuiti combinatori: ALU Architettura degli Elaboratori circuiti combinatori: ALU ALU ALU (Arithmetic Logic Unit) circuito combinatorio all!interno del processore per l!esecuzione di istruzioni macchina di tipo aritmetico/logiche

Dettagli

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Circuiti Addizionatori

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Circuiti Addizionatori Reti Logiche 1 Prof. B. Buttarazzi A.A. 2009/2010 Circuiti Addizionatori Sommario Circuiti addizionatori Half-Adder Full-Adder CLA (Carry Look Ahead) 21/06/2010 Corso di Reti Logiche 2009/10 2 Addizionatori

Dettagli

Aritmetica dei Calcolatori 2

Aritmetica dei Calcolatori 2 Laboratorio di Architettura 1 aprile 2011 1 Operazioni bit a bit 2 Rappresentazione binaria con segno 3 Esercitazione Operazioni logiche bit a bit AND OR XOR NOT IN OUT A B A AND B 0 0 0 0 1 0 1 0 0 1

Dettagli

Tecniche di semplificazione. Circuiti digitali notevoli

Tecniche di semplificazione. Circuiti digitali notevoli Architettura degli Elaboratori e delle Reti Lezione 5 Tecniche di semplificazione Circuiti digitali notevoli F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano A.A.

Dettagli

Costruzione di un unità aritmetico-logica

Costruzione di un unità aritmetico-logica «a2» 2013.11.11 --- Copyright Daniele Giacomini -- appunti2@gmail.com http://informaticalibera.net Costruzione di un unità aritmetico-logica Indicatori.............................................. 1746

Dettagli

Costruzione di un unità aritmetico-logica

Costruzione di un unità aritmetico-logica Costruzione di un unità aritmetico-logica Indicatori............................................... 765 Troncamento di un valore in base al rango..................766 Inversione di segno......................................

Dettagli

Floating pointer adder & Firmware Division. Sommario

Floating pointer adder & Firmware Division. Sommario Floating pointer adder & Firmware Division Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5 1/43

Dettagli

Architettura degli Elaboratori e Laboratorio. Matteo Manzali Università degli Studi di Ferrara Anno Accademico

Architettura degli Elaboratori e Laboratorio. Matteo Manzali Università degli Studi di Ferrara Anno Accademico Architettura degli Elaboratori e Laboratorio Matteo Manzali Università degli Studi di Ferrara Anno Accademico 2016-2017 Algebra booleana L algebra booleana è un particolare tipo di algebra in cui le variabili

Dettagli

Sommatori e Moltiplicatori

Sommatori e Moltiplicatori Sommatori e Moltiplicatori Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimenti: B.5 sul Patterson, per i moltiplicatori HW,

Dettagli

Firmware Division & Floating pointer adder

Firmware Division & Floating pointer adder Firmware Division & Floating pointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5 1/47

Dettagli

Addizionatori: metodo Carry-Lookahead. Costruzione di circuiti combinatori. Standard IEEE754

Addizionatori: metodo Carry-Lookahead. Costruzione di circuiti combinatori. Standard IEEE754 Addizionatori: metodo Carry-Lookahead Costruzione di circuiti combinatori Standard IEEE754 Addizionatori Il circuito combinatorio che implementa l addizionatore a n bit si basa su 1-bit adder collegati

Dettagli

Dalla tabella alla funzione canonica

Dalla tabella alla funzione canonica Dalla tabella alla funzione canonica La funzione canonica è la funzione logica associata alla tabella di verità del circuito che si vuole progettare. Essa è costituita da una somma di MinTerm con variabili

Dettagli

I sommatori S R. R in. Full. Adder

I sommatori S R. R in. Full. Adder I sommatori 1) ddizionatore Half dder (senza riporto in ingresso): 0 0 0 0 0 1 1 1 Half dder = = N.Porte = 2 Cammino Critico = 1, = 1 2) ddizionatore Full dder ( con riporto in ingresso ): in out 0 0 0

Dettagli

Lezione 5. Lezione 5

Lezione 5. Lezione 5 Lezione 5 Sommario Unità aritmetico logica (ALU) Realizzazione di un circuito sommatore Realizzazione di una ALU elementare Realizzazione di un registro a scorrimento (shifter) Prima realizzazione di un

