Il Metodo Radiografico (RT)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il Metodo Radiografico (RT)"

Transcript

1 Il Metodo Radiografico (RT) La radiografia è la tecnica che consente di ottenere immagini del contenuto di un solido mediante impressione di un elemento sensibile (pellicola, schermo, ecc.) da parte di radiazioni ionizzanti quali raggi X o raggi. Il meccanismo di formazione dell immagine è legato al differente assorbimento delle radiazioni nel pezzo in funzione della variazione di spessore, dei diversi costituenti chimici, di disuniformità nella densità, della presenza di difetti o di eventuali fenomeni di scattering L informazione ottenibile da un singolo controllo radiografico è bidimensionale e, come tale, deve essere integrata con altre radiografie o con altri metodi volumetrici affinché la discontinuità possa essere completamente caratterizzata Pellicola Vista dall alto della pellicola = minore esposizione = maggiore esposizione

2 Il Metodo Radiografico (RT) Maggiore assorbimento Minore assorbimento

3 Le radiazioni elettromagnetiche Radiazione Energia emessa da una sorgente che si propaga nello spazio: a) sotto forma di onde elettromagnetiche continue b) in pacchetti discreti di energia chiamati fotoni Esempi di radiazione: Luce visibile, onde radio, microonde, calore, raggi X Tutti i tipi di radiazione vanno a costituire, nel loro insieme il cosiddetto spettro elettromagnetico, del quale la luce visibile costituisce una piccola porzione

4 Lo spettro elettromagnetico

5 Lo spettro elettromagnetico

6 Radiazioni ionizzanti Le radiazioni si classificano in: Ionizzanti: quando le onde elettromagnetiche (o i fotoni) possiedono energia sufficiente a produrre ioni nella materia (raggi X, raggi gamma) Non Ionizzanti: radiazioni che non possiedono energia sufficiente a rimuovere elettroni fortemente legati al nucleo dalle loro orbite (microonde, luce visibile) L unità di misura che si impiega per descrivere l energia di una radiazione è l elettronvolt (ev) 1 ev rappresenta l ammontare di energia guadagnata da un elettrone che attraversa una differenza di potenziale pari a 1 Volt 1eV 1, J

7 Tipi di di radiazioni ionizzanti I raggi sono particelle cariche positivamente che vengono emesse nei processi di decadimento radioattivo. Sono costituite da due neutroni e due protoni e sono, per loro natura, facilmente fermate da un foglio di carta ovvero dai primi strati di epidermide. Sono pericolose soltanto se la sorgente è interna all organismo I raggi sono elettroni o positroni emesse nei processi di decadimento radioattivo. Sono molto più penetranti delle particelle ma possono essere arrestate da sottili strati di acqua, vetro, metallo ecc. Onde elettromagnetiche (o fotoni) emessi dal nucleo di un atomo X Onde elettromagnetiche (o fotoni) non emesse dal nucleo, ma dovute a cambiamenti nell energia degli elettroni

8 Proprietà dei Raggi X e possono penetrare nella materia; sono assorbiti in maniera differenziale; si propagano in linea retta; producono degli effetti fotochimici sulle emulsioni fotografiche; ionizzano il gas attraversato; non sono deviati da campi elettrici e magnetici; la loro velocità di propagazione è uguale a quella della luce; possono liberare elettroni per effetto fotoelettrico; provocano la fluorescenza di alcune sostanze

9 Produzione dei raggi X Le radiazioni X si producono ogniqualvolta una sostanza è bombardata da elettroni ad alta velocità In pratica i raggi X si ottengono da processi di conversione dell energia quando 1. Elettroni ad alta velocità sono bruscamente decelerati quando passano interagiscono con atomi bersaglio (Bremsstrahlung, Radiazione di frenamento) 2. Elettroni incidenti espellono elettroni delle orbite interne di atomi bersaglio (Radiazione caratteristica)

10 Produzione dei raggi X I raggi X presentano uno spettro misto costituito da due parti: uno spettro continuo, determinato dalla variazione continua di energia, dovuta alla diminuzione di velocità che gli elettroni subiscono nell attraversare il bersaglio metallico uno spettro a bande (discontinuo), o spettro caratteristico, determinato dal rilascio di energia da parte degli elettroni urtati del bersaglio che ritornano sull orbita originaria. Ad ogni riga corrisponde un preciso livello di energia associato al salto dell orbita. Lo spettro caratteristico dipende dal materiale del bersaglio ed è importante sottolineare che la sua energia è piccola se confrontata con quella dello spettro continuo. L intensità dello spettro continuo è proporzionale al quadrato della tensione secondo la relazione I K V 2

11 Breve storia della Radiografia 1895 W.C. Roentgen osserva la fluorescenza in alcuni cristalli disposti in prossimità di un tubo catodico 1913 Coolidge realizza il primo tubo sottovuoto che consente di raggiungere energie dell ordine dei 100 kv 1931 L ASME accetta il metodo radiografico quale strumento di controllo dei recipienti in pressione.

12 Principi fisici del metodo Supponiamo di avere un filo di materiale conduttore e di renderlo incandescente (per effetto Joule) mediante il passaggio di una opportuna corrente. Gli elettroni eccitati dall apporto di energia riescono a staccarsi dall atomo e a fuoriuscire dal conduttore. Se poniamo ad una certa distanza dal filo una piastrina di metallo caricata positivamente gli elettroni fuoriusciti dal conduttore verranno attratti e cadranno sulla piastrina con una velocità, e quindi con un energia, direttamente proporzionale alla differenza di potenziale esistente tra conduttore e piastrina. In altre parole maggiore è la differenza di potenziale più alta è l energia degli elettroni. Quando un elettrone arriva sulla piastrina può urtare contro un elettrone di un atomo del materiale oppure non urta altri elettroni, ma viene deviato passando nelle vicinanze di un atomo. In entrambi i casi, la maggior parte dell energia liberata viene emessa sotto forma di radiazione nell intervallo dell infrarosso come calore, mentre una piccola parte sotto forma di onde elettromagnetiche a lunghezza d onda ridotta e frequenza elevata chiamate appunto raggi X

