Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3)"

Transcript

1 Docente: Marco Gaviano Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. -4 lez.)

2 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Problema generale della programmazione lineare (PL) Il problema più generale della programmazione lineare consiste nella ricerca dell'ottimo (minimo o massimo) di una funzione lineare di variabili soggette a vincoli lineari (equazioni o disequazioni) chiamate vincoli. La funzione da ottimizzare si chiama funzione obbiettivo.

3 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Un problema di LP ha dunque la seguente formulazione Problema PL (forma canonica) N M M i d a M i d a a soggetta c z minimizza (massimizza) n i i n i i n

4 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. In cui si è usata la notazione M={...m}: insieme degli indici dei vincoli; N={...n}: insieme degli indici delle variabili; M sottoinsieme di M; N sottoinsieme di N; A= (a i ) im N: matrice m n di numeri reali; a : la -ma colonna di A; a i : l'i-ma riga di A [ n ] T vettore colonna con n componenti; c[ n ] vettore riga con n componenti; d[ m ] T vettore colonna con m componenti; 4

5 5 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. M M i d a M i d a a soggetta c z minimizza (massimizza) i i i i In forma compatta il problema si scrive Problema PL (forma canonica)

6 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Nel risolvere un problema di PL si considera in generale la formulazione standard. Questa la si ottiene sfruttando le seguenti proprietà minimo di f() = - massimo di -f() Ciò permette di considerare solo problemi di minimo. Inoltre le disequazioni possono supporsi tutte dello stesso tipo (). Infatti se ciò non si verificasse è sufficiente moltiplicare per - le disequazioni col segno (). 6

7 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Le diseguaglianze a i d i e a i d i possono essere sostituite dalle relazioni a a i i s i s i d d i i s i s i s Le variabili i sono chiamate variabili di scarto (slack variable). Ovviamente esse non devono influenzare la funzione da ottimizzare. Pertanto ad esse si assegna nella z=c un coefficiente nullo. 7

8 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Problema PL(forma standard) minimizza z c A d (Si farà riferimento a questa formulazione) 8

9 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Definizioni programma (o soluzione ammissibile feasible solution): una n-pla di valori che soddisfa tutti i vincoli compresi quelli di non-negatività. soluzione non ammissibile: una n-pla di valori che soddisfa tutti i vincoli eccetto quelli di non negatività. programma ottimale: un programma finito (tutte le variabili sono finite) che minimizza la funzione obiettivo z. 9

10 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. base B: ogni insieme di m vettori colonna a linearmente indipendenti. variabili di base: m variabili associate con le colonne di una base B costituiscono un sottovettore B di. variabili secondarie: sottovettore R complementare a B su ([ B R ] riordinando le variabili). Il sistema di equazioni A = d è supposto composto di equazioni linearmente indipendenti (m<n rango di A uguale ad m) ed avente più di una soluzione.

11 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. La matrice A può considerarsi formata da matrici B ed R con R le colonne di A non contenute in B (A [ BR] riordinando le variabili). Il sistema dei vincoli A=d può scriversi come [ B R] [ B R ] T =d. Se B è una base e le n-m variabili secondarie (relative a R) sono poste uguali a zero si ottiene un sistema di m equazioni in m incognite B B = d

12 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. che possiede una unica soluzione B = B - d. Il vettore [ B R ] con B = B - d e R = è chiamato soluzione di base associata a B. Una soluzione di è chiamata soluzione degenere se qualche sua componente è nulla.