Dettagli

Moltiplicazione e ALU

Moltiplicazione e ALU Moltiplicazione e ALU Docente teoria: prof. Federico Pedersini (https://homes.di.unimi.it/pedersini/ae-inf.html) Docente laboratorio: Matteo Re (https://homes.di.unimi.it/re/arch1-lab-2017-2018.html) 1

Dettagli

Firmware Division & Floating gpointer adder

Firmware Division & Floating gpointer adder Firmware Division & Floating gpointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5

Dettagli

Decodificatore (decoder) 1 su m

Decodificatore (decoder) 1 su m Decodificatore (decoder) 1 su m Un decodificatore è una macchina che riceve in ingresso una parola codice (C) su n bit e presenta in uscita la sua rappresentazione decodificata (linee U 0, U N-1 ) su m=2

Dettagli

SOMMATORI S = A B C = AB HALF-ADDER. DIEET Università di Palermo Elettronica digitale II Giuseppe Caruso 1

SOMMATORI S = A B C = AB HALF-ADDER. DIEET Università di Palermo Elettronica digitale II Giuseppe Caruso 1 OMMTORI Università di alermo Elettronica digitale II Giuseppe Caruso HLF-DDER C H C = C = Università di alermo Elettronica digitale II Giuseppe Caruso 2 2 Università di alermo Elettronica digitale II Giuseppe

Dettagli

I Indice. Prefazione. Capitolo 1 Introduzione 1

I Indice. Prefazione. Capitolo 1 Introduzione 1 I Indice Prefazione xi Capitolo 1 Introduzione 1 Capitolo 2 Algebra di Boole e di commutazione 7 2.1 Algebra di Boole.......................... 7 2.1.1 Proprietà dell algebra.................... 9 2.2

Dettagli

0ROWLSOLFD]LRQHH'LYLVLRQH WUDQXPHULUHODWLYL

0ROWLSOLFD]LRQHH'LYLVLRQH WUDQXPHULUHODWLYL 0ROWLSOLFD]LRQHH'LYLVLRQH WUDQXPHULUHODWLYL Salvatore Orlando & Marta Simeoni Arch. Elab. - S. Orlando 1 0ROWLSOLFD]LRQHWUDQXPHULLQWHUL Oltre ai circuiti per realizzare somme e sottrazioni di interi, è

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori Moltiplicazione e divisione tra numeri interi: algoritmi e circuiti slide a cura di Salvatore Orlando, Marta Simeoni, Andrea Torsello Operazioni aritmetiche e logiche Abbiamo visto che le ALU sono in grado

Dettagli

Livello logico digitale

Livello logico digitale Livello logico digitale circuiti combinatori di base e circuiti sequenziali Half Adder - Semisommatore Ingresso 2 bit, uscita 2 bit A+ B= ------ C S C=AB S=AB + AB=A B A B In Out HA A B C S S HA A C S

Dettagli

Elementi di Informatica

Elementi di Informatica Elementi di Informatica Luigi Catuogno Operazioni aritmetiche in binario 1 omma e prodotto di cifre binarie + 0 1 0 0 1 1 1 10 0 1 0 0 0 1 0 1 omma tra numeri binari (senza segno) 1010 + 0011 = 1 1 10

Dettagli

Corso di Architettura degli Elaboratori. Porte logiche (I) Architetture degli Elaboratori. Porte logiche (III) Porte logiche (II)

Corso di Architettura degli Elaboratori. Porte logiche (I) Architetture degli Elaboratori. Porte logiche (III) Porte logiche (II) Corso di Architettura degli Elaboratori Il livello logico digitale: Algebra Booleana e Circuiti logici digitali di base Porte logiche (I) Invertitore a transistor: quando V in è basso, V out è alto e viceversa

Dettagli

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi Somma di numeri floating point Algoritmi di moltiplicazione e divisione per numeri interi Standard IEEE754 " Standard IEEE754: Singola precisione (32 bit) si riescono a rappresentare numeri 2.0 10 2-38

Dettagli

Lezione 7 Sommatori e Moltiplicatori

Lezione 7 Sommatori e Moltiplicatori Architettura degli Elaboratori e delle Reti Lezione 7 Sommatori e Moltiplicatori Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 1/36 Sommario!