13 Principi fisici del metodo 1. Il tubo è un ampolla di vetro nella quale è praticato il vuoto spinto (la pressione interna è dell ordine dei 10-2 MPa) e che contiene due elettrodi Anodo di Tungsteno Fascio di elettroni Il catodo, o elettrodo negativo, è costituito da un filamento di tungsteno avvolto a spirale (sorgente di elettroni) e da una cupola di concentrazione (schermo focalizzante) All estremità opposta si trova l anodo (elettrodo positivo) che è realizzato usualmente con una placchetta di tungsteno. Questa rappresenta il bersaglio metallico 2. Il filamento di tungsteno, riscaldato fino all incandescenza da una corrente di debole intensità alimentata da un piccolo trasformatore, emette un fascio di elettroni che viene focalizzato dalla cupola di concentrazione verso l anodo. Braccio anodico Raggi X Catodo Braccio catodico 3 Gli elettroni liberati dal filamento sono successivamente attratti verso il bersaglio e l emissione dei raggi X è dovuta all interazione tra gli elettroni (i cosiddetti raggi catodici) con gli atomi dell anodo 4 Il passaggio verso l esterno del tubo è assicurato da finestre metalliche realizzate con sottili fogli di berillio od alluminio

14 Il Tubo di Coolidge

15 Energia della radiazione Lo spettro continuo dei raggi X può essere modificato attraverso due parametri fondamentali: la corrente con la quale viene prodotto il fascio elettronico per effetto termoionico la tensione di alimentazione imposta tra catodo e anodo che determina l accelerazione degli elettroni. Aumentare la corrente del filamento provoca un aumento della emissione di elettroni dal filamento stesso e quindi un aumento di intensità della radiazione prodotta che non ha influenza sull energia della stessa. Zona a basso spessore Aumentare la tensione del tubo significa aumentare la differenza di potenziale esistente tra catodo e anodo, e quindi agire sul campo elettrico che spinge gli elettroni sull anodo. Ciò si traduce in un aumento dell energia della radiazione X prodotta. Bassa Energia Alta Energia

16 Energia della radiazione La figura mostra la curva di intensità per quanto riguarda lo spettro continuo dei raggi X. La curva (a) è stata ottenuta con bassa corrente mentre la (b) è ottenuta con una corrente più elevata mantenendo costante la tensione di alimentazione. Il punto di intersezione di ciascuna curva con l asse delle lunghezze d onda è chiamato limite inferiore di lunghezza d onda (λmin), questo valore è completamente determinato dalla tensione di alimentazione del tubo. Aumentando la corrente del tubo radiogeno si ha l effetto di aumentare l intensità massima dei raggi X ma non la loro energia, la quale è inversamente proporzionale alla lunghezza d onda. L intensità massima si ha infatti per lo stesso valore della lunghezza d onda λmax, e il limite inferiore di lunghezza d onda è rimasto invariato.

17 Energia della radiazione Quindi, per aumentare l energia dei raggi X, e quindi la loro capacità di penetrare la materia, è necessario aumentare la tensione di alimentazione tra catodo e anodo, cioè la tensione del tubo. In figura è mostrato come varia l emissione in funzione della tensione di alimentazione. All aumentare della tensione di alimentazione da 50 a 200 kv si riduce il limite inferiore di lunghezza d onda ed anche il valore di λ per cui si ha la massima intensità di radiazioni. I raggi X di lunghezza d onda minima sono prodotti dagli elettroni aventi velocità massima o massima energia.

18 I Raggi I raggi sono radiazioni elettromagnetiche emesse dalla disintegrazione di un isotopo radioattivo Un isotopo possiede un nucleo instabile che non ha energia sufficiente a mantenersi unito La disintegrazione spontanea di un nucleo atomico origina un rilascio di energia e materia (decadimento radioattivo) Dal punto di vista dell impiego radiologico, le sorgenti più impiegate sono il Cobalto (Co-60), l Iridio (Ir-192), il Cesio (Cs-173), l itterbio e il tulio. A seconda della sostanza impiegata, si possono testare spessori di materiale estremamente variabili; per esempio le radiazioni originate dal cobalto possono penetrare una lastra di acciaio di spessore oltre 200 mm.

19 I Raggi La maggior parte degli isotopi radioattivi impiegati nei controlli industriali viene prodotta artificialmente mediante un processo di attivazione a partire da elementi stabili La tecnica dell attivazione neutronica consiste sostanzialmente nell esposizione del campione contenente l elemento stabile ad un flusso di neutroni (generalmente provenienti da un reattore nucleare) per un tempo prefissato

20 I Raggi A differenza dei raggi X, prodotti da una sorgente alimentata, la produzione di raggi gamma non può essere interrotta. I radioisotopi sono dunque incapsulati per prevenire la contaminazione ambientale La capsula radioattiva è attaccata ad un cavo per costituire il cosiddetto pigtail Il Pigtail possiede uno speciale connettore ad una estremità che lo collega ad un sistema di movimentazione.

21 I Raggi Per conservare, trasportare ed esporre il pigtail contenente il materiale radioattivo si impiega un dispositivo speciale pesantemente schermato

22 I Raggi

23 I Raggi I principali vantaggi dell impiego di sorgenti a raggi sono: ridotte dimensioni della sorgente, che è compatta e facile da trasportare elevata penetrazione delle radiazioni se comparata con le sorgenti a raggi X di uso industriale, prezzo relativamente basso rispetto ad alcune apparecchiature a raggi X, non è necessaria alcuna sorgente di elettricità, radiazione monocromatica il contrasto abbastanza tenue dell immagine permette ad un grande dominio di spessori di materiale di essere radiografati in una sola esposizione e sulla stessa pellicola. Svantaggi derivanti dall impiego di sorgenti a raggi : Impossibilità di controllare i parametri di emissione (on/off) Immagini poco contrastate Significativi problemi di sicurezza

24 I Raggi

25 Schema della Procedura Radiografica Dalla sorgente ha origine un fascio di radiazione divergente che attraversa il provino, ne viene differentemente assorbito (in funzione delle sue caratteristiche fisicochimiche) e finisce per impressionare una pellicola sensibile, uno schermo fluorescente, un convertitore fotonico (scintillatore). L immagine che si ottiene (in scala di grigi) deve essere successivamente interpretata per valutare la presenza di discontinuità che producono livelli diversi di densità dell immagine in funzione delle loro caratteristiche.

