ARITMETICA ed EQUAZIONI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ARITMETICA ed EQUAZIONI"

Transcript

1 ARITMETICA ed EQUAZIONI 1) Cifre e numeri 755 è un numero composto di tre cifre. Mentre i numeri sono infiniti, le cifre sono solo dieci, sono i 10 simboli ( ) che costituiscono i dieci numeri (con una sola cifra) che vanno da 0 a 9. I numeri più grandi del 9 si scrivono seguendo queste tre regole [ a), b) e c) ]: a) - Dieci unità formano una decina; (10) - Dieci decine formano un centinaio; (100) - Dieci centinaia (mille unità) formano un migliaio;(1.000; in inglese thousand 1,000) - Dieci migliaia formano una decina di migliaia; (10.000; in inglese 10,000) - Dieci decine di migliaia formano un centinaio di migliaia; ( ; in inglese 100,000) - Dieci centinaia di migliaia (mille migliaia) formano un milione; ( ; inglese million 1,000,000) - Dieci milioni formano una decina di milioni; ( ; in inglese 10,000,000) - Dieci decine di milioni formano un centinaio di milioni; ( ; in inglese 100,000,000) - Dieci centinaia di milioni (mille milioni) formano un miliardo ( ; in inglese billion 1,000,000,000) - Dieci miliardi formano una decina di miliardi; ( ; in inglese 10,000,000) - Dieci decine di miliardi formano un centinaio di miliardi; ( ; in inglese 100,000,000) - Dieci centinaia di miliardi (mille miliardi) formano un trilione ( ; in inglese trillion 1,000,000,000,000) b) Il valore attribuito alle cifre che formano il numero dipende dalla loro posizione: la cifra più a destra indica le unità, quella alla sua sinistra le decine, la terza da sinistra le centinaia, poi le migliaia ecc. Riprendiamo il numero 755, formato dalle tre cifre 7, 5 e 5 ; in esso il valore del 5 più a destra è di 5 unità, quello della cifra al centro del numero è di 5 decine (= 50), mentre il 7 vale 7 centinaia (= 700). Facendo la somma dei valori delle tre cifre ( ) si ottiene il valore del numero (755). c) Quando il numero è composto da quattro o più cifre, per facilitarne la lettura lo si scompone in gruppi di tre cifre, da destra a sinistra, separando con uno spazio o un puntino un gruppo dall altro. Così, ad esempio, il numero degli abitanti in Cina ( ) è più facilmente leggibile se viene scritto così ( ) oppure con il puntino separatore delle migliaia: (un miliardo trecentocinquantaseimilioni duecentosessantottomila settecentodue). Attenzione: alcune calcolatrici evidenziano i numeri usando, per separare i gruppi, non il puntino ma la virgola, e questo perché nei paesi anglosassoni le funzioni del punto e della virgola sono invertite rispetto ai nostri usi. Ecco perché, nelle calcolatrici così come nelle tastiere dei P.C., il tasto della virgola è segnalato con un puntino. Ri-attenzione: quando il risultato del calcolo è un numero molto grande, molte calcolatrici lo evidenziano in una forma strana, la cosiddetta notazione scientifica. Con la vostra calcolatrice provate, ad esempio, a moltiplicare per : a meno che sul display appaia error (perché il risultato è costituito da un numero composto da più di 9 cifre e la vostra calcolatrice è troppo piccola ), è probabile che come risultato appaia 3 10 oppure 3E10 o qualcosa di analogo. Il significato è 3 seguito da 10 zeri, cioè (trenta miliardi). 1

2 forma italiana nome italiano forma inglese nome inglese forme scientifiche 1 unità ^0 1E E1 10^ E2 10^ mille 1,000 thousand ^3 1E , E4 10^ , E5 10^ milione 1,000,000 million ^6 1E ,000, E7 10^ ,000, E8 10^ miliardo 1,000,000,000 billion ^9 1E ,000,000, E10 10^ ,000,000, E11 10^ trilione 1,000,000,000,000 trillion ^12 1E12 Fino a ora abbiamo visto numeri interi. Se però dividiamo una unità per un qualsiasi numero (che sia però diverso da 1 e da 0) otteniamo un numero con la virgola ; in particolare: se dividiamo una unità in 10 parti uguali otteniamo 1/10 un decimo 0,1; se dividiamo una unità in 100 parti uguali otteniamo 1/100 un centesimo 0,01; se dividiamo una unità in parti uguali otteniamo 1/1.000 un millesimo 0,001; ecc. Nel caso capitassero numeri compresi fra 0 e 1 e con solo l ultima cifra diversa da zero, per facilitarne la lettura potete ricorrere a questo sistema: per rendersi conto se il numero esprime decimi o centesimi o millesimi ecc. contate gli zeri, compreso quello prima della virgola. Ad esempio: 0, presenta sei zeri, gli stessi di un milione. Il numero quindi è leggibile come 3 milionesimi. Oppure: 0,009 si legge 9 millesimi (essendoci tre zeri come nelle migliaia); oppure ancora: 0,04 (con due zeri come le centinaia) si legge quattro centesimi ecc. Le cifre decimali si scrivono alla destra delle unità intere e sono da queste separate da una virgola. Attenzione: come ho già scritto più sopra, alcune calcolatrici adottano il modo inglese e quindi separano le cifre decimali dalle unità intere con un puntino al posto della virgola. Controlla la tua calcolatrice: scrivi, ad esempio, (quarantamila diviso sette) e guarda se il risultato appare al modo nostro (5.714,28571 ) oppure nella forma anglosassone (5, ). Che sia scritto in un modo o nell altro, il numero 5.714,285 ha come parte intera e come parte decimale 285. Il valore di queste cifre è il seguente: , migliaia centinaia decine unità decimi centesimi millesimi Per leggere il numero si comincia con la parte intera e si fa poi seguire la parte decimale aggiungendo il nome delle unità decimali dell ultima cifra: cinquemilasettecentoquattordici e duecentottantacinque millesimi (o, anche, virgola duecentottantacinque). Ricordati: un numero decimale rimane invariato se a destra dell ultima cifra decimale si aggiungono solo uno o più zeri (12,34 = 12,340 = 12,34000 = 12, ) 2

3 ) 2) La moltiplicazione. Sperando che tutti conosciate, abbiate capito e sappiate fare somme e sottrazioni, prima di parlare della divisione faccio solo un accenno alla moltiplicazione, che è un applicazione particolare della somma; infatti: moltiplicare un numero per un altro significa sommare uno dei due con sé stesso per un numero di volte pari all altro. Ad esempio, moltiplicare 7 4 significa sommare 4 volte il 7 o anche 7 volte il 4: 7 x 4 = oppure anche = 28 3) La divisione. Anche la divisione può essere considerata un applicazione particolare della somma; infatti: dividere un numero per un altro significa trovare quante volte bisogna sommare il secondo numero per se stesso per arrivare al primo. Ad esempio: trovare il risultato di 20 diviso 5 (e, in simboli, si può scrivere sia 20 : 5 che 20 / 5 20 o anche 20 5 o infine significa trovare quante volte occorre sommare 5 per arrivare a 20 5 (e cioè trovare 4). Infatti: = 20 (4 volte 5 = 20). Ecco perché 20 / 5 = 4 Questo spiega, tra l altro, perché il risultato della divisione di un numero per un altro più piccolo di 1 (ma maggiore di 0) è un numero più grande di quello di partenza. Ad esempio: 5 / 0,2 = 25 in quanto per arrivare a 5 devo sommare un sacco di volte (25 volte) il piccolo numero 0,2; e così ancora, se con la calcolatrice provate a fate: 120 / 0,001 troverete come risultato in quanto per arrivare a 120 bisogna sommare volte il numero (piccolissimo) 0,001 (un millesimo). Ecco perché si può anche dire che la divisione è l operazione inversa della moltiplicazione: dividere per un numero è la stessa cosa che moltiplicare per l inverso del numero Ad esempio: 120 0,001 = e ciò perché E così ancora: 8 5 = Ricordatevi: 1 (un 5 1 (0, cioè un millesimo) è l inverso di quinto è l inverso di 5); 60 2 = 60 ½ (un mezzo è l inverso di 2) ecc. io uso indifferentemente tutte queste forme: 30 : / così come per indicare l operazione di moltiplicazione uso indifferentemente e l asterisco * o, in presenza di lettere, anche nessun simbolo (a x b = a*b = ab) 3

4 3) L uso della calcolatrice. 3.1) I calcoli in sequenza. Spero che tutti sappiate fare, con la calcolatrice, questa operazione: (= 990), e anche questa: (= 51). Ancora nessun problema dovreste avere con questo calcolo: 21, (= 1.806), e anche con questo: ,78 5 (= 12 11,375). 30 5,6 Provate ora con questo: ; 12 1,25 è probabile che qualcuno di voi abbia prima moltiplicato 30 5,6 e scritto da qualche parte il risultato (168) e poi abbia fatto 12 1,25 memorizzando anche questo risultato (15), e infine abbia calcolato trovando così il risultato finale corretto (11,2). Chi avesse fatto in questo modo avrebbe sprecato un po di tempo e rischiato inutilmente di commettere qualche errore nello scrivere i risultati parziali del numeratore e del denominatore (rispettivamente 168 e 15). Il modo più efficace di fare i calcoli con la calcolatrice quando sono presenti solo moltiplicazioni e divisioni (e non ci sono, quindi, anche somme o sottrazioni) è fare tutte le operazioni di seguito, senza trascrivere alcun risultato parziale. Il calcolo, cioè, può essere fatto digitando in questa sequenza: 30 5,6 12 1,25 (oppure anche quest altra: 30 1,25 5,6 12 o anche 5,6 12 1,25 30 o qualsiasi altra combinazione che veda il 30 e il 5,6 agire come fattori e il 12 e l 1,25 funzionare da divisori) e il risultato è sempre corretto (11,2); in caso di presenza di sole moltiplicazioni e divisioni l ordine con cui si effettuano le operazioni è ininfluente. Attenzione! Sia il 12 che l 1,25 sono dei divisori (sono al denominatore della frazione), e quindi prima di essi occorre digitare il tasto. Digitando, invece, 30 5,6 12 1,25 si commetterebbe un errore grossolano. In questo modo si moltiplicherebbe per 1,25 anziché dividere per quel numero, arrivando così al risultato sbagliato di 17,5. Il risultato corretto è 11,2 e se a qualcuno è risultato 17,5 (o altro) ha sbagliato. Quando in un calcolo ci sono, oltre a moltiplicazioni e divisioni, anche delle somme o delle sottrazioni, l ordine con cui si fanno le operazioni fa cambiare il risultato. In assenza di parentesi, le moltiplicazioni e le divisioni hanno la precedenza sulle somme e sulle sottrazioni. Ad esempio, in prima si moltiplica 6 5 e poi si fa il resto (+ 10 e 3 o anche prima 3 e dopo + 10) (R. 37); a meno che non abbiate una calcolatrice particolare, digitare i tasti nell ordine in cui i calcoli appaiono porta a un risultato sbagliato (schiacciando i tasti con questo ordine: il visore di una calcolatrice normale segnala un risultato di 77). Nel caso di calcoli come, ad esempio, questo , ,5 in cui, oltre a moltiplicazioni e divisioni, ci sono anche somme o sottrazioni, è inevitabile dover scrivere o memorizzare dei risultati parziali (a meno di avere e di saper usare una calcolatrice sofisticata, ad esempio con le parentesi). 4

5 Nell esempio appena fatto alla fine della pagina precedente, se si ha una calcolatrice normale si deve procedere in questo modo: 4 2,5 + 8 (R parz.1 : 18); ,5 (R parz.2 : 12,5); 18 12,5 = 1,44 Fare, quando è possibile, i calcoli in sequenza (cioè, lo ripeto, senza interrompere la digitazione sulla calcolatrice per scrivere dei risultati parziali) permette spesso di arrivare al risultato finale preciso; se invece si interrompe la digitazione sulla calcolatrice per scrivere uno o più risultati parziali si arriva a un risultato finale non del tutto corretto ogni volta che il risultato parziale è un numero con molte cifre decimali (= molte cifre dopo la virgola). Provate, ad esempio, a fare questo calcolo: Il risultato corretto è 218, ; 0,112 0,012 Se, invece di fare i calcoli in sequenza, avete annotato anche solo un risultato parziale per poi riscriverlo e arrivare al finale, allora avreste potuto arrivare al risultato esatto solo prestando molta attenzione nel ricopiare tutte le cifre decimali. Provate ora a fare questo calcolo: ,13 Il risultato corretto è 2, ; A differenza dell esempio di prima, qui non è possibile (a meno, come già detto, di avere una calcolatrice con le parentesi e di saperla usare) fare tutti i calcoli in sequenza, e quindi è quasi inevitabile utilizzare dei risultati parziali, un po come è inevitabile interrompere i lunghi viaggi procedendo per tappe lungo il percorso. Attenzione! Quando scrivete i risultati parziali dovete ricopiare tutte le loro (eventuali) cifre decimali Se non lo fate rischiate di arrivare a un risultato finale impreciso in misura tale da non poter essere accettato come valido. Provate a fare gli ultimi due esempi limitandovi a riportare solo tre cifre decimali e constaterete (= verificherete, vi accorgerete) quanto ho appena scritto. Queste ultime righe ci portano a parlare del prossimo argomento. 3.2) Gli arrotondamenti. Capita spesso che il risultato di un calcolo sia un numero con molte cifre decimali, non di rado addirittura infinite; ad esempio: 18 7 = 2, E chiaro che in casi come questi è necessario interrompere, presto o tardi, la scrittura delle cifre decimali. Ad esempio, quando si esprimono dei valori monetari ci si limita quasi sempre alla seconda cifra decimale (cioè ci si ferma al centesimo, come 13,75 (euro) o 99,99 $ (dollari) o 4,20 CHF (franchi svizzeri)). Ogni volta che non si scrivono tutte le cifre decimali, però, si commette un errore più o meno grande; nell esempio di prima (18 7 = 2, ), se mi limito a scrivere una sola cifra dopo la virgola (2,5) scrivo un numero che è inferiore di oltre 0,071 (cioè di oltre 71 millesimi) al risultato corretto dell operazione; e se proseguo fino alla seconda cifra (scrivendo 2,57) commetto (= faccio) un errore certamente inferiore (poco più grande di 0,001 cioè di un millesimo) ma continuo comunque a non esprimere il risultato corretto. 5