Dettagli

Elettronica dei Sistemi Programmabili A.A Microcontrollori. Esercizi

Elettronica dei Sistemi Programmabili A.A Microcontrollori. Esercizi Elettronica dei Sistemi Programmabili A.A. 2013-2014 Microcontrollori Esercizi Registro speciale APSR: flag della ALU Flag della ALU N (b31) : copia di b31 del risultato. '1' se negativo, '0' se posivo

Dettagli

Appunti di informatica. Lezione 3 anno accademico Mario Verdicchio

Appunti di informatica. Lezione 3 anno accademico Mario Verdicchio Appunti di informatica Lezione 3 anno accademico 2015-2016 Mario Verdicchio Numeri binari in memoria In un calcolatore, i numeri binari sono tipicamente memorizzati in sequenze di caselle (note anche come

Dettagli

Circuiti e reti combinatorie. Appendice A (libro italiano) + dispense

Circuiti e reti combinatorie. Appendice A (libro italiano) + dispense Circuiti e reti combinatorie Appendice A (libro italiano) + dispense Linguaggio del calcolatore Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e Anche per esprimere

Dettagli

Firmware Division, UC & Floating pointer adder

Firmware Division, UC & Floating pointer adder Firmware Division, UC & Floating pointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson, 5a Ed.:

Dettagli

Unita aritmetica e logica. Input e output della ALU. Rappresentazione degli interi. Rappresentazione in modulo e segno. Aritmetica del calcolatore

Unita aritmetica e logica. Input e output della ALU. Rappresentazione degli interi. Rappresentazione in modulo e segno. Aritmetica del calcolatore Unita aritmetica e logica Aritmetica del calcolatore Capitolo 9 Esegue le operazioni aritmetiche e logiche Ogni altra componente nel calcolatore serve questa unita Gestisce gli interi Puo gestire anche

Dettagli

Un ripasso di aritmetica: Rappresentazione decimale - limitazioni

Un ripasso di aritmetica: Rappresentazione decimale - limitazioni Un ripasso di aritmetica: Rappresentazione decimale - limitazioni Consideriamo la base dieci: con tre cifre decimali si possono rappresentare i numeri compresi tra 0 e 999, il numero successivo (1000)

Dettagli

Architettura dei Calcolatori Blocchi funzionali logici combinatori

Architettura dei Calcolatori Blocchi funzionali logici combinatori Architettura dei Calcolatori Blocchi funzionali logici combinatori Ing. Gestionale e delle Telecomunicazioni A.A. 2011/12 Gabriele Cecchetti Blocchi Funzionali Combinatori Esiste una ben nota e ormai stabilizzata

Dettagli

Lezione 5. Lezione 5. Aritmetica dei microprocessori. Unità Aritmetico Logica (ALU) Unità aritmetico logica (ALU) Materiale di riferimento.

Lezione 5. Lezione 5. Aritmetica dei microprocessori. Unità Aritmetico Logica (ALU) Unità aritmetico logica (ALU) Materiale di riferimento. Sommario Lezione 5 Unità aritmetico logica (ALU) Realizzazione di un circuito sommatore Realizzazione di una ALU elementare Realizzazione di un registro a scorrimento (shifter) Prima realizzazione di un

Dettagli

Architettura degli elaboratori - 2 -

Architettura degli elaboratori - 2 - Università degli Studi dell Insubria Dipartimento di Scienze Teoriche e Applicate Architettura degli elaboratori Numeri e aritmetica binaria Esercizi Marco Tarini Dipartimento di Scienze Teoriche e Applicate

Dettagli

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati Il Livello LogicoDigitale i Blocchi funzionali combinatori Circuiti integrati Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati

Dettagli

Es. 05. Addizionatori (Half Adder, Full Adder); sommatori a n bit (con e. complemento a due e sottrazione; overflow.

Es. 05. Addizionatori (Half Adder, Full Adder); sommatori a n bit (con e. complemento a due e sottrazione; overflow. Es. 05 Addizionatori (Half Adder, Full Adder); sommatori a n bit (con e senza riporto); conversione in complemento a due e sottrazione; overflow. Es. 1 Si scriva la tabella di verità per un addizionatore

Dettagli

CPU a singolo ciclo. Lezione 18. Sommario. Architettura degli Elaboratori e delle Reti. Proff. A. Borghese, F. Pedersini

CPU a singolo ciclo. Lezione 18. Sommario. Architettura degli Elaboratori e delle Reti. Proff. A. Borghese, F. Pedersini Architettura degli Elaboratori e delle Reti Lezione 8 CPU a singolo ciclo Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 8 /33 Sommario! La