26 Schema della Procedura Radiografica La relazione esistente tra la direzione del fascio incidente e le caratteristiche geometriche delle discontinuità rappresenta un fattore estremamente critico ai fini della caratterizzazione radiografica di un componente È possibile osservare come difettosità apparentemente simili nella tipologia (cricche orientate perpendicolarmente tra loro) sono rappresentate da immagini estremamente diverse tra loro; infatti la discontinuità orientate parallelamente alla direzione di propagazione del fascio appaiono nettamente più distinguibili rispetto a quelle orientate perpendicolarmente Il fenomeno grazie al quale i raggi X producono un immagine variamente contrastata è quello dell attenuazione, che avviene a seguito di fenomeni di scattering e di assorbimento

27 Schema della Procedura Radiografica 0 o 10 o 20 o

28 Importanza del contrasto nell immagine Raggi X 150 kv Raggi Ir-192

29 Fattori critici per l esame radiografico Esame visivo preliminare dell oggetto. È importante analizzare ad occhio nudo l oggetto da testare per decidere l orientamento della direzione di indagine sia sulla base della possibile collocazione dei difetti all interno del componente, e sia in relazione agli spessori che devono essere attraversati dal fascio. Energia dei raggi X L energia dei raggi X deve essere selezionata considerando la composizione dell oggetto, la lunghezza del percorso che il fascio deve attraversare e le eventuali problematiche legate alla dispersione dei raggi. Registrazione dell immagine L immagine può essere osservata su uno schermo controllato in remoto o su pellicola in unione con opportuni schermi luminosi. Interpretazione delle radiografie Il risultato finale di una radiografia è una proiezione che non offre alcuna informazione relativamente alla profondità dei difetti nel pezzo.

30 Assorbimento e Scattering nella Materia Effetto Compton Effetto Fotoelettrico L assorbimento fotoelettrico avviene quando un fotone dei raggi X di bassa energia ( 0,5 MeV) collidendo con un atomo trasferisce tutta la sua energia ad un elettrone e, se tale energia raggiunge un certo livello di soglia, l elettrone è espulso e liberato dalla forza di attrazione del nucleo. Questo fenomeno avviene per basse energie del fotone (il quale viene completamente assorbito) e per elevati livelli di numero atomico dell atomo. L effetto Compton, noto anche come scattering incoerente, avviene quando un fotone con energia superiore alla soglia necessaria alla liberazione di un elettrone, collide con un atomo; della sua energia, parte viene usata per espellere un elettrone dell orbitale più esterno, e parte prosegue sotto forma di fotone avente però energia inferiore e direzione di propagazione diversa rispetto al fotone incidente. Produzione di coppie La produzione di coppie si verifica quando un fotone ad elevata energia (superiore a 1,2 MeV) collidendo con un atomo viene completamente assorbito e al suo posto si formano un elettrone ed un positrone. Il positrone ha una vita brevissima; esso svanisce con la formazione di due fotoni aventi energia pari a 0,5 MeV ciascuno.

31 Leggi di attenuazione Si può dimostrare che un fascio omogeneo di raggi X di intensità I 0, nell attraversare un spessore di materiale x, subisce un attenuazione di intensità I, che è proporzionale all intensità del fascio incidente e allo spessore del materiale I I x I I 0 e ( x) Questa relazione esprime la legge fondamentale sull assorbimento di un fascio omogeneo di raggi X o raggi gamma. La costante di proporzionalità è definita coefficiente di assorbimento lineare e si esprime in cm -1. Questo parametro esprime, in sostanza, la frazione di energia assorbita per cm di materiale attraversato, ed il suo valore numerico dipende dalla lunghezza d onda della radiazione incidente e dal tipo di materiale attraversato.

32 Assorbimento e Scattering Il coefficiente di assorbimento che è misurato dal rivelatore risulta essere composto da due parti: un termine legato all assorbimento vero e proprio e un termine causato dalla dispersione. L assorbimento vero e proprio è caratterizzato dalla scomparsa di un quanto di energia e dal trasferimento di essa agli elettroni del materiale attraversato La radiazione dispersa è, invece, caratterizzata da una variazione di direzione rispetto al fascio incidente, e da un energia minore Lo scattering (dispersione) è il fenomeno in seguito al quale una parte raggi emergenti dal corpo assorbente (dopo averlo attraversato) seguono delle direzioni diverse rispetto al fascio incidente. Questa radiazione è definita anche radiazione diffusa. Durante l esposizione ai raggi X o, la pellicola radiografica è colpita dalla frazione di radiazioni che hanno attraversato il pezzo in esame (che non sono state assorbite) e dalla radiazione di scattering. A seconda dello spessore del materiale, dei difetti presenti o della presenza di eventuali inclusioni di materiale a diverso coefficiente di assorbimento, le radiazioni subiscono un differente livello di attenuazione e, quando infine vanno ad incidere sulla pellicola, la impressionano in maniera differenziata con diverse densità di annerimento.

