Lucchetto con combinazione (3 numeri tra 0 e 39)
|
|
|
- Samuele Pesce
- 9 anni fa
- Visualizzazioni
Transcript
1 Complessita computazionale ed il problema P / NP Fondamenti di Informatica 2010/11 Lucchetto con combinazione (3 numeri tra 0 e 39) Perche e sicuro? (escludendo che lo si rompa) Ans: Combinazione di 3 numberi 0-39 Un ladro dovrebbe provare 40 3 = 64,000 combinazioni 1
2 Tempo esponenziale Tempo 2 n per risolvere instanze di taglia n Incrementando n di 1 running time raddoppia! Da tener presente: Per n =300, 2 n > numero di atomi dell universo. Soddisfacibilita di formule Booleane (A + B + C) (D + F + G) (A + G + K) (B + P + Z) (C + U + X) = and + = or A = not A Esiste un assegnamento che la rende vera? E se abbiamo 100 variabili? 1000 variabili? Quanto impiegheremmo per trovare l assegnamento che rende vera la formula? 2
3 Discussione C e una differenza tra e essere creativi / brillanti essere capaci di apprezzare/comprendere creativita / genialita? Esiste una dicotomia analoga per la computazione? Genialita = Saper trovare to find l ago nel pagliaio Un Beethoven sa determinare l assegnamento giusto alla formula Booleana della bellezza musicale 3
4 Esistono numerosi problemi computazionali la cui soluzione richiede trovare un ago in un pagliaio. CLIQUE Problem In questo social network, esiste una CLIQUE con 5 o piu studenti? CLIQUE: Gruppo di studenti, in cui ogni coppia di studenti sono amici Qual e un buon algoritmo per determinare clique? In che misura l efficienza di tale algoritmo dipende dalla taglia della rete e della clique cercata? 4
5 Il problema di spargere la voce Social network Ogni nodo rappresenta uno studente Due nodi sono connessi da un arco se gli studenti sono amici Anna comincia a mettere voci in giro La voce raggiungera Benjamin? Suggerite un algoritmo per rispondere alla domanda Come cresce la complessita rispetto alla taglia della rete? I server della rete devono risolvere tale problema continuamente. Ricerca esaustiva / Esplosione Combinatoriale Algoritmi Naïve per molti problemi tipo ago nel pagliaio finiscono per testare tutte le possibili soluzioni running time esponenziale. Frequentissimo nell universo computazionale E possibile trovare algoritmi migliori (come per Spargere la Voce )? Per es., running time O(n 2 ). 5
6 Armonia di gruppo Dato un Social network di n studenti. Dove gli archi corrispondono a coppie di studenti che NON vanno d accordo. Decidi se esiste un insieme di k studenti che costituisca un gruppo in armonia (ognuno va d accordo con ognuno). E il problema della Clique mascherato! Il commesso viaggiatore (il problema dei corrieri UPS) Input: n locazioni e tutte le distanze tra coppie di punti, e una lunghezza k Scopo: decidere se esiste un modo per visitare tutte le locazioni percorrendo in totale una distanza <= k 6
7 Il problema dell Orario Input: n studenti, k corsi, liste degli studenti in ogni corso, m possibili orari per gli esami finali Conflitto : uno studente e in due corsi con l esame programmato alla stessa ora Scopo: decidere se esiste la possibilita di programmare l orario con al piu 100 conflitti? Il problema P / NP P: problemi per i quali e possibile trovare una soluzione in tempo polinomiale (n c dove c e una costante e n e la taglia dell input ). Esempi: ricerca binaria, Spargi la voce NP: problemi per i quali una buona soluzione puo essere verificata in tempo n c. Esempi: Soddisfacibilita Booleana, Commesso Viaggiatore, Clique, Orario Domanda: Vale P = NP? E possibile automatizzare la genialita? (Nota: Indipendente dal Modello computazionele --- Turing-Post, pseudocodice, C, Java, etc.) 7
8 Problemi NP-completi I Problemi piu difficili nella classe NP Se uno di essi in P allora ogni problema in NP e anche in P. Esempi: Soddifacibilita, Commesso Viaggiatore, Clique, Orario,. e molti molti altri ancora (migliaia) Come e possibile provare che tali problemi sono I piu difficili? Riduzione Datemi un punto d'appoggio, ed io muoverò la Terra. Archimedes (~ 250BC) Se mi date un algoritmo polinomiale per il problema della Soddifacibilita delle Formule Boolean, Vi dar un algoritmo polinomiale per ogni problema in NP. --- Cook, Levin (1971) Ogni problema in NP e un problema di soddisfacibilita mascherato 8
9 Cosa fare con I problemi NP-completi 1. Euristiche (algoritmi che producono soluzioni ragionevoli per istanze reali) 2. Algoritmi di Approssimazione (producono soluzioni sub-ottimali, ma con la possibilita di garantire il massimo margine di sub-ottimalita ) Teoria della Complessita Computazionale: Studio dei problemi computazionalmente difficili. Una nuova prospettiva? Studio della materia focus su massa, carica, etc. Studio dei processi focus sulla difficolta computazionale 9
10 Esempio 1: Economia Teoria degli equilibri: Input: n agenti, ognuno con un portafoglio iniziale (beni, denaro, etc.) e con delle preferenze (funzione per misurare il guadagno) Equilibrio: sistema di prezzi tale che per ogni bene, domanda = offerta. Equilibrio esiste [Arrow-Debreu, 1954]. Gli Economisti assumono che i mercati lo trovino (come una mano invisibile ) Ma, non e noto alcun algoritmo efficiente per calcolarlo. Come fa il mercato a computarlo? Esempio 2: Problema della Fattorizzazione Dato un numero n, trova due numberi p, q (diversi da 1) tali che n = p x q. Come possiamo risolverlo? Infatti: Si assume che tale problema sia difficile. E alla base di gran parte della crittografia. 10
11 Esempio 3: Quantum Computation A B Peter Shor Principio fondamentale della meccanica quantistica: quando una particella va da A a B, usa tutti i possibili cammini allo stesso tempo [Shor 97] Possiamo usare il comportamento quantistico per fattorizzare interi in maniera efficiente (e rompere protocolli crittografici) E possibile costruire un computer quantistico, o la meccanica quantistica non descrive correttamente il nostro mondo fisico? Esempio 4: Intelligenza Artificiale Qual e la complessita computazionale di problemi quali riconoscimeto del linguaggio, giocare Ottimamente a scacchi? Etc. etc. Un possibile dimostrazione che il cervello non e un computer: Mostrare che esso continuamente risolve problemi che necessariamente (dimostrato) richiedono tempo esponenziale su un computer 11
12 Perche la relazione P / NP e un problema da $ ? Se P = NP allora soluzioni brillanti diventano la norma (best schedule, best route, best design, best math proof, etc ) Se P NP allora sappiamo qualcosa di nuovo e fondazionale non solo rispetto alla scienza dei computer (analogo a Niente viaggia piu veloce della luce ). Prossimo tema: Crittografia (mettere in pratica la complessita computazionale) 12
Sommario. Caratterizzazione alternativa di NP: il verificatore polinomiale esempi di problemi in NP
Sommario Caratterizzazione alternativa di NP: il verificatore polinomiale esempi di problemi in NP I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same
Progettazione di Algoritmi
Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 29/01/2016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via
Intelligenza Artificiale. Logica proposizionale: calcolo automatico
Intelligenza Artificiale Logica proposizionale: calcolo automatico Marco Piastra Logica formale (Parte 3) - Parte 3 Calcolo automatico Forme normali ed a clausole Risoluzione e refutazione Forward chaining
Problemi, istanze, soluzioni
lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un
3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura
Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi
Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare
Progettazione di Algoritmi
Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai
Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata. Luca Bertazzi
Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata Luca Bertazzi 0 3 Ulisse: da Troia a Itaca Troia Itaca 509 km Quale è stato invece il viaggio di Ulisse? Il viaggio di Ulisse Troia
La teoria dell offerta
La teoria dell offerta Tecnologia e costi di produzione In questa lezione approfondiamo l analisi del comportamento delle imprese e quindi delle determinanti dell offerta. In particolare: è possibile individuare
Per un vocabolario filosofico dell informatica. Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine
Per un vocabolario filosofico dell informatica Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Udine, 11 maggio, 2015 Obiettivi del corso In un ciclo di seminari,
Algoritmi e Strutture Dati
Introduzione al Corso Maria Rita Di Berardini (Camerino), Emanuela Merelli (Ascoli) 1 1 Scuola di Scienze e Tecnologie - Sezione di Informatica Università di Camerino Parte I Il concetto di Algoritmo Il
UD 3.4b: Trattabilità e Intrattabilità. Dispense, cap. 4.2
UD 3.4b: Trattabilità e Intrattabilità Dispense, cap. 4.2 Problemi Intrattabili Esistono problemi che, pur avendo un algoritmo di soluzione, non forniranno mai una soluzione in tempi ragionevoli nemmeno
Sviluppo di programmi
Sviluppo di programmi Per la costruzione di un programma conviene: 1. condurre un analisi del problema da risolvere 2. elaborare un algoritmo della soluzione rappresentato in un linguaggio adatto alla
Crittografia a chiave pubblica
Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno [email protected] http://www.dia.unisa.it/professori/masucci Cifrari simmetrici canale
Il concetto di calcolatore e di algoritmo
Il concetto di calcolatore e di algoritmo Elementi di Informatica e Programmazione Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin Informatica
UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013
A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 7 giugno 0 Nome: Cognome: Matricola: Orale /06/0 ore aula N Orale 0/07/0 ore aula N
Cosa è l Informatica?