Dettagli

Firmware Division, UC & Floating gpointer adder

Firmware Division, UC & Floating gpointer adder Firmware Division, UC & Floating gpointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it it Università degli Studi di Milano Riferimenti sul Patterson, 5a Ed.:

Dettagli

La codifica dei numeri

La codifica dei numeri La codifica dei numeri La rappresentazione dei numeri con il sistema decimale può essere utilizzata come spunto per definire un metodo di codifica dei numeri all interno degli elaboratori: la sequenza

Dettagli

Moltiplicazione e Divisione tra numeri relativi

Moltiplicazione e Divisione tra numeri relativi Moltiplicazione e Divisione tra numeri relativi Salvatore Orlando & Marta Simeoni Arch. Elab.A M. Simeoni 1 Moltiplicazione tra numeri interi Oltre ai circuiti per realizzare somme e sottrazioni di interi,

Dettagli

Moltiplicazione tra numeri interi. Moltiplicazione e Divisione tra numeri relativi. Moltiplicazione: algoritmo carta e penna (base 2)

Moltiplicazione tra numeri interi. Moltiplicazione e Divisione tra numeri relativi. Moltiplicazione: algoritmo carta e penna (base 2) Arch. Elab.A M. Simeoni 1 Moltiplicazione tra numeri interi Moltiplicazione e Divisione tra numeri relativi Salvatore Orlando & Marta Simeoni Oltre ai circuiti per realizzare somme e sottrazioni di interi,

Dettagli

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica Operazioni logiche

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica Operazioni logiche Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica Operazioni logiche L algebra di oole Rev.1.1 of 2012-04-26 Componenti logiche di un elaboratore Possiamo

Dettagli

Porte logiche. Porte logiche. Corso di Architettura degli Elaboratori. Algebra Booleana

Porte logiche. Porte logiche. Corso di Architettura degli Elaboratori. Algebra Booleana Corso di Architettura degli Elaboratori Il livello logico digitale: Algebra Booleana e Circuiti logici digitali di base Matteo Baldoni Dipartimento di Informatica Università degli Studi di Torino C.so

Dettagli

RETI COMBINATORIE. Algebra booleana: logica binaria (a due stati) A è una variabile booleana: A=1 oppure A=0

RETI COMBINATORIE. Algebra booleana: logica binaria (a due stati) A è una variabile booleana: A=1 oppure A=0 RETI COMBINATORIE. 1 Algebra booleana: logica binaria (a due stati) A è una variabile booleana: A=1 oppure A=0 Funzioni logiche elementari per l algebra Booleana: AND, OR, NOT 2 Logica positiva: livello

Dettagli

LSS : Reti Logiche: circuiti combinatori

LSS : Reti Logiche: circuiti combinatori LSS 2018-19: Reti Logiche: circuiti combinatori Piero Vicini AA 2018-2019 Introduzione Argomenti: Codici e aritmetica Operatori dell algebra booleana Minimizzazione e sintesi di funzioni Esempi di implementazione

Dettagli

Circuti AND, OR, NOT Porte logiche AND

Circuti AND, OR, NOT Porte logiche AND Circuti AND, OR, NOT Porte logiche AND OR NOT A B C Esempio E = ~((AB) + (~BC)) E NAND e NOR NAND (AND con uscita negata): ~(A B) NOR (OR con uscita negata): ~(A+B) Si può dimostrare che le operazioni

Dettagli

Virtual CPU (Eniac): parte 2

Virtual CPU (Eniac): parte 2 Architettura dei Calcolatori Prof. Enrico Nardelli Università degli Studi di Roma Tor Vergata Virtual CPU (Eniac): parte 2 1 Dove eravamo rimasti OpCode 2 La ALU e le sue funzionalità Operazioni possibili:

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base due sarà del tipo: c m c m-1... c 1 c 0 (le c i sono cifre

Dettagli

Il processore: unità di elaborazione

Il processore: unità di elaborazione Il processore: unità di elaborazione Architetture dei Calcolatori (lettere A-I) Progettazione dell unità di elaborazioni dati e prestazioni Le prestazioni di un calcolatore sono determinate da: Numero

Dettagli

Lezione 6. Lezione 6. Moltiplicatori a look-up table. Moltiplicatori a look-up table. Moltiplicatori veloci. Moltiplicatori a look-up table.