33 Registrazione delle Immagini Le tecniche di rappresentazione dei risultati di un indagine radiografica possono essere classificate come segue: Radiografia su pellicola (Film Radiography) Radiografia Computerizzata (Computed Radiography) Radiografia in tempo reale (Real-Time Radiography) Radiografia Digitale Diretta (Direct Radiography)

34 Nella pratica industriale, la pellicola radiografica è di gran lunga il sistema più impiegato Nel metodo fotografico, la radiazione X modifica le caratteristiche dell emulsione fotografica allo stesso modo in cui la luce nelle lunghezze d onda del visibile rende possibile la realizzazione di fotografie. Le pellicole per radiografie a raggi X sono formate da una base di materiale trasparente (acetato di cellulosa) uniformemente rivestita sui due lati con un emulsione gelatinosa di bromuro d argento. Il bromuro d argento si trova sotto forma di piccoli cristalli ed è disposto uniformemente all interno della gelatina. Lo spessore di ciascuno strato è circa 0,025 mm. Registrazione delle Immagini

35 Quando i raggi X o incidono sull emulsione, ha luogo una reazione chimica nei cristalli del bromuro d argento con una energia che è proporzionale all intensità della radiazione incidente e al tempo di esposizione Il risultato di tali modificazioni chimiche è latente sulla pellicola e, affinché possa essere osservato, è necessario trattare la stessa con una soluzione chimica chiamata rivelatore Il rivelatore ha un azione riduttrice nei confronti del bromuro d argento, che consiste nel prelevare il bromuro dai cristalli esposti del bromuro d argento, e depositare atomi di argento nero sulla gelatina. La concentrazione dell argento metallico nero, per unità di superficie dell emulsione, dipende dal tempo di esposizione e dunque, in definitiva, è il fattore che determina la densità della pellicola. Registrazione delle Immagini

36 Registrazione delle Immagini Impressione della pellicola Rivelatore (sviluppo) Metolo-idrochinone Arresto (Acido Acetico) Fissatore (Iposolfito di sodio) Lavaggio Essiccatura

37 Le pellicole Per le radiografie vengono utilizzati diversi tipi di pellicole che differiscono per la loro velocità (rapidità di esposizione, ISO), il contrasto e la dimensione dei grani. Nonostante la differenza di qualità tra le radiazioni delle sorgenti a raggi X e le sorgenti a raggi gamma, per entrambi i casi si impiegano gli stessi tipi di pellicole. Ciascun tipo di pellicola è caratterizzato da una curva densitometrica che rappresenta graficamente il grado di annerimento ottenibile al variare dell esposizione cui la pellicola è soggetta.

38 I Densitometri Il densitometro è lo strumento atto alla misura della densità della pellicola che aiuta il tecnico a stabilire se i limiti di densità sono rispettati I densitometri ottici prendono anche il nome di strisce densitometriche e si compongono di varie bande di grigio corrispondenti a densità note: la densità incognita della pellicola viene determinata per confronto visivo diretto con le varie bande. Questo metodo consente stime di densità sufficientemente precise anche se, ovviamente, occorre tenere presente i limiti dell apparato visivo umano.

39 Radiografia Digitale Nella Radiografia Computerizzata (Computed Radiography (CR)) al posto della pellicola si impiega una speciale lastra sensibile (composta da uno strato di fosfori) riutilizzabile che viene esposta seguendo esattamente la stessa procedura del film tradizionale

40 Radiografia Digitale I raggi X che hanno attraversato il pezzo, eccitano i fosfori della lastra e tale cambiamento si imprime in modo stabile. CR Phosphor Screen Structure X-Rays Phosphor Layer Protective Layer Phosphor Grains Substrate

41 Radiografia Digitale La lastra viene letta da una stazione dotata di PC e apposito scanner e poi cancellata (sempre per via elettronica)

42 Radiografia Digitale Mentre il laser scansiona la lastra, si origina un emissione luminosa dalle zone colpite dai raggi X che è proporzionale all energia accumulata durante la fase di esposizione. La radiazione luminosa è letta da un fotomoltiplicatore (rivelatore elettronico di luce estremamente sensibile nell'ultravioletto, in luce visibile e nel vicino infrarosso) e convertita in informazione binaria da un convertitore A/D Scanner ottico Tubo Fotomoltiplicatore Fascio Laser A/D Converter Lastra Motore

43 Radiografia Digitale Le immagini sono inviate ad una workstation per l editing l analisi e l archiviazione finale

44 Radiografia digitale diretta Nella Radiografia Digitale Diretta, la pellicola è sostituita da uno speciale pannello piatto Il pannello lavora convertendo la radiazione incidente in cariche elettriche All interno del pannello sono ospitati minuscoli condensatori che si caricano in funzione del intensità della radiazione incidente Il segnale elettrico è immagine digitale convertito in

45 La formazione dell immagine radiografica L intensità dei raggi X decresce con il quadrato della distanza come accade, del resto, per tutti gli altri tipi di onde elettromagnetiche Il fascio emesso (divergente) investe i differenti piani che lo intersecano perpendicolarmente secondo aree di dimensione progressivamente crescente nelle quali l intensità rilevata in un singolo punto diminuisce Questa legge è valida solo se la dimensione della sorgente è piccola confrontata con la distanza sorgente-oggetto (nella maggior parte delle applicazioni pratiche > 50 mm)

46 La penombra geometrica La penombra (unsharpness), si definisce come l incapacità di riprodurre fedelmente i bordi di un dato oggetto. Lo stesso termine viene anche usato per indicare la distanza minima che può essere risolta da un dato sistema radiografico. La penombra dipende dalle dimensioni della macchia focale, e dalle distanze sorgenteoggetto e oggetto-pellicola Penombra U g F d D

47 La penombra geometrica U g F d D

48 La penombra geometrica Casi particolari: Pellicola e oggetto a contatto (d=0): la penombra è trascurabile Distanza tra pellicola e oggetto molto grande: si ha ingrandimento

49 Contrasto e definizione Il contrasto può essere definito come la differenza di densità che si registra nella pellicola, in seguito all esistenza di una variazione di spessore o di densità del pezzo radiografato. Questo parametro risulta essere particolarmente critico ai fini della bontà del controllo radiografico, infatti un difetto può essere individuato nell immagine radiografica proprio a causa del contrasto tra la densità della sua immagine e la densità del materiale circostante. Più questa differenza è rilevante più facile diventa rintracciare il difetto all interno del pezzo. Mentre per contrasto si intende la differenza di densità tra due zone contigue della radiografia, con il termine definizione radiografica si esprime la rapidità con la quale avviene tale passaggio. Ottenere un elevata definizione vuol dire, in sostanza, poter distinguere in modo nitido i bordi del pezzo o i contorni di eventuali discontinuità mentre, quando la definizione è scarsa, l immagine appare velata e poco leggibile.