6 . arrotondare Insomma, spesso è opportuno (o addirittura necessario) togliere una o più cifre finali a un numero, ed è chiaro che in questo modo il numero cambia e quindi è inevitabile commettere un errore. Una volta deciso il numero di cifre decimali da indicare occorre, però, commettere l errore più piccolo, e per fare questo bisogna imparare ad arrotondare (si dice anche ad approssimare ) i numeri nel modo giusto, quello appunto che minimizza (= fa diventare più piccolo possibile) l errore. significa commettere l errore minore. Non ci si può limitare a troncare (a cancellare, a non scrivere) le cifre decimali successive a quelle che si è stabilito di conservare, bisogna anche verificare se l ultima cifra decimale deve o no essere modificata. Rimanendo all esempio di prima (18 7 = 2,57142 ), se si scrive il risultato fermandosi alla prima cifra decimale (si dice anche approssimando alla prima cifra decimale o approssimando al decimo), occorre scrivere 2,6 e non 2,5! Infatti, scrivendo 2,5 si fa un errore maggiore; si indica un valore inferiore a quello corretto di oltre 7 centesimi (2, meno 2,5 = 0, ), mentre se si scrive 2,6 l errore (2,6 meno = 0,02858 ) è di meno di 3 centesimi, cioè meno della metà di prima; scrivendo 2,6 si è perciò ridotto l errore. Quando si arrotonda indicando un valore superiore al reale si dice che si approssima (o si arrotonda) per eccesso, quando invece si arrotonda riportando un numero inferiore a quello preciso, allora si dice che si è scritto un numero approssimato (o arrotondato) per difetto. Quando l approssimazione per eccesso e quella per difetto causano un errore esattamente uguale, allora stabiliamo di arrotondare per eccesso. Così se nel calcolo 2.121, vi dico di approssimare il risultato (1,1465) alla terza cifra decimale, voi dovrete scrivere 1,147 e non 1,146 A meno che non vi siano date indicazioni diverse (= a meno che non vi venga detto di fare diversamente), nei calcoli e nei problemi che farete dovrete scrivere i risultati numerici arrivando almeno fino alla seconda cifra decimale. Quindi, se vi chiedessi di determinare quanto ho pagato al litro il gasolio sapendo che ho speso 77,40 per comprarne 50 litri, (77,40 50 = 1,548 /l): - se vi dico di arrotondare alla seconda cifra decimale voi dovete indicare 1,55 /l (approssimando perciò in eccesso per commettere un errore di + 2 millesimi; se, invece, scriveste 1,54 approssimando per difetto, fareste un errore di 8 millesimi, il quadruplo dell errore precedente, e io vi boccerei); - se vi dico di arrotondare alla prima cifra decimale voi dovete scrivere il risultato 1,5 /l (arrotondando questa volta in difetto per commettere un errore di 48 millesimi che è più piccolo dell errore, di + 52 millesimi che si farebbe arrotondando per eccesso a 1,6); - se vi dico di arrotondare all unità intera dovete scrivere 2 (con un errore di 0,452 e cioè 452 millesimi) e non 1 (perché in questo caso l errore sarebbe di 0,548 o 548 millesimi e quindi maggiore di prima) - se vi dico nulla sulle cifre decimali da tenere, allora voi potete sia scrivere 1,548 /l, senza approssimare il risultato, sia arrotondare alla seconda cifra decimale, e però dovete arrotondare correttamente e scrivere quindi 1,55 e non 1,54. Scrivendo 1,5 questa volta sbagliereste (nonostante l arrotondamento fatto alla prima cifra sia quello giusto) perché la nostra regola è di tenere, quando non ci sono indicazioni diverse, almeno due cifre dopo la virgola. 6

7 . ; 4) Le equazioni di primo grado. 4.1) La proprietà convertitrice del segno = Se leggete = 7 oppure 4 2 = 24 3 non vi stupite e siete anche in grado di comprenderne il senso. Questo perché conoscete, oltre al significato dei simboli delle operazioni e delle cifre, anche il significato del simbolo =. Non tutti, probabilmente, conoscono invece la proprietà convertitrice che il simbolo = ha sulle quattro operazioni. Prendiamo = 7 n queste altre uguaglianze: usando gli stessi numeri possiamo scrivere, tra le tante, anche 3 1 = 7 5 (2 = 2) e verificare così che spostandolo dall altra parte dell =, il sommatore 5 si è trasformato in un sottrattore. Possiamo anche dire che il 5 per scavalcare l = ha dovuto invertire la sua funzione: da + 5 si è trasformato in = 7 3 (4 = 4); qui è il 3 che per trasferirsi dall altra parte ha dovuto invertire la sua funzione, e da + 3 si è trasformato in = (8 = 8); in questa è l 1 che ha voluto farsi un viaggio al di là dell =, ma per farlo ha dovuto trasformarsi da sottrattore in sommatore (da 1 a + 1); 3 = (3 = 3); si sono spostati il + 5 e il 1 trasformandosi in 5 e + 1; 0 = (0 = 0); qui son voluti partire tutti per trasferirsi dall altra parte dell =, e così a sinistra c è rimasto il nulla (lo 0) e a destra dell uguale si sono tutti convertiti (a parte il 7 che non si è spostato). Gli spostamenti possono essere fatti sia da sinistra a destra che da destra a sinistra: la regola del cambio di segno non cambia; se il 7 scavalca l = da destra a sinistra si avrà: = 0 Procediamo allo stesso modo partendo, questa volta, da 4 2 = Tra combinazioni possiamo ad esempio scrivere: le tante 4 = ; il 2 prima era un moltiplicatore e ora, scavalcato l =, è diventato un divisore = 24 ; qui è il 3 che per trasferirsi da sinistra a destra dell = ha dovuto rassegnarsi a convertirsi da divisore a moltiplicatore. 4 3 = 24 2 ; in questo caso il 2 passando da sinistra a destra dell uguale è diventato 2, mentre il 3 che era a destra dell = è diventato, a sinistra, un 3. 2 = ; il 4 prima era un moltiplicatore e ora, scavalcato l =, è diventato un divisore Nota per gli appassionati di matematica: quanto visto in questa pagina è un modo diverso di illustrare quelli che i libri di testo definiscono i principi di equivalenza delle equazioni che, un po semplificati, possono essere così esposti: primo principio di equivalenza: data un'equazione, aggiungendo o togliendo ad entrambi i membri uno stesso numero si ottiene un'equazione equivalente; secondo principio di equivalenza: data un'equazione, moltiplicando ambo i membri per un numero diverso da zero si ottiene un'equazione equivalente. 7

8 4.2) La semplicità e l utilità delle equazioni (di primo grado). Alle medie alcuni di voi hanno già fatto le equazioni di primo grado e altri, invece, non le hanno mai viste. Sia in un caso che nell altro non dovete preoccuparvi: se avete capito il paragrafo di prima (4.1)) siete ormai in grado di risolvere le equazioni. E saper usare le equazioni è estremamente importante (e non solo per poter essere promossi). I problemi semplici si possono risolvere con strumenti matematici semplici e minime dosi di logica. Ad esempio: un uomo di 48 anni ha un figlio di 12; quanti anni aveva il padre quando nacque suo figlio? R isp.: = 36 anni. Man mano che i problemi si fanno più complessi, la loro soluzione richiede dosi più impegnative di logica e strumenti matematici più potenti. Ad esempio: un uomo ha 48 anni e suo figlio 12; tra quanti anni il padre avrà il doppio degli anni del figlio? Questa volta l applicazione degli strumenti matematici più elementari (le quattro operazioni) non permettere di giungere alla soluzione (a meno di andare, stupidamente, a tentativi fino a che si è trovato il valore corretto che verifica le condizioni). Le equazioni sono uno strumento estremamente utile per risolvere i problemi, e l equazione di primo grado (l unica che useremo almeno fino alla terza) ha il duplice pregio (= il doppio merito) di essere uno strumento ancora piuttosto semplice da maneggiare (= da usare) e contemporaneamente di avere già una buona potenza, nel senso che con essa si riescono a risolvere problemi anche non banali. Per padroneggiare lo strumento dell equazione occorrono prima la logica (per impostare l equazione corretta) e poi la tecnica (per risolvere senza errori l equazione). L esercizio (nel senso di allenamento) non saltuario (= regolare, costante) è indispensabile per acquisire naturalezza in entrambi i campi (cioè nell usare la logica e cavarsela con la matematica). Ricordatevi: uscire dal banco e venire alla lavagna per scrivere oggi c è un bel sole vi sembra una prova facilissima, mentre in realtà è straordinariamente complessa: solo per mantenere l equilibrio usi contemporaneamente centinaia di muscoli e devi coordinare in modo perfetto i loro movimenti; la scrittura corretta della frase implica poi l utilizzo di regole grammaticali tutt altro che semplici. Se ora ti sembra facile è perché per anni hai fatto continui esercizi e, soprattutto all inizio, tantissimi errori (hai continuato a cadere almeno fino ai tre anni e ancora a nove scrivevi ogi ce un bel sole ). Ecco perché, anche se all inizio non vi sarà facile, dovete impegnarvi a risolvere i problemi utilizzando lo strumento delle equazioni: col tempo diventerà per voi più semplice fino a risultare naturale come vi sembra semplice e naturale il camminare. E una volta che vi sembrerà naturale usare le equazioni, sarete in grado di cominciare a maneggiare strumenti più complessi e più potenti, che vi permetteranno di risolvere situazioni davanti alle quali la gran parte delle persone si arrende immediatamente. Il processo di crescita mentale e culturale è graduale, esattamente come il miglioramento nelle attività sportive: solo con tanto allenamento si arriva, gradualmente, a giocare bene a pallavolo, e non puoi sperare di riuscire nelle veloci se prima con l esercizio e l abitudine non hai acquisito naturalezza nell esecuzione dei fondamentali più semplici. Per risolvere i problemi usando lo strumento delle equazioni si segue questo percorso: a) prima si battezza con un simbolo (normalmente si usano le lettere X, Y ecc., ma vanno benissimo anche #,, o quello che vi pare) il (o i) dato (i) ignoto (i) che si vuole arrivare a conoscere; b) poi si formalizza in linguaggio matematico il problema, impostando l equazione: si tratta, cioè, tradurre il testo dall italiano al matematichese; c) infine si risolve l equazione applicando la funzione convertitrice del segno = vista nel paragrafo precedente a pagina 7. 8

