I numeri naturali e le operazioni dirette
|
|
|
- Agnella Valli
- 9 anni fa
- Visualizzazioni
Transcript
1 CAPITOLO I numeri naturali e le operazioni dirette Italiano Inglese Francese Tedesco Spagnolo E nella tua lingua? Numeri naturali natural numbers numéros naturels natürliche Zahlen números naturales Numeri pari P = {0; ; 4; ; 8; 0; ; 4;...} even numbers numéros pairs gerade Zahlen números pares... Numeri dispari D = {; ; ; 7; 9; ; ; ;...} odd numbers numéros impairs ungerade Zahlen números impares... Addizione + 4 = 7 addition addition Addition suma, adición... Addendo + 4 = 7 addend terme (de la somme) Summand sumando... Somma + 4 = 7 sum somme Summe suma... Elemento neutro Se n è un numero naturale, n + 0 = n 0 + n = n Proprietà commutativa Se a e b sono numeri naturali, a + b = b + a Proprietà associativa Se a, b e c sono numeri naturali, a + b + c = (a + b) + c = a + (b + c) Moltiplicazione 4 = identity element commutative property associative property élément neutre propriété commutative propriété associative neutrales Element Kommutativgesetz Assoziativgesetz multiplication multiplication Multiplikation multiplicación elemento neutro... propiedad conmutativa... propiedad asociativa Fattore 4 = Prodotto 4 = factor facteur Faktor factor product produit Produkt producto Proprietà distributiva Se a, b e c sono numeri naturali, (a + b) c = a c + b c distributive property propriété distributive Distributivgesetz propiedad distributiva...
2 CAPITOLO I numeri naturali e le operazioni dirette I numeri naturali Gli uomini vissuti migliaia di anni fa conoscevano i numeri. Questi numeri, nati per contare oggetti, sono chiamati numeri naturali. I numeri naturali si possono rappresentare su una semiretta sulla quale sono segnate tacche verticali poste alla stessa distanza tra loro (unità di misura) L insieme N dei numeri naturali è infinito. I numeri naturali possono essere pari o dispari. P = {0; ; 4; ; 8; 0; ; 4; ;...} D = {; ; ; 7; 9; ; ; ; 7;...} numeri pari numeri dispari Su una semiretta, variando l unità di misura, puoi rappresentare numeri sempre più grandi, senza tuttavia trovare mai un numero più grande di tutti. a) A = 7 B = C = D = 4 E = 9 A 0 7 b) F = G = 9 H = 4 I = 9 L = 0 0 4
3 CAPITOLO I numeri naturali e le operazioni dirette a) D C E A B 0 0 b) A D E B C 0 0 a) A = B =... C =... D =... E =... b) A =... B =... C =... D =... E = a) Sistema sulle semirette orientate i numeri dati. a), 4, 7, b) 8, 0, 9
4 CAPITOLO I numeri naturali e le operazioni dirette L insieme dei numeri naturali N è ordinato L insieme N è ordinato: < < < 4 <... < 8 <... < <... < 00 <... < minore di > maggiore di Se n è un numero naturale: n < n + n + > n Proprietà dell insieme N dei numeri naturali: scelti due numeri naturali diversi tra loro, uno dei due è minore dell altro; lo zero è il numero naturale che precede ogni altro numero naturale; non esiste alcun numero naturale successivo a tutti gli altri, poiché, comunque tu scelga un numero naturale, sommandogli ne ottieni uno più grande. Metti in ordine crescente < > = < > = 890
5 CAPITOLO I numeri naturali e le operazioni dirette a) Trova le operazioni che corrispondono alle diverse frecce. Ora completa nelle zone punteggiate. b) c) d) 809 e) f) Ordina
6 CAPITOLO I numeri naturali e le operazioni dirette Addizionare nell insieme N Vuoi addizionare i numeri naturali a e b. Parti dal punto a e fai b passi verso destra. Osserva: + 4 =? = 7 Per addizionare due numeri sulla semiretta dei numeri naturali, devi contare, successivamente al primo numero, tanti numeri consecutivi quante sono le unità del secondo. addendo addendo = 7 somma addendo a + b = c addendo 8 somma addizione Elemento neutro dell addizione Osserva: = = = 00 Se n è un numero naturale: n + 0 = n 0 + n = n 0 è l elemento neutro dell addizione, perché lascia invariato qualunque altro numero a cui è addizionato.