50 Sensibilità La sensibilità radiografica esprime convenzionalmente la minima differenza di spessore del materiale in esame che è possibile rilevare sull immagine finale, valutata nella direzione del fascio primario. In sostanza, questo parametro ha un diretto riscontro nella nitidezza con la quale la radiografia è capace di evidenziare le discontinuità nel pezzo radiografato. La valutazione pratica della sensibilità radiografica viene effettuata mediante l impiego dei cosiddetti penetrametri o Indicatori della Qualità dell Immagine (IQI), che commercialmente sono realizzati secondo tipologie differenti con materiali che possono essere omogenei rispetto al pezzo da testare o radiologicamente simili.

51 Qualità dell Immagine

52 Gli Indicatori di Qualità dell Immagine La tipologia più diffusa è quella degli IQI a fili, che sono costituiti da una serie di sette fili (Fe-Al-Cu-Ti etc.) di diametro diverso, in funzione delle caratteristiche del test da eseguire, pressati su un supporto di plastica (vedi figura, diametri da 0.25 a 0.81 mm) La sensibilità radiografica (percentuale) è calcolata come rapporto tra il diametro del filo più sottile visibile sulla radiografia e lo spessore del pezzo radiografato. Questo tipo di penetrametro viene posto generalmente a cavallo della zona di interesse che deve essere radiografata.

53 Gli Indicatori di Qualità dell Immagine Un altro tipo di penetrametro molto utilizzato è quello a fori che è sostanzialmente realizzato da una piastrina di spessore T (che rappresenta una certa percentuale dello spessore del pezzo da radiografare) sulla quale si eseguono tre fori di diametro T, 2T, 4T. In questo caso la sensibilità si valuta sulla base del diametro del foro che risulta più visibile sull immagine radiografica.

54 Gli Indicatori di Qualità dell Immagine Quando viene fatta una radiografia i penetrametri a piastra forata sono generalmente posti sulla superficie rivolta alla sorgente di radiazioni in prossimità della regione che deve essere radiografata. Se ciò dovesse risultare difficoltoso (o addirittura impossibile) i penetrametri possono essere posti sulla pellicola. Se il profilo del penetrametro è visibile sulla radiografia e lo spessore del penetrametro è, per esempio, il 2% dello spessore del provino, la sensibilità radiografica è almeno del 2%. L immagine dei fori o dei fili fornisce un indicazione sulla chiarezza con la quale un difetto sarà visibile sulla radiografia Il penetrametro può essere pensato come un difetto artificiale di cui siano note a priori tutte le caratteristiche quantitative e qualitative.

55 Alcuni esempi

56 Alcuni esempi

57 Alcuni esempi

58 Alcuni esempi

59 Alcuni esempi

Il Metodo Radiografico (RT)

Il Metodo Radiografico (RT) Il Metodo Radiografico (RT) La radiografia è la tecnica che consente di ottenere immagini del contenuto di un solido mediante impressione di un elemento sensibile (pellicola, schermo, ecc.) da parte di

Dettagli

Corso di Master Universitario di I livello in VERIFICHE DI QUALITA IN RADIODIAGNOSTICA, MEDICINA NUCLEARE E RADIOTERAPIA

Corso di Master Universitario di I livello in VERIFICHE DI QUALITA IN RADIODIAGNOSTICA, MEDICINA NUCLEARE E RADIOTERAPIA Corso di Master Universitario di I livello in VERIFICHE DI QUALITA IN RADIODIAGNOSTICA, MEDICINA NUCLEARE E RADIOTERAPIA Esame relativo al corso Tecnologie e tecniche di imaging radiodiagnostica Nome:

Dettagli

TECNICHE E TECNOLOGIE DI RIVELAZIONE DI RAGGI X PER APPLICAZIONI MEDICHE

TECNICHE E TECNOLOGIE DI RIVELAZIONE DI RAGGI X PER APPLICAZIONI MEDICHE FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI TESI DI LAUREA I LIVELLO TECNICHE E TECNOLOGIE DI RIVELAZIONE DI RAGGI X PER APPLICAZIONI MEDICHE Relatore: Dott. A. Di Bartolomeo Correlatore: Candidato:

Dettagli

Dispositivi a raggi X

Dispositivi a raggi X Dispositivi a raggi X Università degli Studi di Cagliari Servizio di Fisica Sanitaria e Radioprotezione TUBO A RAGGI X v FILAMENTO BERSAGLIO DI TUNGSTENO CIRCUITO DEL FILAMENTO CATODO CUFFIA APERTURA TUBO

Dettagli

Equazioni di Maxwell. (legge di Gauss per il campo elettrico) (legge di Gauss per il campo magnetico) C (legge di Faraday)

Equazioni di Maxwell. (legge di Gauss per il campo elettrico) (legge di Gauss per il campo magnetico) C (legge di Faraday) Equazioni di Maxwell Φ S ( r E ) = Q ε 0 (legge di Gauss per il campo elettrico) Φ S ( r B ) = 0 (legge di Gauss per il campo magnetico) C l ( r Φ B ) = µ 0 ε S ( E r ) 0 + µ (legge di Ampère - Maxwell)

Dettagli

Nuovo scenario della radiografia: dal film al digitale

Nuovo scenario della radiografia: dal film al digitale Nuovo scenario della radiografia: dal film al digitale 1 Le nuove frontiere della radiografia 2 RADIOGRAFIA Si basa sull'interazione tra un fascio di raggi X o γ diretti da una sorgente a un recettore

Dettagli

LA PRODUZIONE DEI RAGGI X

LA PRODUZIONE DEI RAGGI X UNIVERSITA POLITECNICA DELLE MARCHE Facoltà di Medicina e Chirurgia Corso di Laurea in Tecniche di Radiologia Medica, per Immagini e Radioterapia LA PRODUZIONE DEI RAGGI X A.A. 2015-2016 Tecniche di Radiodiagnostica

Dettagli

RADIAZIONI ELETTROMAGNETICHE E PRODUZIONE DI RAGGI X

RADIAZIONI ELETTROMAGNETICHE E PRODUZIONE DI RAGGI X UNIVERSITA POLITECNICA DELLE MARCHE Facoltà di Medicina e Chirurgia Corso di Laurea in Tecniche di Radiologia Medica, per Immagini e Radioterapia RADIAZIONI ELETTROMAGNETICHE E PRODUZIONE DI RAGGI X A.A.

Dettagli

Apparati per uso industriale e ricerca Dott.ssa Alessandra Bernardini

Apparati per uso industriale e ricerca Dott.ssa Alessandra Bernardini Apparati per uso industriale e ricerca Dott.ssa Alessandra Bernardini 1 Apparecchiature radiologiche per analisi industriali e ricerca Le apparecchiature a raggi X utilizzate nell industria utilizzano

Dettagli

TECNICHE RADIOCHIMICHE

TECNICHE RADIOCHIMICHE TECNICHE RADIOCHIMICHE L ATOMO - Un atomo e costituito da un nucleo carico positivamente, circondato da una nuvola di elettroni carichi negativamente. - I nuclei atomici sono costituiti da due particelle:

Dettagli

Produzione dei raggi X

Produzione dei raggi X I RAGGI X Produzione dei raggi X Tubo a raggi X Emissione per frenamento Emissione per transizione Spettro di emissione pag.1 Lunghezza d onda, frequenza, energia (fm) λ (m) 10 14 RAGGI GAMMA ν 10 12 (Å)

Dettagli

La Produzione dei Raggi X

La Produzione dei Raggi X La Produzione dei Raggi X Master: Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia Lezione 2 Dr. Rocco Romano (Dottore di Ricerca) Facoltà di Farmacia, Università degli Studi

Dettagli

SPETTROFOTOMETRIA. kcs. Una radiazione monocromatica, attraversando una soluzione diluita, è assorbita secondo la legge di Lambert-Beer:

SPETTROFOTOMETRIA. kcs. Una radiazione monocromatica, attraversando una soluzione diluita, è assorbita secondo la legge di Lambert-Beer: SPETTROFOTOMETRIA Una radiazione monocromatica, attraversando una soluzione diluita, è assorbita secondo la legge di Lambert-Beer: I= I e kcs = I e αs 0 0 I 0 : intensità incidente k : coeff. di estinzione

Dettagli

Programma di addestramento raccomandato per l esame di Radiografia di 2 livello secondo EN 473

Programma di addestramento raccomandato per l esame di Radiografia di 2 livello secondo EN 473 Programma di addestramento raccomandato per l esame di Radiografia di 2 livello secondo EN 473 0 0 0 Parte 1 - Principi del controllo radiografico 1.1 - Scopo e limitazioni del metodo di controllo radiografico

Dettagli

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 10 Radioattività... 2 L atomo... 3 Emissione di raggi x... 4 Decadimenti nucleari. 6 Il decadimento alfa.... 7 Il decadimento beta... 8 Il decadimento gamma...... 9 Interazione dei fotoni

Dettagli

Lezione 1 ELEMENTI DI FISICA NUCLEARE APPLICATA ALLA MEDICINA

Lezione 1 ELEMENTI DI FISICA NUCLEARE APPLICATA ALLA MEDICINA Lezione 1 ELEMENTI DI FISICA NUCLEARE APPLICATA ALLA MEDICINA RADIAZIONE=PROPAGAZIONE DI ENERGIA NELLO SPAZIO L energia può essere associata: a particelle materiali (radiazione corpuscolare), a vibrazioni

Dettagli

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni X 11/3/2005

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni X 11/3/2005 Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni X 11/3/2005 Diagnostica clinica Completamente cambiata negli ultimi decenni Ecografia (EC) Radiografia digitale (DR) Tomografia assiale

Dettagli

La Fisica Applicata ai Beni Culturali: l'effetto fotoelettrico per l'analisi non distruttiva di campioni di interesse storico-artistico

La Fisica Applicata ai Beni Culturali: l'effetto fotoelettrico per l'analisi non distruttiva di campioni di interesse storico-artistico La Fisica Applicata ai Beni Culturali: l'effetto fotoelettrico per l'analisi non distruttiva di campioni di interesse storico-artistico Giovanni BUCCOLIERI e-mail: giovanni.buccolieri@unisalento.it Università

Dettagli

Radioscopia e radiografia

Radioscopia e radiografia Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radioscopia e radiografia 14/3/2005 Fenomeno del buildup Somma dell effetto primario e della radiazione secondaria I = I 0 e µx I soli fotoni X primari

Dettagli

Interazione radiazione materia Dott.ssa Alessandra Bernardini

Interazione radiazione materia Dott.ssa Alessandra Bernardini Interazione radiazione materia Dott.ssa Alessandra Bernardini 1 Un po di storia Lo studio delle radiazioni ionizzanti come materia di interesse nasce nel novembre del 1895 ad opera del fisico tedesco Wilhelm

Dettagli

Programma di addestramento raccomandato per l esame di Radiografia di 1 livello

Programma di addestramento raccomandato per l esame di Radiografia di 1 livello Programma di addestramento raccomandato per l esame di Radiografia di 1 livello 0 0 0 1)- Sorveglianza del personale a Dispositivi di sorveglianza in dotazione b Lettura di dosimetri tascabili c Registrazione

Dettagli

Formazione di orbitali π. La differenza di energia tra due orbitali π è minore di quella tra due orbitali. Orbitali di non legame, n

Formazione di orbitali π. La differenza di energia tra due orbitali π è minore di quella tra due orbitali. Orbitali di non legame, n Spettroscopia Studia le interazione tra le radiazioni elettromagnetiche e la materia. Come sono fatti questi sistemi? La formazione dei legami chimici viene spiegata in termini di interazioni di orbitali

Dettagli

1/9/2005 A.Di Bartolomeo Master in Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia.

1/9/2005 A.Di Bartolomeo Master in Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia. Raggi X Introduzione ai raggi X Atomi (cenni) Radiazione elettromagnetica Generazione e spettri di raggi X Circuiti per la produzione di raggi X Tubi radiogeni Interazione di raggi X con la materia Controllo

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Spettroscopia Radiazione elettromagnetica: energia che si propaga in un mezzo fenomeno ondulatorio dovuto alla propagazione simultanea nello spazio di un campo elettrico (E) e di uno magnetico (M) perpendicolari

Dettagli

Schema di un tubo a raggi X

Schema di un tubo a raggi X Raggi X 1 Schema di un tubo a raggi X I raggi X sono prodotti quando una sostanza è bombardata da elettroni ad alta velocità. I componenti fondamentali di un tubo a raggi X sono: a) ampolla di vetro a

Dettagli

Spettroscopia di assorbimento UV-Vis

Spettroscopia di assorbimento UV-Vis Spettroscopia di assorbimento UV-Vis Metodi spettroscopici La spettroscopia studia i fenomeni alla base delle interazioni della radiazione con la materia Le tecniche spettroscopiche sono tutte quelle tecniche

Dettagli

LE RADIAZIONI ELETTROMAGNETICHE (in medicina)

LE RADIAZIONI ELETTROMAGNETICHE (in medicina) CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE LE RADIAZIONI ELETTROMAGNETICHE (in medicina) SPETTRO ELETTROMAGNETICO RADIAZIONI TERMICHE RADIAZIONI IONIZZANTI A. A. 2014-2015

Dettagli

Produzione di un fascio di raggi x

Produzione di un fascio di raggi x Produzione di un fascio di raggi x WWW.SLIDETUBE.IT Un fascio di elettroni penetra nella materia, dando origine a: produzione di elettroni secondari (raggi delta) emissione X caratteristica bremsstrahlung

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Radiazione elettromagnetica Si tratta di un fenomeno ondulatorio dato dalla propagazione in fase del campo elettrico e del campo magnetico, oscillanti in piani tra loro ortogonali e ortogonali alla direzione

Dettagli

contenitore in vetro anodo di tungsteno catodo costituito da un filamento vuoto

contenitore in vetro anodo di tungsteno catodo costituito da un filamento vuoto Questo è un tipico tubo a raggi X utilizzato nei sistemi diagnostici. All interno di un contenitore in vetro, viene inserito un anodo di tungsteno e, dal lato opposto, un catodo costituito da un filamento

Dettagli

Crisi della Fisica Classica & Fisica Quantistica

Crisi della Fisica Classica & Fisica Quantistica Crisi della Fisica Classica & Fisica Quantistica Guido Montagna Dipartimento di Fisica, Università di Pavia & INFN, Sezione di Pavia February 8, 2018 G. Montagna, Università di Pavia & INFN (Dipartimento

Dettagli

La radioattività. La radioattività è il fenomeno per cui alcuni nuclei si trasformano in altri emettendo particelle e/ radiazioneni elettromagnetiche.

La radioattività. La radioattività è il fenomeno per cui alcuni nuclei si trasformano in altri emettendo particelle e/ radiazioneni elettromagnetiche. La radioattività La radioattività è il fenomeno per cui alcuni nuclei si trasformano in altri emettendo particelle e/ radiazioneni elettromagnetiche. La radioattività: isotopi. Il numero totale di protoni

Dettagli

LE RADIAZIONI IONIZZANTI

LE RADIAZIONI IONIZZANTI LE RADIAZIONI IONIZZANTI Generalità Le radiazioni ionizzanti sono, per definizione, onde elettromagnetiche e particelle capaci di causare, direttamente o indirettamente, la ionizzazione degli atomi e delle

Dettagli

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg. Reazioni nucleari Un nucleo instabile può raggiungere una nuova condizione di stabilità attraverso una serie di decadimenti con emissione di particelle α, β, γ o di frammenti nucleari (fissione). Emissione

Dettagli

INTERAZIONI DELLE RADIAZIONI CON LA MATERIA

INTERAZIONI DELLE RADIAZIONI CON LA MATERIA M. Marengo INTERAZIONI DELLE RADIAZIONI CON LA MATERIA Servizio di Fisica Sanitaria Ospedale Policlinico S.Orsola - Malpighi, Bologna mario.marengo@unibo.it Si definiscono radiazioni ionizzanti tutte le

Dettagli

Dispositivi a raggi X

Dispositivi a raggi X Dispositivi a raggi X Università degli Studi di Cagliari Servizio di Fisica Sanitaria e Radioprotezione TUBO A RAGGI X v FILAMENTO BERSAGLIO DI TUNGSTENO CIRCUITO DEL FILAMENTO CATODO CUFFIA APERTURA TUBO

Dettagli

Fisica delle Apparecchiature per Radioterapia, lez. III RADIOTERAPIA M. Ruspa 1

Fisica delle Apparecchiature per Radioterapia, lez. III RADIOTERAPIA M. Ruspa 1 RADIOTERAPIA 14.01.11 M. Ruspa 1 Con il termine RADIOTERAPIA si intende l uso di radiazioni ionizzanti altamente energetiche (fotoni X o gamma, elettroni, protoni) nel trattamento dei tumori. La radiazione

Dettagli

Cenni di fisica moderna

Cenni di fisica moderna Cenni di fisica moderna 1 fisica e salute la fisica delle radiazioni è molto utilizzata in campo medico esistono applicazioni delle radiazioni non ionizzanti nella terapia e nella diagnosi (laser per applicazioni

Dettagli

fenomeno livelli interni atomici legami chimici vibrazioni nm Å

fenomeno livelli interni atomici legami chimici vibrazioni nm Å Spettroscopia Misura e studio dell andamento dell intensità della radiazione elettromagnetica/corpuscolare in funzione della frequenza (energia/lunghezza d onda) della radiazione stessa Quale tipo di informazione

Dettagli

FISICA delle APPARECCHIATURE per RADIOTERAPIA

FISICA delle APPARECCHIATURE per RADIOTERAPIA Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE

Dettagli

Tavolo di comando. È la parte dell impianto radiologico che pone l operatore in contatto con le restanti porzioni del sistema.