Lezione 6. Lezione 6. Moltiplicatori a look-up table. Moltiplicatori a look-up table. Moltiplicatori veloci. Moltiplicatori a look-up table. Sommario Lezione 6 Moltiplicatori veloci a look-up table Moltiplicatori veloci a matrice Circuiti per aritmetica floating point Simone Buso - Microcontrollori e DSP - Lezione 6 1 Lezione 6 Materiale di

Dettagli

Esercitazioni di Reti Logiche. Lezione 4

Esercitazioni di Reti Logiche. Lezione 4 Esercitazioni di Reti Logiche Lezione 4 Progettazione dei circuiti logici combinatori Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Procedura di analisi dei circuiti combinatori. Procedura di sintesi

Dettagli

FUNZIONI BOOLEANE. Vero Falso

FUNZIONI BOOLEANE. Vero Falso FUNZIONI BOOLEANE Le funzioni booleane prendono il nome da Boole, un matematico che introdusse un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono

Dettagli

Reti Logiche Combinatorie

Reti Logiche Combinatorie Reti Logiche Combinatorie Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Logica combinatoria Un blocco di logica

Dettagli

Compito A. Esercizio 1. Esercizio 2

Compito A. Esercizio 1. Esercizio 2 Compito A Esercizio Progettare una rete sequenziale con tre uscite S C ed, ciascuna delle quali comanda l accensione di tre lampadine L L2 ed L3 (ad es. se S= L è accesa). Il ritmo del curcuito è scadenzato

Dettagli

Logica Digitale. Fondamenti di Informatica - Prof. Gregorio Cosentino

Logica Digitale. Fondamenti di Informatica - Prof. Gregorio Cosentino Logica Digitale 1 Ma in fondo quali sono i mattoncini che compongono un calcolatore elettronico? Porte Circuiti Aritmetica Memorie Bus I/O And, Or, Nand, Nor, Not Multiplexer, Codif, Shifter, ALU Sommatori

Dettagli

Ogni CPU è in grado di eseguire un insieme limitato di istruzioni macchina codificate in binario secondo il seguente schema generale.

Ogni CPU è in grado di eseguire un insieme limitato di istruzioni macchina codificate in binario secondo il seguente schema generale. Ogni CPU è in grado di eseguire un insieme limitato di istruzioni macchina codificate in binario secondo il seguente schema generale. Campo Codice Operativo Campo Operandi K bit n-k bit n bit 1 Istruzione

Dettagli

Firmware Division. Sommario

Firmware Division. Sommario Firmware Division Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: 3.4, 3.5 1/33 Sommario Divisione intera 2/33

Dettagli

Macchine dedicate e Macchine programmabili

Macchine dedicate e Macchine programmabili Macchine dedicate e Macchine programmabili Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella prof@quarella.net Obiettivo Progettare circuiti

Dettagli

Architettura degli Elaboratori Lez. 8 CPU MIPS a 1 colpo di clock. Prof. Andrea Sterbini

Architettura degli Elaboratori Lez. 8 CPU MIPS a 1 colpo di clock. Prof. Andrea Sterbini Architettura degli Elaboratori Lez. 8 CPU MIPS a 1 colpo di clock Prof. Andrea Sterbini sterbini@di.uniroma1.it Argomenti Progetto della CPU MIPS a 1 colpo di clock - Istruzioni da implementare - Unità

Dettagli

Esercitazione di Calcolatori Elettronici Prof. Fabio Roli Corso di Laurea in Ingegneria Elettrica ed Elettronica

Esercitazione di Calcolatori Elettronici Prof. Fabio Roli Corso di Laurea in Ingegneria Elettrica ed Elettronica Esercitazione di Calcolatori Elettronici Prof. Fabio Roli Corso di Laurea in Ingegneria Elettrica ed Elettronica Capitolo 6 Unità di Elaborazione Aritmetica di Macchina Progettazione ALU Outline Aritmetica

Dettagli

Firmware Division. Sommario

Firmware Division. Sommario Firmware Division Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: 3.4, 3.5 1/34 Sommario Divisione

Dettagli

Lezione 6. Lezione 6

Lezione 6. Lezione 6 Lezione 6 Sommario Moltiplicatori veloci a look-up table Moltiplicatori veloci a matrice Divisione Circuiti per aritmetica floating point Simone Buso - Microcontrollori e DSP - Lezione 6 1 Materiale di

Dettagli