13 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Esempio: considera il problema PL ma z equivalente a min z' S 4 S 4

14 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Le soluzioni di base sono riportate nella seguente tabella 4 z() feasible feasible -5 infeasible 4-4 infeasible 5 8 feasible optimal 4

15 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Il teorema fondamentale della PL Dato un problema PL in forma standard (i) se esiste almeno un programma finito esso ha almeno un programma di base; (ii) se esso ha almeno un programma ottimale finito esso ha almeno un programma ottimale di base. Dim.(vedi appendice) 5

16 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Grazie a questo teorema il problema PL è risolto da un punto di vista teorico il numero di basi e corrispondentemente il numero di programmi di base è finito ed è dato da n! m!( n m)! Le valutazioni di z nei programmi di base sono sufficienti ad individuare il programma di base ottimale 6

17 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Ciò comunque porta ad una notevole mole di calcoli anche per problemi di dimensione modesta. Per un problema di dieci equazioni in venti incognite il calcolo di tutte le soluzioni di base richiede la soluzione di circa. sistemi di dieci equazioni in dieci incognite. Tale numero cresce molto rapidamente con la dimensione del problema di PL. Per evitare tale mole di calcoli si sono create nuove tecniche. 7

18 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Esempio Interpretazione geometrica ma z La figura illustra l'insieme dei punti che soddisfano i vincoli. 8

19 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Esempio 9

20 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Il problema può scriversi in forma standard come segue La soluzione ottimale di base finita e nondegenere è ma z = 8 con = = = 4 4 = 5 = z min z ma

21 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Esempio Interpretazione geometrica ma z In questo caso si ha ridondanza La figura illustra l'insieme dei punti che soddisfano i vincoli

22 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Esempio

23 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Il problema può scriversi in forma standard come segue La soluzione ottimale di base finita e degenere (rispetto al problema standard) è ma z = 8 con = = = 4 = 5 = z min z ma

24 4 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Interpretazione geometrica Esempio La figura illustra l'insieme dei punti che soddisfano i vincoli z ma

25 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Esempio 5

26 6 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Il problema può scriversi in forma standard come segue Qui si hanno due soluzioni ottimali di base ) ma z = = = = 4 4 = 5 =. ) ma z = =/ =7/ 4 = 4/ = 5 =. Entrambe le soluzioni sono nondegeneri. min z ma z

27 7 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Interpretazione geometrica Esempio 4 La figura illustra l'insieme dei punti che soddisfano i vincoli ma z

28 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Esempio 4 8

29 9 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Il problema può scriversi in forma standard come segue Il problema non ammette soluzioni ottimali finite. z min 4 4 z ma

30 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Interpretazione geometrica Esempio 5 La figura illustra l'insieme dei punti che soddisfano i vincoli ma z

31 Esempio 5 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. - + >= X + <= >= X Il problema non ha alcuna soluzione ammissibile.

32 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n. Il problema può scriversi in forma standard come segue Il problema non ha alcuna soluzioni z min ma z

33 Docente: Marco Gaviano Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. -4 lez.4)

34 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Il metodo del simplesso Il metodo del simplesso proposto da G.B. Dantzig nel 95 per la risoluzione di un problema di PL è una procedura iterativa che genera una successione di programmi di base in cui la funzione obbiettivo decresce. 4

35 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 I principi del metodo del simplesso Si consideri un problema PL in forma standard minimizza z in cui A = [a a... a n ] è una matrice mn m<n. Si supponga che B sia una base del sistema e che l'equazione A=d possa essere riscritta come segue A d c 5

36 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 oppure B B +R R =d da cui si ottiene il sistema esplicito in termini di variabili di base B = B - d B - R R. ovvero 4. B = B - d Y R con Y B [B R] R B - R = Y = [y y...y n-m ] = (y i ). d 6

37 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Nel seguito mediante N B e N R = N-N B si indicheranno i sottoinsiemi di N corrispondenti agli indici delle variabili di base e secondarie rispettivamente. La corrispondente decomposizione della funzione obiettivo è B B R B B R R 4. z c [c c ] c c R Oppure 4. z = c B B - d -(c B Y -c R ) R. 7

38 8 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Per una soluzione di base relativa a B R = 4. e la 4. e 4. possono essere riscritte come o in modo equivalente 4.4 R R B R B B c Y c z z Y ) ( d B c z d B B B ) ( N N B N B B c y c z z y R R R

