L INSIEME DEI NUMERI RELATIVI
|
|
|
- Vito Fabbri
- 9 anni fa
- Visualizzazioni
Transcript
1 L INSIEME DEI NUMERI RELATIVI Scegli il completamento corretto.. L insieme dei numeri reali R si indica con: a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è costituito dallo zero e da tutti i numeri interi positivi e negativi b. coincide con l insieme N c. è formato dai numeri interi relativi e razionali relativi. Completa. a. I numeri reali si rappresentano su... b. I numeri positivi si trovano a c. I numeri negativi si trovano a d. Ad ogni numero reale corrisponde un... detto Considera i punti assegnati sulla retta orientata e completa le frasi. u Il punto A è l immagine del numero Il punto G è l immagine del numero. Il punto C è l immagine del numero.. 0 C A L immagine del numero -/ è il punto... L immagine del numero +/ è il punto... L immagine del numero è il punto... Completa: a. Il modulo di un numero relativo è.. b. Due numeri si dicono concordi se.. c. Due numeri si dicono discordi se.. d. Due numeri si dicono opposti se.... e. L opposto di,6 è. f. Tra due numeri relativi discordi è minore quello g. Tra due numeri relativi opposti è maggiore h. Tra due numeri positivi è minore quello che ha i. Tra due numeri negativi è maggiore quello che ha 6. Segna il completamento corretto + < a. - b. + c. + - > a. 0 b. - c. - D G B. Completa. a. La somma di due numeri relativi concordi è un numero relativo.... con essi e che ha per valore assoluto.. dei valori assoluti b. La somma di due numeri relativi discordi è un numero relativo..... con l addendo avente il valore assoluto....e che ha come valore assoluto....dei valori assoluti c. La somma di due numeri relativi opposti è.... F
2 . Completa. a. La differenza di due numeri relativi si ottiene addizionando al primo. b. (- ) - (+ ) =.. perché c. Si dice addizione algebrica una., il risultato si chiama... Indica con una crocetta la risposta corretta. (- ) ( - 6) = a. - b.+ c. (- ) (- ) = a. - b. - c Completa. a. Il prodotto di due numeri relativi è un numero che ha per valore assoluto.....ed è... se i numeri sono...., negativo se b. Il prodotto di più numeri relativi è un numero positivo se tutti i fattori sono positivi o se i fattori negativi sono in numero... c. Il quoziente di due numeri relativi è un numero che ha per valore assoluto.. ed è... se i numeri sono....., negativo se Segna il completamento corretto. a. b. c. 0 6 a. 6 b. + 6 c. + : 0 a. b. c. 0. Completa. a. La potenza di un numero relativo con esponente positivo è un numero relativo che ha per valore assoluto della base ed è sempre.. tranne quando la base è.. e l esponente è... b. La potenza di un numero relativo con esponente negativo è uguale. della potenza con esponente.. c. La radice quadrata di un numero positivo ha come risultato due numeri d. La radice quadrata di un numero negativo.. Segna il completamento corretto: (- ) = a. -6 b. + 6 c. + 0 = a. a. b. + c. 0 b. (+) c. = a. - b. + c. non esiste
3 . Rappresenta i numeri assegnati sulla retta orientata. +; -6; +/; - /; +; - / u 0. Associa da ogni punto indicato il numero relativo corrispondente. u F D B 0 A C E. Inserisci Il simbolo di >, < o = tra le seguenti coppie di numeri relativi ,...-, Disponi i seguenti numeri in ordine crescente. +; -; -,; -; +,6; +; -; +,.. Esegui le seguenti addizioni Esegui le seguenti sottrazioni Calcola le seguenti somme algebriche. a b Esegui le seguenti moltiplicazioni.