9 4.3) Soluzione di problemi con le equazioni (di primo grado): primi esempi. Premetto subito di essere ben consapevole che i primi problemi sono talmente semplici da fare apparire stupida l idea di risolverli con le equazioni. Se ve li propongo è per cominciare a familiarizzare con il percorso ( a) b) c) ) descritto alla fine della pagina precedente. Esempio 1: Giada ha speso 1.662,50 per comprare 50 grammi d oro; quale è il prezzo al grammo dell oro che ha comprato? a) Chiamo X (o P o quello che ti pare) il prezzo al grammo dell oro; b) Riscrivo il problema in questi termini: X 50 = 1.662,50 (il prezzo di un grammo d oro ( X ) moltiplicato per 50 è pari a 1.662,50 ) c) Isolo (= lascio da sola) l incognita X portando il suo moltiplicatore 50 dall altra parte (convertendolo così in divisore): X = 1.662,50 50 e calcolo così il prezzo al grammo dell oro (R is. 33,25 ). Esempio 2: Telemaco ha comprato un televisore da 450 e 30 DVD. In tutto ha speso 585,00. Quanto ha pagato ogni DVD? a) Chiamo X (o P o o quello che ti pare) il prezzo di un DVD; b) Traduco il testo del problema in questo modo: X = 585 (il prezzo del televisore (450) più 30 volte il prezzo di un DVD ( X ), in totale fa 585 ); c) Isolo l incognita (questa volta in due passaggi): 30 * X = ; X = (R is. 4,50 ). Adesso qualche problema un po meno semplice da risolvere se non si usano le equazioni. Esempio 3: Anna vuole acquistare un auto che costa Se riuscisse a raddoppiare i risparmi che ha adesso, per comprare l auto dovrebbe comunque trovare altri Quanti risparmi ha ora Anna? a) Chiamo X (o R o o quello che ti pare) l importo dei risparmi che attualmente possiede Anna; b) Traduco in matematichese il testo: 2 * X = (il doppio dei risparmi attuali più sono pari a un totale di ); c) Isolo l incognita: 2 * X = ; X = (R is ). Quando vi è solo un dato da trovare (o, come si dice, quando c è solo una incognita ), allora è sufficiente avere a disposizione una sola equazione che mette in relazione fra loro i dati del problema; è stato il caso dei tre esempi fatti fino a ora. Quando, invece, ci sono due dati da trovare (o, come si dice, ci sono due incognite ), allora è necessario individuare due equazioni, cioè scrivere due uguaglianze che mettono in relazione i dati del problema. Se ho a disposizione una sola equazione con due incognite allora i risultati possibili sono infiniti: se ad esempio sapessimo soltanto che Leporello ha il quadruplo delle figurine del suo amico Masetto, non potremmo mai sapere quante figurine possiedono i due amici: i risultati possibili sono infiniti: Leporello potrebbe avere 4 figurine e Masetto 1, o anche Leporello 8 e Masetto 2 come pure Leporello 400 e Masetto 100 ecc. 9

10 Adesso un esempio di problema con due incognite che è risolvibile solo con l uso delle equazioni. Senza di esse la soluzione può essere trovata solo andando a tentativi e impiegando così un sacco di tempo. Esempio 4: Leporello ha il quadruplo (= quattro volte di più) delle figurine di Masetto, e le figurine che ha Masetto sono 111 in meno di quelle possedute da Leporello. Quante figurine ha Leporello e quante Masetto? a) Chiamo L (o X o o quello che ti pare) il numero di figurine possedute da Leporello, e invece chiamo M (o Y o o quello che ti pare) il numero di figurine in mano a Masetto; b) Traduco il testo in queste due equazioni: la prima è: L = 4 * M (il numero di figurine di Leporello è pari al quadruplo delle figurine di Masetto); e la seconda è: M = L 111 (il numero di figurine di Masetto è pari a quelle di Leporello meno 111). Sostituisco poi una delle due incognite (ad esempio M) di una equazione (ad esempio la prima) con il suo valore indicato nell altra equazione (e quindi, nel nostro caso, nella seconda): L = 4 * (L 111); [ ho cioè messo al posto della M della prima equazione ( L = 4 * M ) il suo valore (L 111) che ho letto nella seconda equazione ( M = L 111 ); in questo modo L = 4 * M è diventato L = 4 * (L 111) ] c) Isolo, nella nuova equazione così trovata, l unica incognita rimasta (L): L = 4* L = 4* L L 3* L = 444 L = (R is. Leporello 148 figurine). d) Sostituisco ora il valore trovato di L (148) in una delle due equazioni iniziali, ad esempio nella seconda: M = (R is. Masetto 37 figurine). [e, infatti, 4 37 = 148]. E ora finiamo gli esempi con il problema proposto all inizio, uno dei tanti che possono essere risolti solo con l uso delle equazioni (a parte il sistema stupido di andare a tentativi finché si arriva al risultato giusto): Esempio 5: un uomo ha oggi 48 anni e suo figlio 12; tra quanti anni il padre avrà il doppio degli anni del figlio? a) Chiamo a (o X o o quello che ti pare) il numero di anni che devono trascorrere da oggi prima che le due età diventino una il doppio dell altra; b) Trasformo il testo del problema in questa equazione: 48 + a = 2 * (12 + a); in questo modo ho imposto che l età che il padre avrà fra a anni (ne avrà 48 + a ) sia il doppio di quella che nello stesso momento avrà il figlio (l età del figlio sarà 12 + a ); c) Isolo l incognita: a = 2 * (12 + a) 48 a = a = 2a a 24 = a (R is fra 24 anni il padre avrà il doppio degli anni di suo figlio). [e, infatti, = 72 mentre = 36; e 72 è il doppio di 36]. Per alleggerire un po l argomento e contemporaneamente rassicurarvi sulla possibilità di comprenderlo, vi propongo la spiegazione che Einstein diede a suo nipote di otto anni del metodo per risolvere le equazioni di 1 grado. Pare che il bimbo, che pure al contrario di suo nonno non era un genio, non abbia in seguito mai avuto difficoltà con le equazioni di primo grado. Io non sono certo Einstein, però voi di anni non ne avete 8 ma quasi il doppio, per cui anche voi se solo vi impegnerete a sufficienza dovete riuscire a risolvere le equazioni di primo grado. 10

11 10,5 Discorso un po diverso è l impostazione delle equazioni necessarie a risolvere i problemi: qui, come già detto, più della tecnica conta la logica; anche la logica, però, la si acquisisce soprattutto con l allenamento, perciò molto dipende dalla vostra volontà. Ecco come Albert Einstein spiegò al nipote di otto anni le equazioni: X non vuole farti sapere chi è, ma è certo che è tuo nemico e tu lo vincerai solo scoprendo la sua identità. Comincia la battaglia tra te e X. Il campo di combattimento è questo:. = 2,5 * X + 6,5. i numeri sono i vostri alleati e il simbolo = rappresenta un fiume: tu sei da una parte con il tuo alleato 10,5 mentre X, il nemico, sta dall altra parte insieme ai suoi alleati 2,5 e 6,5. Per batterlo tu devi isolare X, facendo in modo che chi adesso è con lui lo abbandoni e passi con te, dalla tua parte del fiume. E come ho già detto gli attuali alleati di X sono, dall altra parte del fiume, il moltiplicatore 2,5 e il sommatore 6,5. Per fare in modo che cambino alleanza e vengano dalla tua parte, gli alleati di X devono convertirsi, devono quindi cambiare la loro natura: perciò una volta che passano dalla tua parte (e cioè dall altra parte del fiume = ), 2,5 da moltiplicatore si trasforma in divisore, e il sommatore 6,5 si converte diventando un sottrattore. 10,5 6,5 Ecco allora che la nuova situazione è: = X. 2,5 Ora il nemico è isolato, solo e indifeso. Finalmente puoi, senza sforzo, capire quale identità si cela (= si nasconde) dietro la maschera della X: (10,5 6,5) / 2,5 = 1,6. Seguire le indicazioni di Einstein può servire per risolvere le equazioni, cioè nella parte finale; prima, però, occorre impostare la (o le) equazioni corrette, ed è qui che, come ho già detto, ancor più della tecnica occorre allenare la logica. Qui sotto vi propongo qualche esercizio di allenamento da risolvere, mi raccomando, usando le equazioni. Esercizio 1: ho speso 6,96 per comprare delle mele a 1,45 /kg (= 1,45 al chilo); quanti chili di mele ho comprato? Esercizio 2: Abele e Caino sono due fratelli che hanno vinto al totocalcio Per giocare la schedina Abele ha speso il triplo di Caino, e quindi ora gli spetta una vincita tripla di quella del fratello. Quanti spettano a ognuno?.esercizio 3: Per costruire Pinocchio, Geppetto ha dovuto eliminare, tra legno iniziale, e ora il burattino pesa ricavandolo da un unico pezzo di legno, segatura e schegge, i 2/9 (due noni) del 12,5 kg. Quanto pesava all inizio il pezzo di legno intero? Esercizio 4: Oggi un uomo ha 32 anni e suo figlio 5; tra quanti anni il padre avrà il quadruplo degli anni del figlio? 11

12 Esercizio 5: Un fruttivendolo ha venduto 25 kg di mele a 2,15 /kg (= 2,15 al kg), 12 kg di arance a 1,85 /kg, 40 kg di patate a 0,90 /kg e 11 vasetti di marmellata di pere. In tutto ha ricavato 161,45. A che prezzo ha venduto ciascun vasetto di marmellata? Esercizio 6: Avevi 4,25 di traffico telefonico e allora hai fatto una ricarica telefonica da 25 ; successivamente hai inviato 41 sms dal costo unitario di 0,12 e hai telefonato per 2 ore al costo di 0,11 al minuto. Quale è il tuo residuo traffico telefonico? Esercizio 7: La I B va a una visita didattica (= gita scolastica) di un giorno al museo della tortura di Volterra. Il costo totale (tutto compreso) per i 26 alunni è 818,00. Il costo per il pullman è 350,00, il biglietto per la visita al museo costa 7,50. Quale è il prezzo unitario per il pranzo (a menù fisso) al ristorante? Esercizio 8: Poldo ha acquistato un divano per 660,00, pagando subito 150,00 di acconto. Il resto lo pagherà in 6 rate mensili di uguale importo. Di quanti euro è ogni singola rata? Esercizio 9: Dumbo, cucciolo di elefante, al suo primo compleanno pesa 119 kg, i 4/10 (o il 40%, è la stessa cosa) in più del suo peso alla nascita. Quanto pesava appena nato? Esercizio 10: Rico ha comprato 13 kg di ricotta spendendo complessivamente 87,75. A che prezzo unitario (al chilo) deve rivenderla per guadagnare complessivamente 29,25? Esercizio 11: Rino ha venduto un rinoceronte a uno zoo per ,00 ; in questo modo ha guadagnato i 3/4 (o il 75%, è la stessa cosa) di quanto aveva speso per comprarlo. A quanto, Rino, aveva acquistato il rinoceronte? 12

ARITMETICA e CALCOLATRICE 1) Cifre e numeri

ARITMETICA e CALCOLATRICE 1) Cifre e numeri ARITMETICA e CALCOLATRICE 1) Cifre e numeri 755 è un numero composto di tre cifre. Mentre i numeri sono infiniti, le cifre sono solo dieci, sono i 10 simboli (0 1 2 3 4 5 6 7 8 9) che costituiscono i dieci

Dettagli

Le EQUAZIONI (di primo grado)

Le EQUAZIONI (di primo grado) . ; (8 Le EQUAZIONI (di primo grado) 1) La proprietà convertitrice del segno = (uguale) Se leggete 3 + 5 1 = 7 oppure 4 2 = 24 3 non vi stupite e siete anche in grado di comprenderne il senso. Questo perché

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

EQUAZIONI di primo grado

EQUAZIONI di primo grado . ; EQUAZIONI di primo grado 1) La proprietà convertitrice del segno = (uguale) Se leggete 3 + 5 1 = 7 oppure 4 2 = 24 3 non vi stupite e siete anche in grado di comprenderne il senso. Questo perché conoscete,

Dettagli

Logica matematica e ragionamento numerico

Logica matematica e ragionamento numerico 5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:

Dettagli

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO. I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

L INSIEME Q + Conoscenze. a. Una frazione rappresenta il... della... tra... e... Esempio: 5 : 7 =... c. Si chiama numero... assoluto ogni classe di...

L INSIEME Q + Conoscenze. a. Una frazione rappresenta il... della... tra... e... Esempio: 5 : 7 =... c. Si chiama numero... assoluto ogni classe di... L INSIEME Q + Conoscenze. Completa le seguenti affermazioni a. Una frazione rappresenta il. della tra. e.. Esempio =.. b. L insieme N è.. rispetto all operazione di divisione, perché in esso la.. non è

Dettagli

1 Unità. Le frazioni e i numeri decimali. Giochiamo insieme

1 Unità. Le frazioni e i numeri decimali. Giochiamo insieme GLI ESERCIZI 1 Unità Le frazioni e i numeri decimali 1 Indica, segnando con una crocetta, quali delle seguenti divisioni hanno il quoziente nell insieme N e quali nell insieme Q + : N Q + N Q + 8 : 10

Dettagli

FRAZIO I N O I LE F RAZIO I N O I I SON O O O DIV I IS I IO I N O I I IN I CUI

FRAZIO I N O I LE F RAZIO I N O I I SON O O O DIV I IS I IO I N O I I IN I CUI FRAZIONI LE FRAZIONI SONO DIVISIONI IN CUI IL RISULTATO E UN NUMERO CON LA VIRGOLA CHE VIENE CHIAMATO : RAZIONALE ASSOLUTO E INDICATO CON Q(a) NUMERO RAZIONALE ASSOLUTO 0,75 MA PERCHE 0,75? 0,75 PERCHE

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Prima Edizione Giochi di Achille - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima Media) 18 maggio 2006

Prima Edizione Giochi di Achille - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima Media) 18 maggio 2006 Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 0871 843 (cell.: 340 47 47 9) e-mail:agostino_zappacosta@libero.it Prima Edizione Giochi di Achille - Olimpiadi di Matematica

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

ARITMETICA ed EQUAZIONI

ARITMETICA ed EQUAZIONI ARITMETICA ed EQUAZIONI 1) Cifre e numeri 755 è un numero composto di tre cifre. Mentre i numeri sono infiniti, le cifre sono solo dieci, sono i 10 simboli (0 1 2 3 4 5 6 7 8 9) che costituiscono i dieci

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

I sistemi di numerazione e la numerazione binaria

I sistemi di numerazione e la numerazione binaria Ci sono solamente 10 tipi di persone nel mondo: chi comprende il sistema binario e chi no. Anonimo I sistemi di numerazione e la numerazione binaria 1 Sistema additivo e sistema posizionale Contare per

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

...UN PÒ DI DEFINIZIONI DUE EQUAZIONI SI DICONO EQUIVALENTI QUANDO HANNO LA STESSA SOLUZIONE. IN UN EQUAZIONE: 2x

...UN PÒ DI DEFINIZIONI DUE EQUAZIONI SI DICONO EQUIVALENTI QUANDO HANNO LA STESSA SOLUZIONE. IN UN EQUAZIONE: 2x ...UN PÒ DI DEFINIZIONI IL VALORE ATTRIBUITO ALL INCOGNITA CHE RENDE VERA L UGUAGLIANZA SI CHIAMA SOLUZIONE DUE EQUAZIONI SI DICONO EQUIVALENTI QUANDO HANNO LA STESSA SOLUZIONE. IN UN EQUAZIONE: 2x 3 5

Dettagli

TERMINOLOGIA. Indice della radice. radice. Segno di radice. Radicando

TERMINOLOGIA. Indice della radice. radice. Segno di radice. Radicando RADICI TERMINOLOGIA Indice della radice radice Segno di radice Radicando Estrazione di radice Estrarre la radice quadrata di un numero (radicando) significa trovare quel numero che elevato alla seconda

Dettagli

SISTEMI DI NUMERAZIONE

SISTEMI DI NUMERAZIONE Rev.20/10/2014 Pag.n. 1 Indice SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE SISTEMI POSIZIONALI NUMERAZIONE BINARIA CONVERSIONE BINARIO-DECIMALE (Metodo del polinomio) CONVERSIONE DECIMALE-BINARIO (Metodo

Dettagli

CONOSCENZE 1. i numeri decimali finiti o illimitati

CONOSCENZE 1. i numeri decimali finiti o illimitati ARITMETICA PREREQUISITI l l l conoscere le proprietaá delle quattro operazioni e saper operare con esse conoscere il sistema di numerazione decimale svolgere calcoli con le frazioni CONOSCENZE 1. i numeri

Dettagli

REGOLE PER IL CALCOLO MENTALE VELOCE

REGOLE PER IL CALCOLO MENTALE VELOCE REGOLE PER IL CALCOLO MENTALE VELOCE AGGIUNGERE o TOGLIERE DECINE AGGIUNGERE o TOGLIERE CENTINAIA AGGIUNGERE o TOGLIERE MIGLIAIA Se devo aggiungere una, due, tre. decine ad un numero, aggiungo 1, 2, 3.

Dettagli

per un altro; le più importanti sono quelle di seguito elencate.

per un altro; le più importanti sono quelle di seguito elencate. 2 Abilità di calcolo I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici. Prima di cimentarti con i test proposti,

Dettagli

Numeri interi relativi

Numeri interi relativi Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

Equazioni di Primo grado

Equazioni di Primo grado Equazioni di Primo grado Definizioni Si dice equazione di primo grado un uguaglianza tra due espressioni algebriche verificata solo per un determinato valore della variabile x, detta incognita. Si chiama

Dettagli

Numeri interi relativi

Numeri interi relativi Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

Equazioni di primo grado. Equazione. Es. 2x = 3x - x + 3 metto x = = se risolvo ottengo 5 = 5

Equazioni di primo grado. Equazione. Es. 2x = 3x - x + 3 metto x = = se risolvo ottengo 5 = 5 01 Equazione Equazione: prese due quantità che contengono una lettera x (non conosciuta), queste quantità vengono scritte una a destra ed una a sinistra mettendo un segno = (uguale) tra loro. x + 1 = 3x

Dettagli

Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne subito i principali.

Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne subito i principali. Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF3 / PS-MF3 I Lezione SIMBOLOGIA E INSIEMI NUMERICI Dr. E. Modica erasmo@galois.it SIMBOLI MATEMATICI Poiché in queste pagine verranno

Dettagli

I PROBLEMI E LA LORO SOLUZIONE. Conoscenze

I PROBLEMI E LA LORO SOLUZIONE. Conoscenze I PROBLEMI E LA LORO SOLUZIONE Conoscenze 1. Completa: a. un problema è una qualsiasi situazione in cui si conoscono alcuni elementi, i..., attraverso i quali se ne devono trovare altri, le... o..., b.

Dettagli

Lezione 2. Percentuali. Equazioni lineari

Lezione 2. Percentuali. Equazioni lineari Lezione 2 Percentuali Equazioni lineari Percentuali Si usa la notazione a % per indicare a/100 Esempio: 25%= 25/100=0.25 30% = 30/100=0.30 Inoltre: Applicare la percentuale a % a un numero b è come moltiplicare

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il

Dettagli

matematica è il numero che indica in quante parti è stato diviso l intero è il numero che indica quante sono le parti da considerare

matematica è il numero che indica in quante parti è stato diviso l intero è il numero che indica quante sono le parti da considerare LE FRAZIONI Segna con X la defnizione giusta di frazione. X una frazione indica che ci sono diversi interi da dividere una frazione indica che un intero è stato diviso in parti uguali una frazione indica

Dettagli

1 L estrazione di radice

1 L estrazione di radice 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato

Dettagli

LEZIONE DI MATEMATICA SISTEMI DI NUMERAZIONE. (Prof. Daniele Baldissin)

LEZIONE DI MATEMATICA SISTEMI DI NUMERAZIONE. (Prof. Daniele Baldissin) LEZIONE DI MATEMATICA SISTEMI DI NUMERAZIONE (Prof. Daniele Baldissin) L'uomo usa normalmente il sistema di numerazione decimale, probabilmente perché ha dieci dita. Il sistema decimale è collegato direttamente

Dettagli

ESERCIZI DI MATEMATICA

ESERCIZI DI MATEMATICA DI MATEMATICA PER GLI STUDENTI IN INGRESSO ALLA CLASSE PRIMA Rev. Luglio 2019 Pag. 1 di 18 NUMERI NATURALI L insieme dei numeri naturali si indica con N. TABELLA DEI NUMERI PRIMI DIVISIBILITÀ E MULTIPLI

Dettagli

Le Frazioni. Esempio: il giorno è la settima parte della settimana 1 della settimana l ora è 1 del giorno il minuto è 1 dell ora il secondo è 1 60

Le Frazioni. Esempio: il giorno è la settima parte della settimana 1 della settimana l ora è 1 del giorno il minuto è 1 dell ora il secondo è 1 60 Le Frazioni si dice UNITA FRAZIONARIA il simbolo che rappresenta una delle parti uguali in cui è stata divisa una grandezza che si considera come unità o intero. 1\4 1\4 1\4 1\4 1 4 Esempio: il giorno

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

RISOLVERE EQUAZIONI DI PRIMO GRADO INTERE

RISOLVERE EQUAZIONI DI PRIMO GRADO INTERE Prof. Di Caprio 1 RISOLVERE EQUAZIONI DI PRIMO GRADO INTERE Introduzione In questa lezione impareremo a risolvere equazioni di primo grado intere. Esse sono molto utili principalmente per risolvere alcune

Dettagli

Frazioni e numeri decimali

Frazioni e numeri decimali Frazioni e numeri decimali Sappiamo che uno stesso numero razionale può essere rappresentato sia sotto forma di frazione (in infiniti modi tra loro equivalenti) che sotto forma di numero decimale. Precisiamo

Dettagli

CURRICOLO DI ISTITUTO

CURRICOLO DI ISTITUTO ISTITUTO COMPRENSIVO G.PERLSC Ferrara CURRICOLO DI ISTITUTO NUCLEO TEMTICO Il numero CONOSCENZE BILIT S C U O L P R I M R I classe 1^ L alunno conosce: i numeri naturali, nei loro aspetti cardinali e ordinali,

Dettagli

2/2/2019 Documento senza titolo - Documenti Google

2/2/2019 Documento senza titolo - Documenti Google 2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit 1/4 2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit

Dettagli

Classe ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data

Classe ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data Classe 1-3 - ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data 1. Quale valore deve avere il perché la seguente uguaglianza sia vera? 24,5 : 100 = 2,45 : [ ] B. 1 [ ] C. 0,1 [

Dettagli

Il numero. Gli arabi usano simboli diversi dai nostri: Anche i cinesi usano altri simboli: I romani usavano simboli ancora diversi:

Il numero. Gli arabi usano simboli diversi dai nostri: Anche i cinesi usano altri simboli: I romani usavano simboli ancora diversi: il testo: 01 Il sistema di numerazione decimale Per scrivere i numeri in Italia usiamo un modo (sistema) diverso da altri paesi. Si chiama sistema di numerazione decimale perché usa 10 segni (simboli)

Dettagli

Strumenti Matematici per la Fisica.

Strumenti Matematici per la Fisica. Strumenti Matematici per la Fisica www.fisicaxscuola.altervista.org Strumenti Matematici per la Fisica Approssimazioni Potenze di 10 Notazione scientifica (o esponenziale) Ordine di Grandezza Prefissi:

Dettagli

Le equazioni e i sistemi di primo grado

Le equazioni e i sistemi di primo grado Le equazioni e i sistemi di primo grado prof. Roberto Boggiani Isiss Marco Minghetti 1 settembre 009 Sommario In questo documento verrà trattato in modo semplice e facilmente comprensibile la teoria delle

Dettagli

ESEMPIO. x = Rappresentazione in base 10 dei numeri reali.

ESEMPIO. x = Rappresentazione in base 10 dei numeri reali. Rappresentazione in base 10 dei numeri reali. Rivisitiamo alcune nozioni sulla rappresentazione in base 10 dei numeri reali. Come è noto ogni reale non nullo è la somma di una parte intera appartenente

Dettagli

CONVERSIONE DA DECIMALE A BINARIO

CONVERSIONE DA DECIMALE A BINARIO CONVERSIONE DA DECIMALE A BINARIO Il procedimento per convertire in forma binaria un certo numero decimale n consiste nello scrivere, andando da destra verso sinistra, le cifre oppure seguendo delle determinate

Dettagli

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).

Dettagli

IDENTITÀ ED EQUAZIONI

IDENTITÀ ED EQUAZIONI IDENTITÀ ED EQUAZIONI Una identità è una eguaglianza tra due espressioni letterali che è verificata per qualsiasi valore attribuito alle lettere contenute nell espressione. Ad esempio le seguenti eguaglianze

Dettagli

Le equazioni lineari

Le equazioni lineari Perchè bisogna saper risolvere delle equazioni? Perché le equazioni servono a risolvere dei problemi! Le equazioni lineari Un problema è una proposizione che richiede di determinare i valori di alcune

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

( 5) 2 = = = +1

( 5) 2 = = = +1 1 IDENTITA ED EQUAZIONI Consideriamo la seguente uguaglianza: ( 2x + 3) 2 = 4x 2 +12x + 9 Diamo alcuni valori arbitrari all incognita x e vediamo se l uguaglianza risulta vera. Per x = 1 si avrà: ( 2 1+

Dettagli

LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice

LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice LE RADICI QUADRATE L ESTRAZIONE DI RADICE È L OPERAZIONE INVERSA DELL OPERAZIONE DI ELEVAMENTO A POTENZA INDICE 9=3 RADICE QUADRATA SEGNO DI RADICE RADICANDO 9 è il numero di cui vogliamo calcolare la

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza e quando si calcola non si dice fare la radice, ma si dice estrarre la radice. Le particolarità della radice sono: l esponente

Dettagli

Istituto Superiore "G. Terragni" Olgiate Comasco

Istituto Superiore G. Terragni Olgiate Comasco Istituto Superiore "G. Terragni" Olgiate Comasco Esercizi di allenamento per alunni classi prime liceo scientifico e liceo delle scienze applicate ESTATE 209 Queste poche pagine contengono degli esercizi

Dettagli

COMPETENZE ABILITA CONOSCENZE

COMPETENZE ABILITA CONOSCENZE SCUOLA PRIMARIA PIANI DI STUDIO MATEMATICA ANNO SCOLASTICO 2010/2011 CLASSE PRIMA Utilizzare le tecniche e le procedure del Associare la quantità al numero: simbolo e Aspetto cardinale e ordinale. calcolo

Dettagli

MODULO FORMATIVO: MATEMATICA. Titolo dispensa: Minimo Comune multiplo, calcolo potenze e numeri decimali

MODULO FORMATIVO: MATEMATICA. Titolo dispensa: Minimo Comune multiplo, calcolo potenze e numeri decimali MODULO FORMATIVO: MATEMATICA Titolo dispensa: Minimo Comune multiplo, calcolo potenze e numeri decimali DOCENTE: MICELI GIOVANNI Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è

Dettagli

I sistemi di numerazione. Informatica - Classe 3ª, Modulo 1

I sistemi di numerazione. Informatica - Classe 3ª, Modulo 1 I sistemi di numerazione Informatica - Classe 3ª, Modulo 1 1 La rappresentazione interna delle informazioni ELABORATORE = macchina binaria Informazione esterna Sequenza di bit Spett. Ditta Rossi Via Roma

Dettagli

Architettura degli Elaboratori e Laboratorio. Matteo Manzali Università degli Studi di Ferrara Anno Accademico

Architettura degli Elaboratori e Laboratorio. Matteo Manzali Università degli Studi di Ferrara Anno Accademico Architettura degli Elaboratori e Laboratorio Matteo Manzali Università degli Studi di Ferrara Anno Accademico 2016-2017 Numeri razionali Sono numeri esprimibili come rapporto di due numeri interi. L insieme

Dettagli

CONOSCERE IL LINGUAGGIO DEL COMPUTER

CONOSCERE IL LINGUAGGIO DEL COMPUTER CONOSCERE IL LINGUAGGIO DEL COMPUTER Noi dobbiamo imparare a COMUNICARE con il PC per questo è fondamentale conoscerne il LINGUAGGIO. I linguaggi per comunicare sono molti; c è quello verbale, quello corporeo,

Dettagli

Numeri decimali, rapporti e proporzioni

Numeri decimali, rapporti e proporzioni Numeri decimali, rapporti e proporzioni E. Modica erasmo@galois.it Liceo Scientifico Statale S. Cannizzaro Corso P.O.N. Modelli matematici e realtà A.S. 2010/2011 Da una forma all altra... Dalla frazione

Dettagli

1. (A1) Quali tra le seguenti uguaglianze sono vere? = vera. 2. (A1) Una sola delle seguenti affermazioni è vera. Quale?

1. (A1) Quali tra le seguenti uguaglianze sono vere? = vera. 2. (A1) Una sola delle seguenti affermazioni è vera. Quale? M Commenti generali I test sono divisi in cinque gruppi (A) Aritmetica (A2) Aritmetica 2 (C) Calcolo (O) Ordinamenti (D) Divisioni Osservazione (/2/20): Sono stati sperimentati sugli studenti aggiungendo

Dettagli

SISTEMI DI NUMERAZIONE POSIZIONALI

SISTEMI DI NUMERAZIONE POSIZIONALI SISTEMI DI NUMERAZIONE POSIZIONALI I numeri sono entità matematiche astratte e vanno distinti dalla loro rappresentazione. Definiamo con sistema di numerazione un sistema utilizzato per esprimere i numeri

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

POTENZE POTENZE PARTICOLARI SCALA POTENZE DI 10 PROPRIETA POTENZE NOTAZIONE SCIENTIFICA ORDINE DI GRANDEZZA GENERALE INIZIO INDIETRO AVANTI

POTENZE POTENZE PARTICOLARI SCALA POTENZE DI 10 PROPRIETA POTENZE NOTAZIONE SCIENTIFICA ORDINE DI GRANDEZZA GENERALE INIZIO INDIETRO AVANTI POTENZE POTENZE POTENZE PARTICOLARI SCALA POTENZE DI 10 PROPRIETA POTENZE NOTAZIONE SCIENTIFICA ORDINE DI GRANDEZZA POTENZE LA MOLTIPLICAZIONE PUO ESSERE SCRITTA x x x 16 4 16 E SI LEGGE DUE ALLA QUARTA

Dettagli

Esercitazione del 05/03/ Soluzioni

Esercitazione del 05/03/ Soluzioni Esercitazione del 05/03/2009 - Soluzioni. Conversione binario decimale ( Rappresentazione dell Informazione Conversione in e da un numero binario, slide 0) a. 0 2? 0 2 Base 2 La posizione della cifra all

Dettagli

Ricorda: i termini dell addizione sono detti.. il risultato Proprietà dell addizione: Commutativa: = in generale a + b = b + a

Ricorda: i termini dell addizione sono detti.. il risultato Proprietà dell addizione: Commutativa: = in generale a + b = b + a Le operazioni numeriche Le proprietà delle operazioni. ( teoria 13 24 es. 105 112 ) 1) L addizione ( + ). 342 + === Addenti 3,42+ 879 87,9 === Somma Ricorda: i termini dell addizione sono detti.. il risultato

Dettagli

Def. Un equazione è un uguaglianza tra due espressioni algebriche che contengono una o più incognite dette variabili.

Def. Un equazione è un uguaglianza tra due espressioni algebriche che contengono una o più incognite dette variabili. Def. Un equazione è un uguaglianza tra due espressioni algebriche che contengono una o più incognite dette variabili. Noi ci occuperemo delle equazioni di primo grado a una sola variabile Guarda nell esempio

Dettagli

Esponente 32 = 9 Valore della potenza Base 9 = 3

Esponente 32 = 9 Valore della potenza Base 9 = 3 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice consiste nel chiedersi qual è quel numero x che elevato alla

Dettagli

Numeri e operazioni su di essi

Numeri e operazioni su di essi Numeri e operazioni su di essi Paolo Montanari Appunti di Matematica Numeri 1 Classificazione dei numeri Il primo obiettivo che ci si pone è quello di classificare i numeri, cioè conoscere i differenti

Dettagli

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza LA RADICE QUADRATA I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza L estrazione di radice, l operazione che

Dettagli

Trova il risultato e, se necessario, arrotondalo alla prima cifra decimale. 0,6 0,006 =.. 24 x 0, = ,5 x 18 =.

Trova il risultato e, se necessario, arrotondalo alla prima cifra decimale. 0,6 0,006 =.. 24 x 0, = ,5 x 18 =. - 1 - Metti in ordine crescente i numeri qui sotto (= ordinali dal più piccolo al più grande) 106,2008 2 106,38 106,305 1.000 105,99 105,899 106,31 106,00875 2 1.000 Trova il risultato e, se necessario,

Dettagli

a x + b = 0 (dove a e b sono coefficienti generici dell equazione ed

a x + b = 0 (dove a e b sono coefficienti generici dell equazione ed Traccia:. Metodo Risolutivo di una equazione di Primo Grado del tipo a + b = 0 (dove a e b sono coefficienti generici dell equazione ed è chiamata l incognita dell equazione).. Mostrare tutti i passaggi

Dettagli

Sistemi di numerazione

Sistemi di numerazione Sistemi di numerazione Introduzione Un sistema di numerazione è un sistema utilizzato per esprimere i numeri e possibilmente alcune operazioni che si possono effettuare su di essi. Storicamente i sistemi

Dettagli

I Numeri Razionali. L approssimazione. I numeri scomodi. Presentazione realizzata con Keynote Gaetano Vitale

I Numeri Razionali. L approssimazione. I numeri scomodi. Presentazione realizzata con Keynote Gaetano Vitale I Numeri Razionali L approssimazione I numeri scomodi Presentazione realizzata con Keynote 2008 Gaetano Vitale U.A. - I numeri razionali Lezione - L approssimazione (I numeri scomodi) Obiettivi Saper approssimare

Dettagli

Esercitazione 1 del 10/10/2012

Esercitazione 1 del 10/10/2012 Esercitazione 1 del 10/10/2012 1. Conversione binario decimale a. 1101 2? 10 1 1 2 Base 2 La posizione della cifra all interno del numero è associata al peso della cifra stessa, cioè il moltiplicatore

Dettagli

Come risolvere i quesiti dell INVALSI - terzo

Come risolvere i quesiti dell INVALSI - terzo Come risolvere i quesiti dell INVALSI - terzo Soluzione: Dobbiamo ricordare le precedenze. Prima le potenze, poi le parentesi tonde, quadre e graffe, seguono moltiplicazioni e divisioni nell ordine di

Dettagli

5 + 8 = 13 5,2 + 8,4 = 13,6

5 + 8 = 13 5,2 + 8,4 = 13,6 concetto di addizione i termini dell addizione sono gli addendi il risultato è la somma addendo addendo 5 + 8 = 13 somma 5,2 + 8,4 = 13,6 proprietà commutativa se cambio l ordine degli addendi il risultato

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

EQUAZIONI DI II GRADO

EQUAZIONI DI II GRADO RICHIAMI SULLE EQUAZIONI DI PRIMO E SECONDO GRADO PROF.SSA ROSSELLA PISCOPO Indice 1 EQUAZIONI DI I GRADO --------------------------------------------------------------------------------------------------

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

ANALISI CHIMICO FARMACEUTICA I

ANALISI CHIMICO FARMACEUTICA I Prof. Gianluca Sbardella : 089 969770 : gsbardella@unisa.it L INCERTEZZA E LE CIFRE SIGNIFICATIVE Tutte le misure sono affette da un certo grado di incertezza la cui entità può dipendere sia dall operatore

Dettagli

Sistemi di numerazione

Sistemi di numerazione Sistemi di numerazione Sistema di numerazione decimale Sapete già che il problema fondamentale della numerazione consiste nel rappresentare con un limitato numero di segni particolari, detti cifre, tutti

Dettagli

Il numero 1 Verifiche

Il numero 1 Verifiche Il numero Verifiche Il numero Unità Verifica A No. I numeri naturali sono infiniti e illimitati. 0.. 0; ; ; ; ; ; ; ; ;. Dieci. Decimale. Il valore di una cifra dipende dalla posizione che occupa. a) unità

Dettagli

Esperto: Marco Tarantino

Esperto: Marco Tarantino ` ` ` ` MULTIPLI UNITA DI MISURA SOTTOMULTIPLI M h k da k u k h da u d c m km hm dam m dm cm mm hl dal l dl cl ml Mg hk Kg da Kg Kg hg dag g dg cg mg ESEMPIO ESEMPIO Sarebbe meglio chiamarli "tecniche"

Dettagli

Minimo Comune multiplo

Minimo Comune multiplo Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è il più piccolo numero che sia divisibile per tutti i numeri dati. Che significa? Se io ho tre numeri, il mcm è, tra i tanti possibili

Dettagli

Rappresentazione di numeri interi

Rappresentazione di numeri interi Corso di Calcolatori Elettronici I Esercizi Rappresentazione di numeri interi ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Interi senza segno Qual è l intervallo di rappresentazione

Dettagli

La codifica delle informazioni numeriche ed alfanumeriche.

La codifica delle informazioni numeriche ed alfanumeriche. Prof.ssa Bianca Petretti La codifica delle informazioni numeriche ed alfanumeriche. Appunti del docente RAPPRESENTAZIONE INFORMAZIONI ALFANUMERICHE codifica ASCII (7 bit): 128 caratteri (da 000 a 127);

Dettagli

Scheda 1. Esercizio 1: il maestro ha chiesto di scrivere centoquattro in cifre e Pierino ha scritto: 1004 Quale errore ha commesso?

Scheda 1. Esercizio 1: il maestro ha chiesto di scrivere centoquattro in cifre e Pierino ha scritto: 1004 Quale errore ha commesso? Scheda 1 Esercizio 1: il maestro ha chiesto di scrivere centoquattro in cifre e Pierino ha scritto: 1004 Quale errore ha commesso? Esercizio 2: scrivi tutti i numeri interi che puoi formare usando le tre

Dettagli

L insieme dei numeri razionali Q Prof. Walter Pugliese

L insieme dei numeri razionali Q Prof. Walter Pugliese L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà

Dettagli

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle

Dettagli

Numeri frazionari. sistema posizionale. due modi: virgola fissa virgola mobile. posizionale, decimale

Numeri frazionari. sistema posizionale. due modi: virgola fissa virgola mobile. posizionale, decimale Numeri frazionari sistema posizionale due modi: virgola fissa virgola mobile posizionale, decimale 0,341=tre decimi più quattro centesimi più un millesimo cifre dopo la virgola: decimi centesimi millesimi

Dettagli

NUMERI. Nome e cognome:

NUMERI. Nome e cognome: NUMERI Nome e cognome: Data: 1. Spiega cosa è per te: a] un numero naturale Dopo il confronto nel gruppo Finale b] un numero intero c] un numero razionale d] un numero irrazionale e] un numero reale Per

Dettagli

CALCOLO NUMERICO. Rappresentazione virgola mobile (Floating Point)

CALCOLO NUMERICO. Rappresentazione virgola mobile (Floating Point) ASA Marzo Docente Salvatore Mosaico Introduzione al Calcolo Numerico (parte ) CALCOLO NUMERICO Obiettivo del calcolo numerico è quello di fornire algoritmi numerici che, con un numero finito di operazioni

Dettagli