7 CAPITOLO I numeri naturali e le operazioni dirette = = = = = = = = Trova tutte le coppie di numeri naturali che danno come somma
8 CAPITOLO I numeri naturali e le operazioni dirette 4 Cambiare l ordine degli addendi in un addizione In un addizione, la somma non cambia se cambia l ordine degli addendi (proprietà commutativa dell addizione). Osserva: = = Se a e b sono numeri naturali: a + b = b + a = =... + = = = = = = = Osserva le due tabelle dopo averle completate. Noti qualcosa di particolare? Te lo potevi aspettare? Perché? 0
9 CAPITOLO I numeri naturali e le operazioni dirette Sostituire agli addendi la loro somma In un addizione, il risultato non cambia se a due o più addendi sostituisci la loro somma (proprietà associativa dell addizione) = ( + ) 0 ( + ) + = ( + ) 0 + ( + ) = Se a, b e c sono numeri naturali, a + b + c = (a + b) + c = a + (b + c) = + = = = = = = = = Nelle addizioni che seguono stabilisci tu quali addendi è utile associare subito, poi esegui l addizione = = = = = = = = = =... Ogni addendo può essere considerato la somma di altri (due o più) numeri.
10 CAPITOLO I numeri naturali e le operazioni dirette Moltiplicare nell insieme N Osserva: 4 4 = = 4 = Vuoi moltiplicare i numeri naturali a e b. Devi sommare tanti addendi uguali a b quanti sono indicati da a. fattore moltiplicazione a b = c fattore prodotto Moltiplicazione con fattori 0 e è l elemento neutro della moltiplicazione perché, moltiplicato per qualunque altro numero, lo lascia invariato. 7 0 = = 0 a 0 = = 0 0 = 0 0 a = 0 7 = 7 8 = 8 a = a = = a = a a b a b a b a b a b a b
11 CAPITOLO I numeri naturali e le operazioni dirette =... 0 = = =... 4 =... =... 0 = =... 4 =... =... 0 = =... Osserva gli esempi: a 0 = 0 0 a = 0 > Prova a esprimere la regola con parole tue
12 CAPITOLO I numeri naturali e le operazioni dirette 7 Cambiare l ordine dei fattori in una moltiplicazione In una moltiplicazione il prodotto non cambia se cambi l ordine dei fattori (proprietà commutativa della moltiplicazione). = 0 0 = Se a e b sono numeri naturali, a b = b a 4 = 0 4 =... 7 =... =... 9 = = =... 7 = =... =... 0 =... = = Osserva le tabelle dopo averle completate. Noti qualcosa di particolare? Te lo potevi aspettare? Perché? 4
13 CAPITOLO I numeri naturali e le operazioni dirette 8 A due fattori si può sostituire il loro prodotto In una moltiplicazione di più fattori il prodotto non cambia se a due o più fattori si sostituisce il loro prodotto (proprietà associativa della moltiplicazione). 4 4 ( ) (4 ) Se a, b e c sono numeri naturali, a b c = a (b c) = (a b) c 4 = 4 4 = =. 4 9 =... =. 9 =... 7 =. 4 =... 4 =... 4 =... 7 =... = 0 0 = =... 4 =... =... =... =... Se in una moltiplicazione di più fattori compaiono il e il, ti conviene sempre associarli subito.
14 CAPITOLO I numeri naturali e le operazioni dirette 9 Come moltiplicare un numero per una somma Vuoi moltiplicare un numero per una somma. Puoi moltiplicare il numero per ciascun addendo della somma e addizionare poi i prodotti ottenuti (proprietà distributiva della moltiplicazione rispetto all addizione). 4 ( + ) + Se a, b e c sono numeri naturali, (a + b) c = a c + b c Colora e completa. + = = ( + ) = Completa e disegna. a) (8 + ) = a) b) c) ( + ) = 4 ( + ) = d) ( + ) = Trova il modo più veloce per moltiplicare mentalmente un numero per 00.