Cosa è l Informatica? Scienza degli elaboratori elettronici (Computer Science) Scienza dell informazione Scienza della rappresentazione, memorizzazione, elaborazione e trasmissione dell informazione Elaboratore
Il problema del commesso viaggiatore
Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa [email protected] M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università
Algoritmi di ricerca. Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati.
E. Calabrese: Fondamenti di Informatica Algoritmi-1 Algoritmi di ricerca Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati. Per esempio: - cercare
UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014
A Ricerca Operativa 1 Seconda prova intermedia Un tifoso di calcio in partenza da Roma vuole raggiungere Rio De Janeiro per la finale del mondiale spendendo il meno possibile. Sono date le seguenti disponibilità
Le parole dell informatica: modello di calcolo, complessità e trattabilità
Le parole dell informatica: modello di calcolo, complessità e trattabilità Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario
Corso di Informatica Modulo T1 1 - Il concetto di problema
Corso di Informatica Modulo T1 1 - Il concetto di problema 1 Prerequisiti Concetti intuitivi di: Proporzione Problema Variabile Numeri interi e reali 2 1 Introduzione Nel risolvere un problema abbiamo
TEORIE E TECNICHE PER LA COMUNICAZIONE DIGITALE
TEORIE E TECNICHE PER LA COMUNICAZIONE DIGITALE Riccardo Dondi Dipartimento di Scienze dei linguaggi, della comunicazione e degli studi culturali Università degli Studi di Bergamo Informazione sul corso
Algoritmi e loro proprietà. Che cos è un algoritmo? Un esempio di algoritmo
1 Cos è l informatica? L informatica è la scienza della rappresentazione e dell elaborazione dell informazione Algoritmi e loro proprietà Proprietà formali degli Algoritmi Efficienza rispetto al tempo
Laboratorio di Programmazione Lezione 1. Cristian Del Fabbro
Laboratorio di Programmazione Lezione 1 Cristian Del Fabbro Reperibilità homepage corso: https://users.dimi.uniud.it/~cristian.delfabbro/teaching.php email: [email protected] telefono: 0432 558676
La struttura elettronica degli atomi
1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,
Come ragiona il computer. Problemi e algoritmi
Come ragiona il computer Problemi e algoritmi Il problema Abbiamo un problema quando ci poniamo un obiettivo da raggiungere e per raggiungerlo dobbiamo mettere a punto una strategia Per risolvere il problema
It s coding time. Pensiero Computazionale a scuola. Borgotaro 25 Novembre 2015
It s coding time Pensiero Computazionale a scuola Borgotaro 25 Novembre 2015 chi siamo Michael Lodi lodi.ml Docente di Informatica al Liceo e Tutor all Università Formatore USR-ER e Mentor di CoderDojo
La macchina di Turing (Alan Turing, 1936)*
DNA-computing La macchina di Turing (Alan Turing, 1936)* Un meccanismo (finite control) si muove tra una coppia di nastri:. legge le istruzioni da un nastro (input tape). scrive il risultato sull altro
Fondamenti di Informatica. Algoritmi di Ricerca e di Ordinamento
Fondamenti di Informatica Algoritmi di Ricerca e di Ordinamento 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare se un elemento fa parte della sequenza oppure l elemento
Università del Piemonte Orientale
Compito di Algebra del 13 Gennaio 2009 1) Trovare l ordine di [11] 112 in Z 112. Si dica poi per quali valori di k si ha [11] k 112 [34] 112 = [31] 112. Soluzione. L ordine di [11] 112 è 12. k 12 8. 2)
Informatica Generale Andrea Corradini I linguaggi di programmazione
Informatica Generale Andrea Corradini 17 - I linguaggi di programmazione Sommario Cos'è un linguaggio di programmazione? Una prospettiva storica: linguaggi di prima, seconda e terza generazione I paradigmi
Introduzione al Calcolo Scientifico
Introduzione al Calcolo Scientifico Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Introduzione al Calcolo Scientifico 1 / 14 Calcolo Scientifico Insieme degli
(ETC) MATRICOLE DISPARI