39 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Indicando 4.5 z B c y N R Si ha 4.6 z z ( z c ) N R 9

40 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Il problema iniziale viene scritto in funzione di una soluzione di base nota min z A d c min z B B z N N R R (z y c ) 4

41 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Teorema Dato un programma ammissibile di base associato a una base B se 4.7 z k -c k > e y k per qualche kn R non esiste alcun programma ottimale. Dimostrazione. Da 4.4 e 4.6 segue che se k allora z -. 4

42 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Teorema Dato un programma di base ammissibile associato ad una base B se 4.8 per kn R z k -c k > e y sk > per almeno un sn B allora un nuovo programma di base ammissibile può essere ottenuto dando a z un nuovo valore z ' z. 4

43 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Dimostrazione Se si dà ad una variabile secondaria k il valore 4.9 k y h hk min ysk y s sk s N B k e si tengono uguali a zero le altre variabili secondarie allora i nuovi valori delle variabili di base dedotti da 4.4 diventano 4. B s s yskk s N k N R 4

44 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 in cui per la 4.9 si ha h Le variabili {s} sh e k formano una nuova soluzione di base ammissibile per la quale dalla 4.6 si ha z k z (z c ) z k k 44

45 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Dato un programma di base ammissibile ed una variabile secondaria k tale che z k -c k > e y sk > per almeno un sn il teorema fornisce il seguente Criterio di uscita h variabile principale che diventa secondaria tale che y h hk min ysk y s sk s N B 45

46 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Teorema Dato un programma di base ammissibile associato con un base B una condizione necessaria e sufficiente perché esso sia ottimale è che z -c per ogni N R. La dimostrazione segue da

47 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Corollario Una condizione necessaria e sufficiente affinché un programma di base ottimale sia unico è che z -c < per ogni N R. Conseguenza Dato un programma di base B e calcolati gli elementi di Y e i valori di z -c i teoremi e permettono di stabilire: 47

48 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 se è necessario calcolare un nuovo programma di base; se è necessario fermare il calcolo o perché un programma ottimale è stato trovato o perché non esiste alcun programma ottimale finito. Il calcolo di una nuovo programma di base è soltanto il passaggio da una vecchia base B ad una nuova base B' imponendo che una variabile secondaria entri nella base e nello stesso tempo una variabile di base venga eliminata dalla base. 48

49 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Cambio della base k sia la variabile che entra nella base e h determinata dal criterio di uscita h s B s N y y hk min ysk sk sia la variabile che lascia la base. Allora 4.9 e 4. danno le formule di trasformazione h ' B 4. k S S ysk k s N k h y hk. 49

50 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Il nuovo valore della funzione obiettivo z è dato da 4. z z ( z c ) k k k La nuova base B' differisce da B per la sostituzione della colonna a h con a k. Il passaggio da B - a (B') - può essere ottenuto mediante una trasformazione lineare(vedi Appendice). Se p è l'indice di colonna di a h in B 4. (B') - = J p B - dove J p [e e...e p- v p e p...e m ] con 5

51 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 posizione i-ma e i [...] T vettore colonna 4.4 v p [ y y k pk - y y k pk... y pk y pk y pk - y pk y pk... y y mk pk ] Invece di usare le formule di trasformazione 4. si può calcolare il nuovo programma con l'aiuto di (B') - 45 B (B ) d 5

52 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Esempio Si abbia il problema PL min 6 z Ponendo e 4 uguali a zero una soluzione di base ammissibile è data da = = =8 4 = 5 =4. Si ha

53 5 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Si ha Calcoliamo B B ] [ R B Y 4 y y

54 54 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 e 4 può entrare nella base allora per il criterio di uscita esce.. h p er 4 min y s4 y s4 s 5) (s 4 min y c y c c z c y c c z B B

55 55 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Essendo l'indice di colonna di a in B uguale a si calcola successivamente / 7/ / J 7 v / 7 / / / 7/ / (B ) / 7 / / d (B ) ˆ B

