Storia della Probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Storia della Probabilità"

Transcript

1 Storia della Probabilità Il calcolo delle probabilità nasce nel Seicento (1654) per risolvere alcuni problemi sui giochi d azzardo (dadi) posti da un giocatore, il cavaliere de Méré, al matematico e filosofo B. Pascal, del quale rimane, sull argomento, un confronto teorico con il matematico P. Fermat. Blaise Pascal Fermat Laplace Uno dei primi trattati di calcolo delle probabilità risale a J. Bernoulli con la "Legge dei grandi numeri", ma la prima impostazione sistematica della concezione classica, è opera di P. S. Laplace che nel 1812 diede la prima definizione di probabilità classica: "Di definisce probabilità matematica il rapporto tra casi favorevoli e casi possibili" P(E) = f/n. Nell Ottocento si delineano altre concezioni della probabilità. La prima concezione molto importante è la frequentista basata sull esperimento e sull osservazione di prove ripetute del fenomeno che è oggetto di studio ed è dovuta a Venn, Cournot e altri. La frequenza, calcolata in un gran numero di prove, permette di prevedere i risultati di prove future eseguite nelle stesse condizioni. Il campo di applicazione della concezione frequentista è molto vasto: ad esempio, si potranno calcolare, per una data popolazione, la probabilità di morte o di sopravvivenza degli individui o la probabilità di nascita di maschi o di femmine. Si hanno pure importanti applicazioni nella medicina, nella psicologia, nell economia, nella meccanica quantistica e, in generale, in tutte le scienze per le quali si possono utilizzare metodi statistici. Sempre nell Ottocento, con sviluppo nel Novecento con il matematico Finetti, sorge una nuova concezione, la soggettiva, che valuta la probabilità di un evento in base al grado di fiducia che un individuo attribuisce, secondo le sue informazioni, al verificarsi di un evento. Questa concezione può essere applicata a qualunque evento tanto che le decisioni, di maggiore o minore importanza, che prendiamo ogni giorno, sono fondate su valutazioni soggettive di probabilità (a livello conscio o inconscio). Qual è la probabilità per uno studente di trovare impiego subito dopo il conseguimento del diploma? La valutazione dipende da molti fattori, come, ad esempio, la sua preparazione professionale, le sue doti intellettuali, la sua capacità di rapporti interpersonali. La valutazione della probabilità è puramente soggettiva e persone diverse possono assegnare a uno stesso giovane probabilità diverse. Ad esempio, una persona pessimista può valutare che la probabilità di trovare lavoro sia del 25%, un ottimista, invece, può assegnare la probabilità del 70%. Entrambe le valutazioni, pur così diverse, devono essere accettate, purché siano coerenti. Domenica prossima si svolgerà un importante partita di calcio tra Juventus e Inter. Quale probabilità hanno le squadre di vincere? La probabilità che una squadra vinca una gara dipende da vari fattori, quali le condizioni di forma o la presenza di atleti di maggiore capacità. Anche in questo caso in base alle informazioni e alle opinioni, le valutazioni della probabilità di vittoria sono generalmente diverse secondo lo sportivo o il giornalista che lo formula. Qual è la probabilità che un nuovo modello di automobile ha d'incontrare il favore del pubblico? Anche per quanto si riferisce al successo di un prodotto nuovo presso gli acquirenti, le opinioni dipendono dai gusti di chi compie la valutazione e anche dalla sua stima per la Casa produttrice. Infine, nel nostro secolo, si ha un'impostazione astratta, l impostazione assiomatica, dovuta a A. N. Kolmogorov e altri, che sviluppano tutta la teoria della probabilità partendo da due concetti primitivi: evento e probabilità, e assegnando alcuni assiomi. Questa concezione ha avuto molta importanza e ha permesso di raggiungere notevoli risultati da un punto di vista generale, applicabili ai settori più svariati: dalla fisica all economia, dalla statistica alla psicologia. Nonostante queste numerose concezioni, il campo di studio è aperto a nuove visioni del concetto di probabilità. Osserviamo che il concetto di evento è assunto come concetto primitivo per indicare <<qualcosa che può accadere>>. L evento è espresso da una proposizione che risulterà vera se l evento si sarà verificato, falsa se l evento non si sarà verificato. U. D. Classe 3A Prof.ssa D. Rita Fazzello 1

2 Probabilità: Cos'è? Obiettivi: Capire il concetto di probabilità Essere in grado di dare una stima degli eventi U. D. Classe 3A Prof.ssa D. Rita Fazzello 2

3 Obiettivi: Capire il concetto di probabilità Essere in grado di dare una stima degli eventi Alcune parole usate nel linguaggio della probabilità: possibile, probabile, impossibile, equiprobabile, evento certo, frequenza assoluta, frequenza relativa, eventi compatibili, incompatibili, dipendenti, indipendenti, complementari U. D. Classe 3A Prof.ssa D. Rita Fazzello 3

4 Obiettivi: Capire il concetto di probabilità Essere in grado di dare una stima degli eventi impossible probabile certo 0 1 Gli eventi probabili sono compresi tra 0 e 1 0<p(r)<1 U. D. Classe 3A Prof.ssa D. Rita Fazzello 4

5 Esempi di eventi: Nel lancio di un dado... Evento impossibile: "...esce il numero 8" Calcolo: p(e) = 0/6 =0 Un evento si dice impossibile se la probabilità che si verifichi è 0 p(e) = 0 Evento probabile: "...esce il numero 4" Calcolo p(e) = 1/6 = 16% Un evento si dice probabile se la probabilità che si verifichi è un numero compreso tra 0 e 1 Evento certo: "Lanciando un dado esce un numero da 1 a 6 compresi" Calcolo: P(E)= 6/6 = 1 Un evento si dice certo se la probabilità che esso si verifichi è 1 p(e) = 1 Evento equiprobabile: "Lanciando un dado esce un numero 4" Calcolo: P(E1)= 1/6 = 16% "Lanciando un dado esce un numero 5" Calcolo: P(E2)= 1/6 = 16% P(E1)=P(E2)= 1/6 = 16% Un evento si dice equiprobabile se la probabilità che esso si verifichi è uguale U. D. Classe 3A Prof.ssa D. Rita Fazzello 5

6 Riconosci eventi impossibili, certi e probabili: Stasera sarà buio Oggi nevica! Oggi mangio qualcosa! Un giorno andrò sulla luna Stesera guarderò la TV Un giorno sarò famosa! U. D. Classe 3A Prof.ssa D. Rita Fazzello 6

7 La probabilità matematica è il rapporto tra casi favorevoli e casi possibili: p(e) = f/n Applicazione ed esempi: 1) In quest'urna ci sono 5 biglie gialle e 3 rosse: Calcola la probabilità di estrarre: una biglia gialla 5/8 = 62,5% una biglia rossa 3/8 = 37,5% una biglia gialla "o" rossa 5/8+3/8 = 8/8 =1 2) Nel lancio di un dado: calcola la probabilità che: esca un numero pari P(E1) = 3/6 = 50% esca un numero primo P(E2) = 3/6 = 50% esca un numero dispari P(E3) = 3/6 = 50% esca il numero 10 P(E4) = 0/6 = 0% esca un numero compreso tra 1 e 5 compresi= 5/6= 83% Rispondi: Quale evento secondo te è più probabile? Ci sono eventi equiprobabili? Ci sono eventi impossibili 3) In un mazzo di carte da poker (52 carte): Calcola la probabilità di estrarre: un asso di cuori un asso un re una figura un re di quadri "o" un re di cuori un asso di cuori "o" uno di picche 4) Nel lancio di una moneta: Calcola la probabilità di estrarre: testa croce testa "o"croce Su 10 lanci successivi, quante volte esce testa e quante volte croce? 5) Considera il lancio di due monete. Costruisci un grafo ad albero con le possibilità di uscita: C T C T C T Le combinazioni possibili sono: CC CT TC TT Calcola la probabilità di avere: CC, TT, CT U. D. Classe 3A Prof.ssa D. Rita Fazzello 7

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosiddette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

La probabilità composta

La probabilità composta La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il

Dettagli

incompatibili compatibili complementari eventi composti probabilità composta

incompatibili compatibili complementari eventi composti probabilità composta Un evento si dice casuale, o aleatorio, se il suo verificarsi dipende esclusivamente dal caso. La probabilità matematica p di un evento aleatorio è il rapporto fra il numero dei casi favorevoli f e il

Dettagli

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi. La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

Test di autovalutazione

Test di autovalutazione Test Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n Confronta le tue risposte con le soluzioni. n

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Approccio classico e frequentista alla probabilità Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Teoria delle probabilità L inizio della teoria delle probabilità, chiamata all

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità Osservazione e studio dei fenomeni naturali: a. Caso deterministico: l osservazione fornisce sempre lo stesso risultato. b. Caso stocastico o aleatorio: l osservazione fornisce

Dettagli

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6 EVENTI ALEATORI E LORO RAPPRESENTAZIONE Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U... U.. La definizione classica di probabilità dice che, se gli eventi che si considerano

Dettagli

Matematica con elementi di statistica ESERCIZI: probabilità

Matematica con elementi di statistica ESERCIZI: probabilità Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.

Dettagli

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA

Dettagli

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Università Roma Tre - Dipartimento di Matematica e Fisica 3 novembre 2016 Introduzione La probabilità nel linguaggio comune I E probabile

Dettagli

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9 Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4 o ancora: uscirà il numero 9 Possiamo dire che le previsione del tuo compagno sono la prima certa, la seconda

Dettagli

CALCOLO DELLE PROBABILITA

CALCOLO DELLE PROBABILITA CALCOLO DELLE PROBABILITA Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma Nella ricerca scientifica, così come nella vita, trionfa l incertezza Chi guiderà il prossimo governo? Quanto

Dettagli

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria ALGEBRA IL CALCOLO DELLE PROBABILITAÁ richiami della teoria n un evento E si dice casuale o aleatorio, quando il suo verificarsi dipende unicamente dal caso; n un evento si dice certo quando eá possibile

Dettagli

OPERAZIONI CON GLI EVENTI

OPERAZIONI CON GLI EVENTI LA PROBABILITA GLI EVENTI Definiamo come evento il verificarsi di un avvenimento, situazione o fenomeno; in quest ottica potremmo intuitivamente definire la probabilità come l indice di verosimiglianza

Dettagli

NOZIONI DI CALCOLO DELLE PROBABILITÀ

NOZIONI DI CALCOLO DELLE PROBABILITÀ NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni

Dettagli

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi Lezione 2 La probabilità oggettiva : definizione classica e frequentistica e loro problemi La definizione classica Definizione classica: La probabilità di un evento E è il rapporto tra il numero dei casi

Dettagli

F.1 EVENTI E PROBABILITA

F.1 EVENTI E PROBABILITA F.1 EVENTI E PROBABILITA Breve storia del Calcolo delle probabilità Le origini del (moderno) Calcolo delle probabilità si fanno tradizionalmente risalire alla corrispondenza tra Pascal e Fermat su un problema

Dettagli

ELEMENTI DI PROBABILITA (parte 2) 1 / 27

ELEMENTI DI PROBABILITA (parte 2) 1 / 27 ELEMENTI DI PROBABILITA (parte 2) 1 / 27 Combinazioni 2 / 27 Supponiamo di non essere interessati all ordine in cui sono disposti gli oggetti, per cui la parola abc sia indistinguibile dalla parola bca.

Dettagli

Introduzione al Calcolo delle Probabilità

Introduzione al Calcolo delle Probabilità Introduzione al Calcolo delle Probabilità In tutti quei casi in cui le manifestazioni di un fenomeno (EVENTI) non possono essere determinate a priori in modo univoco, e i risultati possono essere oggetto

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere:

Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere: PROBABILITÀ E STATISTICA Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere: x = 172, 3 cm Possiamo affermare

Dettagli

Calcolo delle Probabilità S.T.A.D

Calcolo delle Probabilità S.T.A.D Lezione 1 del 11 Aprile 2012 Calcolo delle Probabilità S.T.A.D. 2011-2012 Giuseppe Sanfilippo http://www.unipa.it/sanfilippo 11 aprile 2012 Libri adottati Calcolo delle Probabilità, Sheldon Ross, Apogeo,

Dettagli

6.2 La probabilità e gli assiomi della probabilità

6.2 La probabilità e gli assiomi della probabilità 6.2 La probabilità e gli assiomi della probabilità L introduzione alla teoria della probabilità può essere vista come un applicazione della teoria degli insiemi. Essa si occupa degli esperimenti il cui

Dettagli

Teoria della probabilità

Teoria della probabilità Introduzione alla teoria della probabilità Teoria della probabilità Primi sviluppi nel XVII secolo (Pascal( Pascal, Fermat, Bernoulli); Nasce nell ambito dei giochi d azzardo; d La prima formalizzazione

Dettagli

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo. A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

Probabilità I Calcolo delle probabilità

Probabilità I Calcolo delle probabilità Probabilità I Calcolo delle probabilità Nozioni di eventi. Definizioni di probabilità Calcolo di probabilità notevoli Probabilità condizionate Concetto di probabilità Cos'è una probabilità? Idea di massima:

Dettagli

Il calcolo della probabilità matematica

Il calcolo della probabilità matematica Il calcolo della probabilità matematica Il calcolo delle probabilità è quella parte della matematica che si occupa di prevedere, sulla base di regole e leggi precise, quanto un evento casuale sia probabile.

Dettagli

Psicometria II: Laura Picconi.

Psicometria II: Laura Picconi. Psicometria II: Laura Picconi http://www.psicometria.unich.it/ http://www.psicometria.unich.it/ Sezione avvisi E necessario leggere con attenzioni gli avvisi e le comunicazioni che sono pubblicati sul

Dettagli

Il Calcolo delle Probabilità è lo strumento matematico per trattare fenomeni aleatori cioè non deterministici.

Il Calcolo delle Probabilità è lo strumento matematico per trattare fenomeni aleatori cioè non deterministici. INTRODUZIONE L CLCOLO DELLE ROILIT Il Calcolo delle robabilità è lo strumento matematico per trattare fenomeni aleatori cioè non deterministici. Un fenomeno aleatorio o stocastico è un fenomeno i cui esiti

Dettagli

Il caso, probabilmente: la partita a dadi di Riccardo Mini

Il caso, probabilmente: la partita a dadi di Riccardo Mini Elementi di Probabilità presenti nell opera teatrale Il caso, probabilmente: la partita a dadi di Riccardo Mini con Fausto Bernardinello, Maria Eugenia D Equino, Annig Raimondi con la collaborazione dei

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione

Dettagli

Definizione frequentistica di probabilita :

Definizione frequentistica di probabilita : Esperimenti aleatori un esperimento e l osservazione del verificarsi di qualche accadimento ( A ) che, a partire da determinate condizioni iniziali, porti ad un particolare stato delle cose finali se si

Dettagli

ELABORAZIONI STATISTICHE Conoscenze (tutti)

ELABORAZIONI STATISTICHE Conoscenze (tutti) Scegli il completamento corretto. ELABORAZIONI STATISTICHE Conoscenze (tutti) 1. Una variabile statistica è di tipo qualitativo se: a. fa riferimento ad una qualità b. viene espressa mediante un dato numerico

Dettagli

Il Calcolo delle Probabilità

Il Calcolo delle Probabilità Il Calcolo delle Probabilità Introduzione storica I primi studi che portarono successivamente a concetti legati alla probabilità possono essere trovati a metà del XVI secolo in Liber de ludo aleæ di Girolamo

Dettagli

DIPARTIMENTO SCIENZE POLITICHE E SOCIALI ABILITÀ LOGICO-MATEMATICHE A.A. 2018/2019 PROBABILITÀ

DIPARTIMENTO SCIENZE POLITICHE E SOCIALI ABILITÀ LOGICO-MATEMATICHE A.A. 2018/2019 PROBABILITÀ 1 PROBABILITÀ DI UN EVENTO PROBABILITÀ Si parla di eventi probabili o improbabili quando non si è sicuri se essi si verificheranno. Quando lanciamo in aria una moneta, da cosa dipende se dopo la caduta

Dettagli

Evento Aleatorio. Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)

Evento Aleatorio. Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado) ELEMENTI DI CALCOLO DELLE PROBABILITA Evento Aleatorio Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado) Esempi di eventi aleatori 1. Ottenere un certo numero nel

Dettagli

Probabilità esempi. Aiutiamoci con una rappresentazione grafica:

Probabilità esempi. Aiutiamoci con una rappresentazione grafica: Probabilità esempi Paolo e Francesca giocano a dadi. Paolo scommette che, lanciando due dadi, si otterrà come somma 8 oppure 9. Francesca scommette che si otterrà come somma un numero minore o uguale a

Dettagli

CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari;

CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari; ARITMETICA ELEMENTIDICALCOLO DELLE PROBABILITAÁ PREREQUISITI l l l conoscere e costruire tabelle a doppia entrata conoscere il significato di frequenza statistica calcolare rapporti e percentuali CONOSCENZE.