4 ... Esegui le seguenti divisioni. 6.. :.. 0 : : Calcola il valore delle seguenti potenze. =. ;.; ; 0 ;. ;...;....;. Scrivi sotto forma di un unica potenza.. : :. Calcola, nell insieme R, le seguenti radici quadrate.. : :.. 6 = Calcola il valore della seguente espressione. 6 0 : : 6
5 RECUPERO. Indica quali dei seguenti numeri appartengono all insieme Z, quali a Q, quali ad I. +; - ; -; 0; +,; -; ; ; -,; ; Z = {..} Q ={..} I = { }. Sistema sulla retta numerica i seguenti numeri. ; -; +6; -, ; ; + u 0. Vero o falso? a. Due numeri relativi si dicono concordi se hanno lo stesso segno.. b. Due numeri relativi si dicono opposti se hanno diverso segno e stesso modulo. c. Lo zero è il più piccolo di tutti i numeri negativi e il più grande di tutti i numeri positivi d. Tutti i numeri negativi, sulla retta orientata, si trovano a destra dello zero... Per ogni numero assegnato scrivine due discordi. + ;..;. Per ogni numero assegnato scrivi il suo opposto. -..;.; 6 ; +, Confronta i seguenti numeri relativi inserendo sui puntini il simbolo esatto ( > ; < o =). (Ricorda che fra due numeri positivi è maggiore quello che ha valore assoluto... e che fra due numeri negativi è maggiore quello in valore assoluto...) +.. ; ;... ; ;... ;. Esegui le seguenti addizioni. (Ricorda che per addizionare due numeri interi relativi devi prima stabilire se sono concordi o discordi e poi ragionare sul valore assoluto e sul segno da assegnare al risultato...) Esempi di addizione tra due numeri concordi: (+) + (+) = + (-) + (-) = - Esempi di addizione tra due numeri discordi: (+) + (-) = + (-) + (+) = -0 =. 6 =.. =.
6 . Esegui le seguenti sottrazioni. (Ricorda che per sottrarre due numeri interi relativi devi addizionare al primo termine l opposto del secondo e poi ragionare sul valore assoluto e sul segno da assegnare al risultato) Esempi: (+) - (+) = (+) + (-) = - (+) - (-) = (+) + (+) = + =. =.. 0. Calcola le somme algebriche assegnate, eliminando le parentesi. (Ricorda che se davanti ad una parentesi c è il segno + si scrive il numero nella parentesi con il suo stesso segno. Se davanti ad una parentesi c è il segno si scrive il numero nella parentesi con il segno opposto) =. 6 6 =. 0. Esegui le seguenti moltiplicazioni. (Ricorda di moltiplicare sempre prima i segni e che il prodotto è positivo se i termini sono concordi, negativo se i termini sono..) =.. =.. Esegui le seguenti divisioni. 6 : = : : 6 =.. Calcola il valore delle seguenti potenze. (Ricorda che le potenze sono sempre positive, tranne quando la base è negativa e l esponente è dispari)! =. Calcola il valore della seguente espressione. 0 : =.. = 6 =
7 POTENZIAMENTO. Scrivi il numero intero relativo più grande che renda vere le seguenti disuguaglianze:.> - ;.> ;. <. Completa la seguente tabella : ;.> Intero precedente Numero relativo Intero successivo 6 +. Vero o Falso? Rispondi e giustifica con un esempio. a. La somma di due numeri discordi può essere positiva... Es.... b. La somma di due numeri negativi è un numero negativo minore di entrambi gli addendi... Es... c. Addizionando - ad un numero negativo si ottiene, coma somma, un numero maggiore del numero dato. Es... d. La differenza di due numeri opposti è uguale a zero.. Es..... Calcola il termine mancante : Completa la tabella: a b = : a a b= a Esprimi sotto forma di un unica potenza.
8 = : = : =. =... Scrivi l espressione corrispondente alle seguenti istruzioni e risolvila. Moltiplica per - la somma di e, aggiungi al prodotto ottenuto la differenza tra il quadrato di e. Calcola il valore della seguente espressione. : 0. Scrivi per esteso i seguenti numeri. a. 0 - = b = c. 0 - =
NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto
NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi
Le operazioni fondamentali con i numeri relativi
SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma
I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo
I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal
POTENZE E NOTAZIONE ESPONENZIALE Conoscenze
POTENZE E NOTAZIONE ESPONENZIALE Conoscenze 1. Completa la seguente affermazione : L elevamento a potenza è l operazione che associa a due numeri a ed n, detti rispettivamente base ed esponente, un terzo
Algebra. I numeri relativi
I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti
POTENZE E NOTAZIONE ESPONENZIALE Conoscenze
POTENZE E NOTAZIONE ESPONENZIALE Conoscenze 1. Completa la seguente affermazione: L elevamento a potenza è l operazione che associa a...... che si ottiene...... 2. Completa la seguente tabella: Potenza
40 Capitolo 2. Numeri interi relativi. d ) + 10 =...; g ) ; h ) ; i ) ; j ) ; k ) ; l ) +7...
40 Capitolo 2. Numeri interi relativi 2.5 Esercizi 2.5.1 Esercizi dei singoli paragrafi 2.3 - Confronto di numeri relativi 2.1. Riscrivi in ordine crescente (dal più piccolo al più grande) e in ordine
Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA
Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
Le operazioni fondamentali in R
La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)
Numeri relativi: numeri il cui valore dipende dal segno che li precede.