56 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Selezione della variabile che entra nella base Quando la base viene cambiata la relazione z -c > è generalmente soddisfatta da un sottoinsieme di N R. Quindi è utile scegliere k in modo tale da massimizzare il decremento della z. Poichè questo è uguale a h z ˆ z z ( zk ck ) y si può scegliere k in modo che (criterio di entrata) hk 4.6 z k c k ma N R (z c ). 56

57 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Questa scelta di k non produce la massima variazione della funzione obiettivo z però fornisce un criterio di entrata semplice che funziona bene nelle applicazioni. 57

58 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Convergenza dell algoritmo del Simplesso Il metodo del simplesso garantisce il passaggio da una soluzione di base ad una nuova soluzione di base ' con z ' z (ved. teorema ). Vale il segno < nel caso di soluzioni di base non degeneri ( B > ). Altrimenti potrebbe valere l uguaglianza. Cioè la funzione obbiettivo non è decrementata. Nel primo caso siamo sicuri della convergenza al minimo poiché il numero delle soluzioni di base è finito. Nel secondo caso può avvenire che una variabile di base esca dalla base e poi vi rientri in una iterazione successiva lasciando invariato il valore di z. 58

59 Matematica Computazionale Ottimizzazione a.a. -4 Lezione n.4 Si parla allora di ciclo infinito. Si possono costruire esempi per cui tale situazione si verifica Sono state proposte varie tecniche che evitano questo fenomeno; per esempio il metodo leicografico del simplesso. In pratica su problemi reali anche in presenza di soluzioni di base degenere fatto abbastanza comune il ciclo infinito non si è mai verificato. Pertanto nelle implementazioni del simplesso non si introducono le nuove procedure che renderebbero l algoritmo meno efficiente. 59

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 5-6 lez.) Matematica Computazionale

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.5)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.5) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 0- lez.5) Matematica Computazionale

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 05-6, lez.9) Matematica Computazionale,

Dettagli

Matematica Computazionale(6cfu) Matematica Computazionale, Ottimizzazione(8cfu) (a.a , lez.6)

Matematica Computazionale(6cfu) Matematica Computazionale, Ottimizzazione(8cfu) (a.a , lez.6) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Matematica Computazionale, Ottimizzazione(8cfu) (a.a. 205-6,

Dettagli

SI RICORDA CHE LE LEZIONI DI MERCOLEDÌ 5 E 12 APRILE SI TERRANNO IN AULA D3 DALLE 9 ALLE 11

SI RICORDA CHE LE LEZIONI DI MERCOLEDÌ 5 E 12 APRILE SI TERRANNO IN AULA D3 DALLE 9 ALLE 11 SI RICORDA CHE LE LEZIONI DI MERCOLEDÌ 5 E 12 APRILE SI TERRANNO IN AULA D3 DALLE 9 ALLE 11 MARTEDÌ 11 APRILE LA LEZIONE SI TERRÀ IN AULA SEMINARI PIANO C 1di 26 LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE

Dettagli

LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO. 1di 18

LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO. 1di 18 LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO 1di 18 Metodo del Simplesso Il metodo del simplesso dovuto a Dantzing ed a Kantorovich è un algoritmo il cui nome deriva

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

5.4.5 Struttura dell algoritmo ed esempi

5.4.5 Struttura dell algoritmo ed esempi CAPITOLO 5. IL METODO DEL SIMPLESSO 6 5.4.5 Struttura dell algoritmo ed esempi Come abbiamo già ampiamente osservato, la fase II del metodo del simplesso, a partire da una soluzione di base ammissibile,

Dettagli

Il metodo del simplesso

Il metodo del simplesso Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza

Dettagli

Programmazione lineare: basi e soluzioni di base

Programmazione lineare: basi e soluzioni di base Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x 0 PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0.