Le operazioni fondamentali con i numeri relativi
SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma
4 + 7 = 11. Possiamo quindi dire che:
Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +
L insieme dei numeri naturali N Prof. Walter Pugliese
L insieme dei numeri naturali N Prof. Walter Pugliese Che cosa sono i numeri naturali I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10, Sono chiamati così perché sono stati i primi numeri che abbiamo conosciuto,
Operazioni in N Le quattro operazioni Definizioni e Proprietà
Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN
LEZIONE 1. del 10 ottobre 2011
LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente
Le operazioni fondamentali in R
La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)
La tabella dell addizione Completa la tabella e poi rispondi alle domande.
La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?
I numeri relativi e gli insiemi numerici
Capitolo algebra I numeri relativi e gli insiemi numerici E nella tua lingua? Italiano Inglese Francese Tedesco Spagnolo Insieme Z dei numeri interi N Z Set Z of integers Ensemble Z des nombres entiers
Il Sistema di numerazione decimale
Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI
Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...
Conoscenze 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...... 2. La sottrazione è l operazione che associa a due numeri, detti rispettivamente... e..,
Moltiplicazione. Divisione. Multipli e divisori
Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini
La tabella dell addizione Completa la tabella e poi rispondi alle domande.
La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?
Le quattro operazioni fondamentali
SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del
Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA
Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme
Numeri interi relativi
Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande
LE OPERAZIONI CON I NUMERI
ARITMETICA PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale CONOSCENZE 1. il concetto di somma 2. le proprietaá dell'addizione 3. il concetto di differenza 4. la proprietaá
Addizioni con l abaco Esegui le addizioni, prestando attenzione al cambio, come nell esempio.
Addizioni con l abaco Esegui le addizioni, prestando attenzione al cambio, come nell esempio. 78 5 = 96 5 = 5 565 = 9 9 = 8 89 = 655 68 = 6 5 = 68 65 = 5 75 = 7 5 = 6 76 = Macchine per contare Cambia l
Le quattro operazioni fondamentali
Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
Conclusione? Verifica la proprietà commutativa per le altre operazioni.
Le proprietà delle operazioni.( teoria / esercizi pag. 15 24) Proprietà: Sono delle regole che permettono di svolgere dei calcoli più semplicemente. Operazioni: Tu conosci le operazioni numeriche:, 1)
L INSIEME DEI NUMERI RELATIVI
L INSIEME DEI NUMERI RELATIVI Scegli il completamento corretto.. L insieme dei numeri reali R si indica con: a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è costituito dallo zero e da tutti i numeri
= < < < < < Matematica 1
NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato
Le quattro operazioni fondamentali
Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi:
Gli argomenti di oggi: Le operazioni matematiche con i numeri INTERI RELATIVI Come facciamo a fare la ADDIZIONE con i numeri interi relativi? Consideriamo un esempio: (+5) + (+7) =? Come potrei fare? Prova
Insiemi numerici. Alcune definizioni. La retta dei numeri
Insiemi numerici Q Z N 0 1 1 1 4 4 N = 0,1,,,4, = insieme dei numeri naturali Z = insieme dei numeri interi (formato dall unione dei numeri naturali e dei numeri interi negativi) Q = insieme dei numeri
CAPITOLO 1 I NUMERI RELATIVI E GLI INSIEMI NUMERICI
CAPITOLO I NUMERI RELATIVI E GLI INSIEMI NUMERICI VIDEO SETTIMANA DA CASSIERE PRIMA DI COMINCIARE GUARDA! IL VIDEO Robert lavora alla cassa di un negozio e a fine giornata deve vedere dagli scontrini quanto
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti
L insieme dei numeri Relativi
L insieme dei numeri Relativi ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Ampliamento di N e Q: i relativi Nell insieme N non possiamo fare operazioni quali -1 perché il risultato non
Le quattro operazioni fondamentali
1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
2/2/2019 Documento senza titolo - Documenti Google
2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit 1/4 2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit
Somma di due o più numeri naturali
Somma di due o più numeri naturali Somma di due o più numeri naturali Abbiamo visto in precedenza che ad ogni insieme finito A corrisponde un ben preciso numero naturale che possiamo indicare col seguente
L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze)
Scegli il completamento corretto. L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze). L insieme dei numeri reali R si indica con : a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è
Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.
I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25
MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche
MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
Insiemi numerici. Teoria in sintesi NUMERI NATURALI
Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri
ESERCIZIARIO DI MATEMATICA
Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi
OPERAZIONI IN Q = + = = = =
OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione
Le quattro operazioni
Le quattro operazioni 1. Addizione a + b = c addendi somma Proprietà commutativa Cambiando l ordine degli addendi, la somma non cambia. a + b = b + a Proprietà associativa La somma di tre numeri non cambia,
Logica matematica e ragionamento numerico
5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:
ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI
ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del
La moltiplicazione di numeri naturali: esercizi svolti
La moltiplicazione di numeri naturali: esercizi svolti La moltiplicazione è una delle quattro operazioni fondamentali dell'aritmetica. È un modo sintetico per rappresentare la somma di numeri uguali. Il
1. INSIEME DEI NUMERI NATURALI
1. INSIEME DEI NUMERI NATURALI 1.1 CONCETTO DI NUMERO NATURALE: UGUAGLIANZA E DISUGUAGLIANZA Consideriamo l'insieme E, detto insieme Universo, costituito da tutti i possibili insiemi che si possono costruire
Monomi L insieme dei monomi
Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili
1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.
I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA
Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive
Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando
1 Le espressioni algebriche letterali
1 Le espressioni algebriche letterali DEFINIZIONE. Chiamiamo espressione algebrica letterale un insieme di numeri, rappresentati anche da lettere, legati uno all altro da segni di operazione. ESEMPI 2a
9.4 Esercizi. Sezione 9.4. Esercizi 253
Sezione 9.. Esercizi 5 9. Esercizi 9..1 Esercizi dei singoli paragrafi 9.1 - Espressioni letterali e valori numerici 9.1. Esprimi con una formula l area della superficie della zona colorata della figura
VERIFICA DI MATEMATICA - 7 novembre 2018 classe 1 a E ARITMETICA
VERIFICA DI MATEMATICA - 7 novembre 2018 classe 1 a E Nome...Cognome... ARITMETICA 1. Completa e rispondi alle domande. a) L elemento neutro della moltiplicazione è 1. Perché? Perché a 1= a. b) La divisione
Dopo aver ripassato la regola, esegui le addizioni applicando correttamente la proprietà commutativa =
LE PROPRIETÀ DELL ADDIZIONE Ricorda Le proprietà dell addizione sono: commutativa: cambiando l ordine degli addendi il risultato non cambia; associativa: sostituendo ad alcuni addendi la loro somma il
I NUMERI INTERI RELATIVI
I NUMERI INTERI RELATIVI Alunn... 2M. 1. Completa: a. I numeri relativi risolvono l esigenza di poter eseguire sempre la... b. Si chiamano numeri relativi i numeri il cui valore è relativo al... che li
LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali
LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA
3.Polinomi ed operazioni con essi
MatematicaC Algebra1 1.Lebasidelcalcololetterale1.Polinomieoperazioniconessi....Polinomi ed operazioni con essi 1. Definizioni fondamentali Un polinomio è una somma algebrica di monomi, ciascuno dei quali
Il numero. Gli arabi usano simboli diversi dai nostri: Anche i cinesi usano altri simboli: I romani usavano simboli ancora diversi:
il testo: 01 Il sistema di numerazione decimale Per scrivere i numeri in Italia usiamo un modo (sistema) diverso da altri paesi. Si chiama sistema di numerazione decimale perché usa 10 segni (simboli)
La proprietà associativa Applica la proprietà associativa, come nell esempio.
La proprietà associativa Applica la proprietà associativa, come nell esempio. es.: (3 + 47) + 0 = 3 + (47 + 0) = 3 + 47 + 0 = 80 (9 +) + 74 =...... +... +... = 58 + (5 + 79) =... +... +... =...... +...
Richiami di aritmetica (1)
Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo
Test di autovalutazione
Test di autovalutazione 0 10 20 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.