. Definizioni e proprietà Numeri relativi: numeri il cui valore dipende dal segno che li precede. + 4 è un numero positivo, cioè maggiore di 0, perché preceduto dal segno + (il segno + davanti ai numeri
Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.
I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25
SEGNO DIVERSO - VALORE ASSOLUTO DIVERSO SEGNO DIVERSO - STESSO VALORE ASSOLUTO
SCHEDA DI LAVORO: I NUMERI RELATIVI CARATTERISTICHE DEI NUMERI RELATIVI I NUMERI RELATIVI COMPRENDONO TUTTI I NUMERI POSITIVI, TUTTI I NUMERI NEGATIVI E LO ZERO OGNI NUMERO INTERO RELATIVO È FORMATO DA
I NUMERI RELATIVI ALGEBRA PER RICORDARE PREREQUISITI
ALGEBRA I NUMERI RELATIVI PREREQUISITI l conoscere le proprietaá delle quattro operazioni con i numeri naturali e saperle applicare l svolgere calcoli con le frazioni CONOSCENZE gli insiemi Z, Q, R la
DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze
DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da..., si dice che a è divisibile per b se... b) In N la divisione è possibile solo se... 2. Sostituisci
I numeri relativi e gli insiemi numerici
Capitolo algebra I numeri relativi e gli insiemi numerici E nella tua lingua? Italiano Inglese Francese Tedesco Spagnolo Insieme Z dei numeri interi N Z Set Z of integers Ensemble Z des nombres entiers
Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...
Conoscenze 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...... 2. La sottrazione è l operazione che associa a due numeri, detti rispettivamente... e..,
Moltiplicazione. Divisione. Multipli e divisori
Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini
NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)
NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI
L insieme dei numeri Relativi
L insieme dei numeri Relativi ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Ampliamento di N e Q: i relativi Nell insieme N non possiamo fare operazioni quali -1 perché il risultato non
ESERCIZIARIO DI MATEMATICA
Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi
FRAZIONI E NUMERI DECIMALI Conoscenze
FRAZIONI E NUMERI DECIMALI Conoscenze 1. Rispondi: a. Che tipo di numero si ottiene dividendo numeratore e denominatore di una frazione apparente? un numero naturale b. Quali numeri decimali si possono
Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y
Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio
Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi:
Gli argomenti di oggi: Le operazioni matematiche con i numeri INTERI RELATIVI Come facciamo a fare la ADDIZIONE con i numeri interi relativi? Consideriamo un esempio: (+5) + (+7) =? Come potrei fare? Prova
Numeri interi relativi
Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande
GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali}
GLOSSARIO MATEMATICO SIMBOLI MATEMATICI N insieme dei naturali { 0,,,,,... } Z insieme dei interi relativi {...,,,0,,,... } Q insieme dei razionali...,,,0, +, +,... 7 Q a insieme dei razionali positivi
FRAZIONI E NUMERI DECIMALI (prova di verifica delle conoscenze) Cognome. Nome. Classe. Data.
FRAZIONI E NUMERI DECIMALI (prova di verifica delle conoscenze) Cognome. Nome. Classe. Data. 1. Rispondi: a. Che tipo di numero si ottiene dividendo numeratore e denominatore di una frazione apparente?
DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze
DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da zero, si dice che a è divisibile per b se la divisione a : b è esatta, cioè ha resto 0 b) In
MONOMI. In ogni monomio si distingue il coefficiente numerico e la parte letterale
CALCOLO LETTERALE MONOMI E POLINOMI MONOMI In ogni monomio si distingue il coefficiente numerico e la parte letterale Il coefficiente numerico è il numero che è davanti al monomio e può essere 1 o anche
FRAZIONI E NUMERI DECIMALI
FRAZIONI E NUMERI DECIMALI 1. Rispondi: a. Che tipo di numero si ottiene dividendo numeratore e denominatore di una frazione apparente? b. Quali numeri decimali si possono ottenere dividendo numeratore
I NUMERI RELATIVI ESERCIZI
I NUMERI RELATIVI ESERCIZI 1. Numeri interi relativi: applicazioni nella vita quotidiana 2. Numeri concordi, discordi, opposti 3. Modulo 4. Ordinamento e confronto 2 NUMERI RELATIVI Tutti i numeri preceduti
espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:
Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico
Scheda per il recupero 1
A Ripasso Le operazioni in N e le loro proprietà OPERAZIONE PROPRIETÀ ESEMPI Addizione Interna a N (ovvero la somma di due numeri naturali è sempre un numero naturale) Commutativa a þ b ¼ b þ a Associativa
RIPASSO DI MATEMATICA FRAZIONI
SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il
Monomi L insieme dei monomi
Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili
Indice. UNITÀ 1 I numeri relativi,
Indice IDEO UNITÀ I numeri relativi, MAPPA..2.3.4.5.6.7.8 NUMERI RELATII, 2 ADDIZIONE DI NUMERI RELATII, 5 SOTTRAZIONE DI NUMERI RELATII, 8 ADDIZIONE ALGEBRICA, 9 MOLTIPLICAZIONE DI NUMERI RELATII, 2 DIISIONE
Insiemi numerici. Teoria in sintesi NUMERI NATURALI
Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri
2. NUMERI INTERI RELATIVI
2. NUMERI INTERI RELATIVI 1. I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l'operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande
L insieme dei numeri Relativi (Z)
L insieme dei numeri Relativi (Z) L esigenza dei numeri relativi Due precise situazioni ci spingono ad ampliare l'insieme de numeri naturali (N): una di carattere pratico, un'altra di carattere più teorico.
Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive
Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando
La tabella dell addizione Completa la tabella e poi rispondi alle domande.
La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?
Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA
RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci
I POLINOMI. Si chiama POLINOMIO la somma algebrica di più monomi interi. Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy;
I POLINOMI Si chiama POLINOMIO la somma algebrica di più monomi interi Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy; 8x 2 +11x+4 a 2 b 2 +4 b 3 I POLINOMI Ogni monomio che compone il polinomio
LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali
LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA
è impossibile (*) per x = -25 e per x = -5
Calcolo letterale Calcolo letterale (UbiMath) - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto a un restrittivo esempio numerico
Buone Vacanze! Compiti per le vacanze. Classe II A
Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei
Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler
Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal
LE FRAZIONI Conoscenze. 1 si ottiene la frazione... b. Se un intero contiene otto unità frazionarie, è stato diviso in... parti.
LE FRAZIONI Conoscenze 1. L unità frazionaria rappresenta: la frazione più piccola di uno una sola delle n parti uguali in cui è stato diviso l intero una sola delle parti in cui è stato diviso l intero
9. ESERCIZI SUI NUMERI RELATIVI (risposte a pag. 58)
9. ESERCIZI SUI NUMERI RELATIVI (risposte a pag. 8) ) Un sommozzatore scende a metri sotto il livello del mare, poi: risale di metri, ridiscende di metri, sale nuovamente di 8 metri. A che profondità si
Matrici. Prof. Walter Pugliese
Matrici Prof. Walter Pugliese Le matrici Una matrice è un insieme di numeri reali organizzati in righe e colonne. Se n è il numero delle righe e m e il numero delle colonne si dice che la matrice è di
LE OPERAZIONI CON I NUMERI
ARITMETICA PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale CONOSCENZE 1. il concetto di somma 2. le proprietaá dell'addizione 3. il concetto di differenza 4. la proprietaá
ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI
ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)
LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come
La tabella dell addizione Completa la tabella e poi rispondi alle domande.
La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?
La tabella è completa perché l'addizione è un'operazione sempre possibile.
Operazioni aritmetiche fondamentali in N Addizione Operazione che a due numeri (addendi) ne associa un terzo (somma) ottenuto contando di seguito al primo tante unità quante ne rappresenta il secondo.
Il Sistema di numerazione decimale
Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI
UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3.
UNITÀ. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI. Generalità e definizioni sulle diquazioni.. I principi di equivalenza delle diquazioni.. Diquazioni di primo grado.. Diquazioni con più fattori di primo grado..
Logica matematica e ragionamento numerico
5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:
4 + 7 = 11. Possiamo quindi dire che:
Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +
Numeri interi relativi
1 Numeri interi relativi Introduciamo dei numeri "dotati di segno" per risolvere dei problemi della vita quotidiana in cui una stessa grandezza può variare in due direzioni (meglio dire "due versi di percorrenza")
Le quattro operazioni fondamentali
SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del
I RADICALI QUADRATICI
I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,
270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2.
70 Capitolo 10. Monomi 10.9 Esercizi 10.9.1 Esercizi dei singoli paragrafi 10.1 - L insieme dei monomi 10.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x
= < < < < < Matematica 1
NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato
Le quattro operazioni fondamentali
1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
Sezione 9.9. Esercizi 189
Sezione 9.9. Esercizi 189 9.9 Esercizi 9.9.1 Esercizi dei singoli paragrafi 9.1 - L insieme dei monomi 9.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica [email protected] LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti
CONOSCENZE 1. espressioni letterali e monomi. 2. le operazioni con i monomi 3. i polinomi 4. le operazioni con i polinomi. 5. i prodotti notevoli
ALGEBRA IL CALCOLO LETTERALE PREREQUISITI l l l conoscere e operare con tutte le operazioni nell'insieme R conoscere e utilizzare le proprietaá delle operazioni conoscere e utilizzare le proprietaá delle
Operazioni in N Le quattro operazioni Definizioni e Proprietà
Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN
Le quattro operazioni fondamentali
Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
SCHEDA DI RECUPERO SULLE POTENZE
SCHEDA DI RECUPERO SULLE POTENZE Definizione di potenza La potenza n-esima di un numero qualsiasi a è il prodotto di n fattori tutti uguali ad a. a n a a a a a a a. a n- volte La scrittura a n si chiama
radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25
RADICALI Termini x y a x = indice della radice y = esponente del radicando 25 = 5 perché 5 = 25 5 indica la radice quadrata di 5, non è un numero intero, è decimale, illimitato e non periodico. 16 = 2
9.4 Esercizi. Sezione 9.4. Esercizi 253
Sezione 9.. Esercizi 5 9. Esercizi 9..1 Esercizi dei singoli paragrafi 9.1 - Espressioni letterali e valori numerici 9.1. Esprimi con una formula l area della superficie della zona colorata della figura
Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE
RIPASSO SULLE POTENZE Proprietà delle potenze La formula a n indica l operazione chiamata potenza, ( a è la base ed n l esponente) che consiste nel moltiplicare la base a per se stessa n volte. Per le
L insieme dei numeri razionali Q Prof. Walter Pugliese
L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà
1.2 MONOMI E OPERAZIONI CON I MONOMI
Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in
LEZIONE 1. del 10 ottobre 2011
LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente
CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI
ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA
SCHEDA DI RECUPERO SUI NUMERI RELATIVI
SCHEDA DI RECUPERO SUI NUMERI RELATIVI I numeri relativi sono l insieme dei numeri negativi (preceduti dal segno -) numeri positivi (il segno + è spesso omesso) lo zero. Valore assoluto di un numero relativo
Ripasso di potenze. Esercitazione effettuata dal al Ore effettive. Formatore. Alessia Cesana. N scheda. Corso: II O.S.P.A. Laboratorio: Matematica
C.S.F. En.A.I.P. Cuneo Corso: II O.S.P.A. Laboratorio: Matematica N scheda 1 Titolo Esercitazione / Argomento trattato Ripasso di potenze Obiettivi: Le proprietà delle potenze: teoria ed esercizi h previste:
Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:
B. Polinomi B.1 Cos è un polinomio Un POLINOMIO è la somma di due o più monomi. Se ha due termini, come a+b è detto binomio Se ha tre termini, come a-3b+cx è detto trinomio, eccetera GRADO DI UN POLINOMIO
CORSO DI AZZERAMENTO DI MATEMATICA
CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA
GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni
GLI INSIEMI NUMERICI N Z Q R -C 3 2 Ampliamento degli insiemi numerici Chiusura rispetto alle operazioni L insieme N = {0; 1; 2; 3; 4; } dei numeri naturali è chiuso rispetto all addizione e alla moltiplicazione
Richiami di aritmetica
Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI
DISEQUAZIONI ALGEBRICHE
UNITÀ. DISEQUAZIONI ALGEBRICHE. Generalità e definizioni sulle diquazioni algebriche.. Diquazioni di primo grado.. Diquazioni di condo grado.. Diquazioni di grado superiore al condo.. Diquazioni fratte.
Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.
Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è
Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:
Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico
LE EQUAZIONI (in rosso i risultati)
LE EQUAZIONI (in rosso i risultati) 1. Completa. a. L identità è una...uguaglianza... fra due...espressioni letterali... che è sempre...vera..., qualunque sia... il valore delle lettere che vi figurano
CONCORSO ALLIEVI AGENTTI POLIZIA PENITENZIARIA Banca dati ufficiale
CONCORSO ALLIEVI AGENTTI POLIZIA PENITENZIARIA 2017 Banca dati ufficiale 001. Quale tra questi è un numero relativo A) +1 B) 6/7 C) 8 D) 0,2 002. Quale tra questi è un numero relativo A) +2 B) 5/7 C) 10
Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.
Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo
L insieme dei numeri interi relativi
n L insieme dei numeri interi relativi [p. 61] n Le operazioni aritmetiche con i numeri interi relativi [p. 64] n Le potenze [p. 71] n Espressioni [p. 77] L insieme dei numeri interi relativi RICORDIAMO
Richiami di aritmetica (1)
Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo