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0. 5 IL METODO DEL SIMPLESSO 6.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Programmazione Lineare: problema del trasporto Ing. Valerio Lacagnina

Programmazione Lineare: problema del trasporto Ing. Valerio Lacagnina Problemi di trasporto Consideriamo un problema di programmazione lineare con una struttura matematica particolare. Si può utilizzare, per risolverlo, il metodo del simplesso ma è possibile realizzare una

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

Algoritmi per la programmazione lineare: il metodo del simplesso

Algoritmi per la programmazione lineare: il metodo del simplesso Algoritmi per la programmazione lineare: il metodo del simplesso Dipartimento di Informatica, Universita' di Pisa A.A. 2018/2019 Contenuti della lezione Problemi di programmazione lineare, forma standard

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.7)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.7) Docente: Marco Gaviano (e-mail:gaviano@nica.it) Corso di Larea in Infomatica Corso di Larea in Matematica Matematica Comptazionale(6cf) Ottimizzazione(8cf) (a.a. -4, lez.7) Matematica Comptazionale, Ottimizzazione,

Dettagli

Corso di Laurea in Informatica, Corso di Laurea in Matematica Matematica computazionale (6 cfu), Ottimizzazione (8 cfu) a.a.

Corso di Laurea in Informatica, Corso di Laurea in Matematica Matematica computazionale (6 cfu), Ottimizzazione (8 cfu) a.a. Corso di Laurea in Informatica, Corso di Laurea in Matematica Matematica computazionale (6 cfu), Ottimizzazione (8 cfu) a.a.0-4 Programmazione lineare Domande di ripasso Definizioni e risultati teorici.

Dettagli

PROGRAMMAZIONE LINEARE E DUALITA'

PROGRAMMAZIONE LINEARE E DUALITA' PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

LEZIONE N. 6 - PARTE 1 - Introduzione

LEZIONE N. 6 - PARTE 1 - Introduzione LEZIONE N. 6 PROGRAMMAZIONE LINEARE IN MARKAL, SOLUZIONE DEI PROBLEMI DI PROGRAMMAZIONE LINEARE CON: IL METODO GRAFICO ED IL METODO DEL SIMPLESSO. PROPRIETÀ DELLA DUALITÀ ED ESEMPI DI SOLUZIONE DEL PROBLEMA

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Esercizi di Programmazione Lineare - Dualità

Esercizi di Programmazione Lineare - Dualità Esercizi di Programmazione Lineare - Dualità Esercizio n1 Dato il seguente problema 3 + 3 2 2 + a scriverne il duale; b risolvere il duale (anche geometricamente indicando cosa da esso si può dedurre sul

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 8-9 Soluzioni di alcuni esercizi Esercizi - I 3. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

2. ALGORITMO DEL SIMPLESSO

2. ALGORITMO DEL SIMPLESSO . ALGORITMO DEL SIMPLESSO R. Tadei Una piccola introduzione R. Tadei SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione

Dettagli

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab Ricerca Operativa Programmazione Lineare Università Mediterranea di Reggio Calabria Decisions Lab Ottimizzazione In un problema di ottimizzazione si cerca di massimizzare o minimizzare una quantità specifica,

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Note sull algoritmo di Gauss

Note sull algoritmo di Gauss Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n

Dettagli

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI 3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:

Dettagli

Algoritmo del simplesso

Algoritmo del simplesso Algoritmo del simplesso Ipotesi : si parte da una S.A.B. e dal tableau A=b in forma canonica. Si aggiunge una riga costituita dagli r j, j =,., n e da -z (valore, cambiato di segno, della f.o. nella s.a.b.)

Dettagli

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I VETTRORI E MATRICI (RICHIAMI) Ad ogni matrice quadrata a coefficienti reali è possibile associare un numero reale, detto determinante, calcolato

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe.