Elementi di Teoria della Computazione (ETC) MATRICOLE DISPARI Docente: Prof. Luisa Gargano BENVENUTI! Finalità: Fornire gli elementi di base delle teorie che sono di fondamento all'informatica 1. Computabilità
Pumping lemma per i linguaggi Context-free
Pumping lemma per i linguaggi Context-free Sia L un linguaggio context-free. E possibile determinare una costante k, dipendente da L, tale che qualunque stringa z! L con z > k si può esprimere come z=
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione informale di algoritmo Insieme di istruzioni, definite
Calcolo di equilibri auto-confermanti
Calcolo di equilibri auto-confermanti nei giochi in forma estesa con due giocatori Fabio Panozzo Politecnico di Milano 3 maggio 2010 Fabio Panozzo (Politecnico di Milano) Calcolo di equilibri auto-confermanti
Algoritmi. Un tema centrale dell informatica è lo studio degli algoritmi.
Algoritmi Un tema centrale dell informatica è lo studio degli algoritmi. Ora nostro obiettivo sarà quello di esplorare a sufficienza questa materia fondamentale per poter capire e apprezzare appieno l
Sulla nascita di questo libro. Introduzione 1
Indice Sulla nascita di questo libro V Introduzione 1 1 Luce e materia 7 Che cos è veramente la luce? 7 Ma qui che cosa oscilla? 9 Che cosa sono la frequenza e la lunghezza d onda della luce? 11 Che cos
Lezioni di Economia Politica
Università degli Studi ROMA TRE Facoltà di Giurisprudenza Lezioni di Economia Politica I principi fondamentali dell economia e gli strumenti per lo studio Giovanni Nicola De Vito - 2010 Microeconomia area
Complessità computazionale degli algoritmi
Complessità computazionale degli algoritmi Lezione n. 3.bis I precursori dei calcolatore Calcolatore di Rodi o di Andikithira 65 a.c. Blaise Pascale pascalina XVII secolo Gottfried Leibniz Joseph Jacquard
Che cos e l Informatica. Informatica generale. Caratteristiche fondamentali degli algoritmi. Esempi di algoritmi. Introduzione
Che cos e l Informatica Scienza dell elaborazione dell informazione Informatica generale non si riduce all utilizzo di strumenti (e.g. linguaggi di programmazione e basi di dati); si occupa del trattamento
Struttura Elettronica degli Atomi Meccanica quantistica
Prof. A. Martinelli Struttura Elettronica degli Atomi Meccanica quantistica Dipartimento di Farmacia 1 Il comportamento ondulatorio della materia 2 1 Il comportamento ondulatorio della materia La diffrazione
Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti
Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente,
Bosi (a cura di), Corso di scienza delle finanze, il Mulino, 2012 Capitolo I, lezione 1 Il problema e alcune premesse
Il problema e alcune premesse La costruzione della grande frontiera delle utilità e l ottimo l paretiano La scienza delle finanze studia le entrate e le uscite pubbliche con un approccio normativo e positivo
Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =
Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice
Problemi computazionali
Problemi computazionali Intrattabilità e classi computazionali Decidibilità e Trattabilità Problemi decidibili possono richiedere tempi di risoluzione elevati: Torri di Hanoi Decidibilità e Trattabilità
3.4 Metodo di Branch and Bound
3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land
Come costruire un computer quantistico
Come costruire un computer quantistico Oliver Morsch CNR-INFM, Dipartimento di Fisica, Università di Pisa Introduzione: Fisica quantistica La fisica del c.q.: La sovrapposizione e gli stati entangled Problemi
Tempo e spazio di calcolo (continua)
Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza
Laboratorio di Architettura lezione 5. Massimo Marchiori W3C/MIT/UNIVE
Laboratorio di Architettura lezione 5 Massimo Marchiori W3C/MIT/UNIVE Da Alto a Basso livello: compilazione Come si passa da un linguaggio di alto livello a uno di basso livello? Cioe a dire, come lavora
Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT
Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli
METODI MATEMATICI PER L INFORMATICA
METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una
Linee di programmazione
Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico regionale per il Lazio Istituto Tecnico Industriale A. Pacinotti ISTITUTO TECNICO TECNOLOGICO - LICEO SCIENTIFICO DELLE SCIENZE
11.4 Chiusura transitiva
6 11.4 Chiusura transitiva Il problema che consideriamo in questa sezione riguarda il calcolo della chiusura transitiva di un grafo. Dato un grafo orientato G = hv,ei, si vuole determinare il grafo orientato)
Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone
Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone Il problema dell assegnamento degli stati versione del 9/1/03 Sintesi: Assegnamento degli stati La riduzione del numero
Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015
1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)
Il mercato e i modelli microeconomici
Il mercato e i modelli microeconomici La microeconomia si preoccupa di spiegare gli equilibri di mercato partendo dal comportamento dei singoli consumatori ed imprese L analisi procede costruento MODELLI:
Intelligenza Artificiale. Lezione 6bis. Sommario. Problemi di soddisfacimento di vincoli: CSP. Vincoli CSP RN 3.8, 4.3, 4.5.
Sommario Intelligenza Artificiale CSP RN 3.8, 4.3, 4.5 Giochi RN 5 Lezione 6bis Intelligenza Artificiale Daniele Nardi, 2004 Lezione 6bis 0 Intelligenza Artificiale Daniele Nardi, 2004 Lezione 6bis 1 Problemi
Le parole dell informatica: algoritmo e decidibilità
Le parole dell informatica: algoritmo e decidibilità Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario Filosofico dell Informatica
Cercare il percorso minimo Ant Colony Optimization
Cercare il percorso minimo Ant Colony Optimization Author: Luca Albergante 1 Dipartimento di Matematica, Università degli Studi di Milano 4 Aprile 2011 L. Albergante (Univ. of Milan) PSO 4 Aprile 2011
Algoritmi di Ricerca. Esempi di programmi Java
Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare
RISOLVERE I TEMI D ESAME
RISOLVERE I TEMI D ESAME UN PARAGONE Elementi di Informatica e Programmazione Università di Brescia 1 SVILUPPO DI UN TEMA Leggere bene la traccia (evitare di andare fuori tema ) Pensare a cosa si sa e
In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.
Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più
Correlazione. Daniela Valenti, Treccani Scuola 1
Correlazione 1 I dati di un indagine per riflettere Cominciamo con i dati di un indagine svolta in una quinta classe di scuola superiore. Dopo l Esame di Stato 12 studenti si sono iscritti a corsi di laurea
Laurea triennale - Comunicazione&DAMS - UNICAL. Dr. Marco Manna 1
Corso di INFORMATICA Laurea triennale - Comunicazione&DAMS Dr. Marco Manna 1 1 Dipartimento di Matematica Università della Calabria Corso di laurea intercalsse in COMUNICAZIONE&DAMS http://elleboro.unical.it/drupalab/informatica2009/
Esercizi di Ricerca Operativa I
Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione
Corso di Laurea in Ingegneria Informatica Analisi Numerica
Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,
Fondamenti di Informatica
Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra
una possibile funzione unidirezionale
una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile (vedremo poi) fattorizzare
collana di istruzione scientifica serie di informatica
collana di istruzione scientifica serie di informatica Carlo Toffalori Flavio Corradini Stefano Leonesi Stefano Mancini Teoria della computabilità e della complessità McGraw-Hill Milano New York San Francisco
Colorazioni di mappe e basi di Gröbner
Colorazioni di mappe e basi di Gröbner Marcelo Escudeiro Hernandes 12 Luglio 2012 Per il famoso Teorema dei quattro colori, abbiamo bisogno solo di quattro colori per colorare una mappa in modo che nessuna
Complessità e Approssimazione
1 Complessità e Approssimazione Corso di Laurea in Scienze dell'informazione Corso di Laurea Specialistica in Matematica Docente: Mauro Leoncini 2 Aspetti organizzativi Sito web: http://algo.ing.unimo.it/people/mauro