Dettagli

ELABORAZIONI STATISTICHE Conoscenze (tutti)

ELABORAZIONI STATISTICHE Conoscenze (tutti) ELABORAZIONI STATISTICHE Conoscenze (tutti) Scegli il completamento corretto. 1. Una variabile statistica è di tipo qualitativo se: a. fa riferimento ad una qualità b. viene espressa mediante un dato numerico

Dettagli

La probabilità matematica

La probabilità matematica 1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi

Dettagli

Probabilità. Ing. Ivano Coccorullo

Probabilità. Ing. Ivano Coccorullo Ing. Ivano Coccorullo PROBABILITA Teoria della Eventi certi, impossibili e casuali Nella scienza e nella tecnologia è fondamentale il principio secondo il quale ogni volta che si realizza un insieme di

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare

Dettagli

ESERCIZI SULLA PROBABILITA

ESERCIZI SULLA PROBABILITA PROBABILITA CLASSICA ESERCIZI SULLA PROBABILITA 1) Si estrae una carta da un mazzo di 40 carte ; calcolare la probabilità che la carta sia: a. una figura; b. una carta di danari; c. un asso. 2) Un urna

Dettagli

LICEO SCIENTIFICO G. GALILEI LANCIANO. Pi greco day 2014 MATEMATICA E INCERTEZZA DELLA PROBABILITA. Carmine Bonanni Elisa Sasso Classe 4 sez.

LICEO SCIENTIFICO G. GALILEI LANCIANO. Pi greco day 2014 MATEMATICA E INCERTEZZA DELLA PROBABILITA. Carmine Bonanni Elisa Sasso Classe 4 sez. LICEO SCIENTIFICO G. GALILEI LANCIANO Pi greco day 2014 MATEMATICA E INCERTEZZA LINEAMENTI DI STORIA DELLA PROBABILITA Carmine Bonanni Elisa Sasso Classe 4 sez. A Il concetto di Probabilità è il più importante

Dettagli

Valore atteso, mazzi di carte e Monte Carlo. Anna Torre-Fulvio Bisi

Valore atteso, mazzi di carte e Monte Carlo. Anna Torre-Fulvio Bisi Valore atteso, mazzi di carte e Monte Carlo Anna Torre-Fulvio Bisi Eventi Indipendenti Due eventi A, B sono indipendenti se la probabilità che accadano entrambi è il prodotto della probabilità che accada

Dettagli

NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI

NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le

Dettagli

- Teoria della probabilità

- Teoria della probabilità - Teoria della probabilità ELEMENTI DI TEORIA DELLA PROBABILITA La TEORIA DELLA PROBABILITA ci permette di studiare e descrivere i fenomeni aleatori. DEFINIZIONE: un fenomeno è aleatorio quando di esso

Dettagli

Mappe concettuali. 1 Calcolo combinatorio. Le domande più importanti della vita sono, per la gran parte, davvero soltanto problemi di probabilità.

Mappe concettuali. 1 Calcolo combinatorio. Le domande più importanti della vita sono, per la gran parte, davvero soltanto problemi di probabilità. Le domande più importanti della vita sono, per la gran parte, davvero soltanto problemi di probabilità. La probabilità è ormai entrata a far parte della vita di ognuno. Inconsapevolmente viene citata nei

Dettagli

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare PROBABILITA La teoria della probabilità si applica ad esperimenti aleatori o casuali: ossia, esperimenti il cui risultato non è prevedibile a priori. Ad esempio, lancio di un dado, lancio di una moneta,

Dettagli

Probabilità Condizionale - 1

Probabilità Condizionale - 1 Probabilità Condizionale - 1 Come varia la probabilità al variare della conoscenza, ovvero delle informazioni in possesso di chi la calcola? ESEMPIO - Calcolare la probabilità che in una estrazione della

Dettagli

Dadi, carte, diagrammi e frazioni.

Dadi, carte, diagrammi e frazioni. Dadi, carte, diagrammi e frazioni..i primi passi nella probabilità Relatore: Prof.ssa Ana Millán Gasca Laura Sol Minicorso Insegnare la matematica ai bambini a partire dall esperienza Roma, Università

Dettagli

Calcolo della probabilità: quadro riassuntivo.

Calcolo della probabilità: quadro riassuntivo. Logicamente Calcolo della probabilità: quadro riassuntivo. Che cosa dobbiamo fare? Per risolvere gli esercizi relativi al calcolo delle probabilità, devi: 1. Sapere calcolare la probabilità di un evento

Dettagli