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe. Matrici triangolari [Abate, 32] Definizione Una matrice A = a ij ) R m,n si dice triangolare superiore se a ij = 0 per ogni i > j; triangolare inferiore se a ij = 0 per ogni i < j Lezioni 05 e 06 Una matrice

Dettagli

LA GRAN PARTE DI QUESTI ELEMENTI DOVREBBE ESSERE GIÀ NOTA

LA GRAN PARTE DI QUESTI ELEMENTI DOVREBBE ESSERE GIÀ NOTA I PRESUPPOSTI DELL ALGORITMO DEL SIMPLESSO CONSISTONO IN UN INSIEME DI ELEMENTI TEORICI LEGATI ALLO STUDIO DEGLI INSIEMI CONVESSI ED UN ALTRO INSIEME DI ELEMENTI TEORICI LEGATI ALLO STUDIO DEI SISTEMI

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 =

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 = Università degli Studi di Roma Tor Vergata. Corso di Laurea in Matematica Esame di Geometria 1 con Elementi di Storia Prof. F. Tovena 30 gennaio 2015 Le risposte vanno giustificate con chiarezza. 1 Nello

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

Lezione del 24 novembre. Sistemi lineari

Lezione del 24 novembre. Sistemi lineari Lezione del 24 novembre Sistemi lineari 1 Nelle lezioni scorse abbiamo considerato sistemi di equazioni lineari dei seguenti tipi: un equazione in un incognita; una, due o tre equazioni in due incognite;

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.1)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.1) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 2013-14, lez.1) 1 Matematica Computazionale,

Dettagli

Sistemi Lineari. Elisabetta Colombo. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico

Sistemi Lineari. Elisabetta Colombo. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 200-20 2 a di o.0 4 Capelli Rango o Caratterisca : definizioni a di o.0 Un equazione nelle n incognite x,..., x n della forma dove

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA DISEQUAZIONI E SISTEMI Dr. Erasmo Modica erasmo@galois.it SISTEMI DI EQUAZIONI DI PRIMO GRADO Definizione: Si definisce

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

TEORIA della DUALITÀ. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Teoria della Dualità / 1.

TEORIA della DUALITÀ. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Teoria della Dualità / 1. Prof. R. adei EORIA della DUALIÀ Una piccola introduzione R. adei 1 R. adei 2 EORIA DELLA DUALIA' Il concetto di dualità fu introdotto nel 1947 da Von Neumann, anche se il teorema della dualità fu formulato

Dettagli

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari 1. Sistemi di equazioni lineari 1.1 Considerazioni preliminari I sistemi lineari sono sistemi di equazioni di primo grado in più incognite. Molti problemi di matematica e fisica portano alla soluzione

Dettagli

Corso di Matematica Applicata A.A

Corso di Matematica Applicata A.A Corso di Matematica Applicata A.A. 2012-2013 Programmazione lineare (II parte) Prof.ssa Bice Cavallo Soluzione di un problema PL Soluzione ottima Variabili slack e surplus A R mxn Ax b s R m, s i 0 : Ax

Dettagli

Si considera, come al solito, un problema di programmazione lineare in forma standard:

Si considera, come al solito, un problema di programmazione lineare in forma standard: LA FASE I DEL METODO DEL SIMPLESSO 149 6.5 LA FASE I DEL METODO DEL SIMPLESSO Comegiàdetto, il primoobiettivo dellafase Idel metododelsimplessoèquellodi verificare l ammissibilità del problema da risolvere.

Dettagli

Ricerca Operativa. G. Liuzzi. Giovedí 19 Marzo Tableau del Simplesso Esempio Fase I del Simplesso Esempio

Ricerca Operativa. G. Liuzzi. Giovedí 19 Marzo Tableau del Simplesso Esempio Fase I del Simplesso Esempio 1 Giovedí 19 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Tableau o Dizionario Qualche richiamo sulla generica iterazione della Fase II: B base ammissibile corrente x SBA corrente:

Dettagli

Esempi di Problemi di Programmazione Lineare

Esempi di Problemi di Programmazione Lineare Esempi di Problemi di Programmazione Lineare Esempio 1: Soluzione con l algoritmo del simplesso dell esempio in forma standard ma = 2 + 0 1 2 + + = 5 1 2 3 + + = 0 1 2 4 6 + 2 + = 21 1 2 5 1 2 3 4 5 Il