Agli studenti delle classi prime
Agli studenti delle classi prime Ti consigliamo di svolgere durante il.periodo estivo i seguenti esercizi che hanno lo scopo di consolidare le conoscenze e i concetti fondamentali affrontati nella Scuola
Progetto Matematica in Rete - Numeri naturali - I numeri naturali
I numeri naturali Quali sono i numeri naturali? I numeri naturali sono : 0,1,,3,4,5,6,7,8,9,10,11 I numeri naturali hanno un ordine cioè dati due numeri naturali distinti a e b si può sempre stabilire
Espressioni letterali e valori numerici
Espressioni letterali e valori numerici 8 8.1 Lettere 8.1.1 Lettere per esprimere formule Esempio 8.1. In tutte le villette a schiera di recente costruzione del nuovo quartiere Stella, vi è un terreno
Esperto: Marco Tarantino
` ` ` ` MULTIPLI UNITA DI MISURA SOTTOMULTIPLI M h k da k u k h da u d c m km hm dam m dm cm mm hl dal l dl cl ml Mg hk Kg da Kg Kg hg dag g dg cg mg ESEMPIO ESEMPIO Sarebbe meglio chiamarli "tecniche"
Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3
Calcolo mentale rapido Proprietà delle operazioni Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: Proprietà commutativa dell addizione
2. NUMERI INTERI RELATIVI
2. NUMERI INTERI RELATIVI 1. I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l'operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande
L insieme dei numeri razionali Q Prof. Walter Pugliese
L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà
La proprietà associativa Applica la proprietà associativa, come nell esempio.
La proprietà associativa Applica la proprietà associativa, come nell esempio. es.: (3 + 47) + 0 = 3 + (47 + 0) = 3 + 47 + 0 = 80 (9 +) + 74 =...... +... +... = 58 + (5 + 79) =... +... +... =...... +...
posso assicurare che le mie sono ancora maggiori
PROF. SSA G. CAFAGNA CLASSI: 1 B, 1 G, 1 I, 1 M, 1 N Non preoccuparti delle difficoltà che incontri in matematica, ti posso assicurare che le mie sono ancora maggiori (Albert Einstein) ADDIZIONE I due
La tabella è completa perché l'addizione è un'operazione sempre possibile.
Operazioni aritmetiche fondamentali in N Addizione Operazione che a due numeri (addendi) ne associa un terzo (somma) ottenuto contando di seguito al primo tante unità quante ne rappresenta il secondo.
LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA
LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π 2 3 11
L insieme dei numeri Relativi (Z)
L insieme dei numeri Relativi (Z) L esigenza dei numeri relativi Due precise situazioni ci spingono ad ampliare l'insieme de numeri naturali (N): una di carattere pratico, un'altra di carattere più teorico.
270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2.
70 Capitolo 10. Monomi 10.9 Esercizi 10.9.1 Esercizi dei singoli paragrafi 10.1 - L insieme dei monomi 10.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x
Operatori di confronto:
Operatori di confronto: confrontano tra loro due numeri e come risultato danno come risposta o operatore si legge esempio risposta = uguale a diverso da > maggiore di < minore di maggiore o uguale a minore
Numeri interi relativi
1 Numeri interi relativi Introduciamo dei numeri "dotati di segno" per risolvere dei problemi della vita quotidiana in cui una stessa grandezza può variare in due direzioni (meglio dire "due versi di percorrenza")
Sezione 9.9. Esercizi 189
Sezione 9.9. Esercizi 189 9.9 Esercizi 9.9.1 Esercizi dei singoli paragrafi 9.1 - L insieme dei monomi 9.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x
Scheda per il recupero 1
A Ripasso Le operazioni in N e le loro proprietà OPERAZIONE PROPRIETÀ ESEMPI Addizione Interna a N (ovvero la somma di due numeri naturali è sempre un numero naturale) Commutativa a þ b ¼ b þ a Associativa
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 4 2016 GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π
CORSO DI AZZERAMENTO DI MATEMATICA
CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA
GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni
GLI INSIEMI NUMERICI N Z Q R -C 3 2 Ampliamento degli insiemi numerici Chiusura rispetto alle operazioni L insieme N = {0; 1; 2; 3; 4; } dei numeri naturali è chiuso rispetto all addizione e alla moltiplicazione
Disequazioni in una incognita. La rappresentazione delle soluzioni
Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla