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

Si consideri il seguente tableau ottimo di un problema di programmazione lineare

Si consideri il seguente tableau ottimo di un problema di programmazione lineare ESERCIZIO 1 Si consideri il seguente tableau ottimo di un problema di programmazione lineare -25/3 0 4/3 19/6 9/2 0 0 0 7/6 1 0 1-1/2-3/2 1 0 0 3/2 11/3 1-2/3-1/3 0 0 0 0 2/3 2/3 0 1/3 1/6-1/2 0 1 0 7/6

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 1 aprile 2015 Appunti di didattica della matematica applicata

Dettagli

ALGORITMO DEL SIMPLESSO. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Simplesso / 1.

ALGORITMO DEL SIMPLESSO. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Simplesso / 1. ALGORITMO DEL SIMPLESSO Una piccola introduzione R. Tadei R. Tadei 2 SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 8

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 8 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 8 Ricordiamo ancora una volta il nostro meta-algoritmo per il progetto di algoritmi di approssimazione: 1.

Dettagli

Ottimizzazione (1 mod., 6 crediti, 48 ore, a.a , lez.1)

Ottimizzazione (1 mod., 6 crediti, 48 ore, a.a , lez.1) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Ottimizzazione (1 mod., 6 crediti, 48 ore, a.a. 09-10, lez.1) 1 L Ottimizzazione rientra nell

Dettagli

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0 Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )

Dettagli

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Nozioni di geometria Definizione: Un vettore y R n è combinazione conica dei vettori { 1,, k } se esistono k coefficienti reali λ

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

Programmazione lineare

Programmazione lineare Capitolo 1 Programmazione lineare ESERCIZIO 1.1. Porre in forma canonica i seguenti programmi lineari. min 3x 1 + 4x 2 2x 3 x 1 + 2x 2 x 3 5 2x 1 + 4x 3 = 12 x 1 + x 2 + x 3 15 x 1, x 2 0, x 3 libera.

Dettagli

Algoritmo del Simplesso

Algoritmo del Simplesso Algoritmo del Simplesso Renato Bruni bruni@dis.uniroma.it Univertà di Roma Sapienza Corso di Ricerca Operativa, Corso di Laurea Ingegneria dell Informazione Vertici e Punti Estremi di un Poliedro Un poliedro

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min s.v. f () X n dove X è la regione delle soluzioni ammissibili con funzione

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2014/2015 Univ. Studi di Milano E.Frigerio, C.Turrini (Univ. Studi di Milano Istituzioni di Matematiche 1 / 30 index Generalità sugli insiemi 1 Generalità

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

PreCorso di Matematica - PCM Corso M-Z

PreCorso di Matematica - PCM Corso M-Z PreCorso di Matematica - PCM Corso M-Z DOCENTE: M. Auteri Outline Docente: Auteri PreCorso di Matematica 2016 2 Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti

Dettagli

Algebra Proff. A. D Andrea e P. Papi Quarto scritto

Algebra Proff. A. D Andrea e P. Papi Quarto scritto Algebra Proff. A. D Andrea e P. Papi Quarto scritto LUGLIO 8 Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 6.5 6.5 3 6.5 4 6.5 5 6.5 otale 3 Occorre motivare le risposte. Una soluzione

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,

Dettagli

IL METODO DEL SIMPLESSO

IL METODO DEL SIMPLESSO IL METODO DEL SIMPLESSO Il metodo del Simplesso 1 si applica nella risoluzione di un problema di Programmazione Lineare 2 (funzione e vincoli lineari) quando le variabili di azione o iniziali sono almeno

Dettagli

LEZIONE N. 6 - PARTE 1 - Introduzione

LEZIONE N. 6 - PARTE 1 - Introduzione LEZIONE N. 6 PROGRAMMAZIONE LINEARE IN MARKAL, SOLUZIONE DEI PROBLEMI DI PROGRAMMAZIONE LINEARE CON: IL METODO GRAFICO ED IL METODO DEL SIMPLESSO. PROPRIETÀ DELLA DUALITÀ ED ESEMPI DI SOLUZIONE DEL PROBLEMA

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano Istituzioni di Matematiche 1 / 33 index Generalità sugli insiemi 1 Generalità

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

Rilassamento Lagrangiano

Rilassamento Lagrangiano RILASSAMENTO LAGRANGIANO 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il seguente problema

Dettagli

5.3 Introduzione al metodo del simplesso

5.3 Introduzione al metodo del simplesso CAPITOLO 5 IL METODO DEL SIMPLESSO 105 53 Introduzione al metodo del simplesso Il Metodo del Simplesso permette di risolvere problemi di Programmazione Lineare in forma standard, cioè problemi di Programmazione

Dettagli

Problemi lineari equivalenti

Problemi lineari equivalenti Problemi lineari equivalenti Introduzione Nel seguito verranno presentati alcuni esempi di trasformazione di problemi di problemi di programmazione lineare in forme equivalenti. Un problema di programmazione

Dettagli

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y " #z = "1 & '#x " y+ z =1

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y  #z = 1 & '#x  y+ z =1 Istituzioni di Matematica I Esercizi su sistemi lineari Esempio. Dire per quali valori di λ R il sistema x " y+ z = 2 % x + y " z = " x " y+ z = ha una sola soluzione, per quali nessuna, per quali infinite

Dettagli

I sistemi lineari di n equazioni in n incognite

I sistemi lineari di n equazioni in n incognite I sistemi lineari I sistemi lineari di n equazioni in n incognite I sistemi lineari di n equazioni in n incognite, sono formati da equazioni di primo grado, in cui le incognite hanno tutte esponente uguale

Dettagli

5.5 Programmazione quadratica (PQ)

5.5 Programmazione quadratica (PQ) 5.5 Programmazione quadratica (PQ Minimizzare una funzione quadratica soggetta a vincoli lineari: 1 min x t Qx + c t x 2 s.v. a t i x b i i D (P a t i x = b i i U x R n dove Q matrice n n, D e U sono gli

Dettagli

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +.. Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine

Dettagli

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica:

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica: . SU ALCUNI OPERAORI DI DERIVAZIONE Alcune operazioni tipiche dell analisi matematica hanno un diretto riscontro in termini matriciali. Consideriamo ad esempio una forma lineare: f() l l + l +..l n n ;

Dettagli

Teorema Data una base ammissibile B della matrice A del problema (7.3.1). Se per qualche indice i {1,...,n m} abbiamo che:

Teorema Data una base ammissibile B della matrice A del problema (7.3.1). Se per qualche indice i {1,...,n m} abbiamo che: LA FASE II DEL METODO DEL SIMPLESSO 173 742 Criterio di illimitatezza Se il criterio di ottimalità non è verificato il metodo del simplesso cerca di capire se il problema da risolvere sia illimitato inferiormente

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Metodo di Gauss-Jordan per l inversione di una matrice. Nella lezione scorsa abbiamo visto che un modo per determinare l eventuale inversa di una matrice quadrata A consiste nel risolvere

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito B 3/05/005 A. A. 004 005 ) Risolvere il seguente sistema

Dettagli

Esercizi proposti nel Cap. 6 - Soluzioni. Esercizio 6.1. Esercizio 6.2

Esercizi proposti nel Cap. 6 - Soluzioni. Esercizio 6.1. Esercizio 6.2 M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 6 - Soluzioni Esercizio 6.1 La soluzione ottima è il vertice 4 1, di valore 9, vedi

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

Esercizi svolti di Programmazione Lineare. a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania

Esercizi svolti di Programmazione Lineare. a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania Esercizi svolti di Programmazione Lineare a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania Formulazione matematica e risoluzione grafica Esercizio Una pasticceria

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +.. Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine

Dettagli