Tavolo di comando. È la parte dell impianto radiologico che pone l operatore in contatto con le restanti porzioni del sistema. Tavolo di comando È la parte dell impianto radiologico che pone l operatore in contatto con le restanti porzioni del sistema. Il tavolo di comando (TDC) è lo strumento di dialogo del TSRM con la tecnologia,,

Dettagli

Lezione 24 Radiazioni Ionizzanti

Lezione 24 Radiazioni Ionizzanti Generalità Lezione 24 Radiazioni Ionizzanti Con il termine radiazione si descrivono fenomeni molto diversi fra loro: Emissione di luce da una lampada Emissione di calore da una fiamma Particelle elementari

Dettagli

Corso eccellenza 08 febbraio 2018 Contributi della Fisica alla Medicina

Corso eccellenza 08 febbraio 2018 Contributi della Fisica alla Medicina Corso eccellenza 08 febbraio 2018 Contributi della Fisica alla Medicina di Mauro Gambaccini IMMAGINI ANALOGICHE R G B 48 134 212 250 94 1 IMMAGINI DIGITALI O NUMERICHE T ( C) y x Temperatura C 32.8 34.6

Dettagli

"Principi fisici alla base della formazione delle immagini radiologiche"

Principi fisici alla base della formazione delle immagini radiologiche Master in Verifiche di qualità in radiodiagnostica, medicina nucleare e radioterapia "Principi fisici alla base della Michele Guida Dipartimento di Fisica E. R. Caianiello e Facoltà di Ingegneria Università

Dettagli

Pinzani, Panero, Bagni Sperimentare la chimica Soluzioni degli esercizi Capitolo 9

Pinzani, Panero, Bagni Sperimentare la chimica Soluzioni degli esercizi Capitolo 9 Pinzani, Panero, Bagni Sperimentare la chimica Soluzioni degli esercizi Capitolo 9 Esercizio PAG 198 ES 1 PAG 198 ES 2 PAG 198 ES 3 PAG 198 ES 4 PAG 198 ES 5 PAG 198 ES 6 PAG 198 ES 7 PAG 198 ES 8 PAG

Dettagli

Meccanica quantistica Mathesis 2016 Prof. S. Savarino

Meccanica quantistica Mathesis 2016 Prof. S. Savarino Meccanica quantistica Mathesis 2016 Prof. S. Savarino Quanti Corpo nero: è un oggetto che assorbe tutta la radiazione senza rifletterla. Come una corda legata agli estremi può produrre onde stazionarie

Dettagli

www.fisiokinesiterapia.biz RADIAZIONI ELETTROMAGNETICHE IN MEDICINA - SPETTRO ELETTROMAGNETICO - RADIAZIONI TERMICHE: MICROONDE E INFRAROSSI - RADIAZIONI IONIZZANTI: ULTRAVIOLETTI, X E GAMMA RADIAZIONE

Dettagli

RIVELATORI DI PARTICELLE PER LO STUDIO DEI RAGGI COSMICI STAGE ESTIVO TOR VERGATA, GIUGNO 2018

RIVELATORI DI PARTICELLE PER LO STUDIO DEI RAGGI COSMICI STAGE ESTIVO TOR VERGATA, GIUGNO 2018 RIVELATORI DI PARTICELLE PER LO STUDIO DEI RAGGI COSMICI STAGE ESTIVO TOR VERGATA, 11-15 GIUGNO 2018 ARGOMENTI DELL ESPERIENZA: Struttura atomica e subatomica; Raggi cosmici; Rivelatori di particelle;

Dettagli

Decadimento a. E tipico dei radioisotopi con Z > 82 (Pb), nei quali il rapporto tra il numero dei neutroni e quello dei protoni è troppo basso.

Decadimento a. E tipico dei radioisotopi con Z > 82 (Pb), nei quali il rapporto tra il numero dei neutroni e quello dei protoni è troppo basso. Decadimento a Nel decadimento vengono emesse particelle formate da 2 protoni e 2 neutroni ( = nuclei di 4He) aventi velocità molto elevate (5-7% della velocità della luce) E tipico dei radioisotopi con

Dettagli

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio9: un fotone gamma sparisce formando una coppia

Dettagli

SOSTANZE PERICOLOSE. 1 Il numero di massa di un elemento è uguale

SOSTANZE PERICOLOSE. 1 Il numero di massa di un elemento è uguale SOSTANZE PERICOLOSE 1 Il numero di massa di un elemento è uguale a Alla somma del numero dei protoni + quello dei mesoni b alla somma del numero dei protoni, + quello dei neutroni del suo atomo c Alla

Dettagli

Controllo ad ultrasuoni

Controllo ad ultrasuoni Si sfruttano i fenomeni di propagazione degli ultrasuoni nei solidi Presenza difetto cambiamento delle impedenze acustiche Principio fisico di base - Riflessione e trasmissione degli ULTRASUONI Un onda

Dettagli

Corso di Master Universitario di I livello in VERIFICHE DI QUALITA IN RADIODIAGNOSTICA, MEDICINA NUCLEARE E RADIOTERAPIA

Corso di Master Universitario di I livello in VERIFICHE DI QUALITA IN RADIODIAGNOSTICA, MEDICINA NUCLEARE E RADIOTERAPIA Corso di Master Universitario di I livello in VERIFICHE DI QUALITA IN RADIODIAGNOSTICA, MEDICINA NUCLEARE E RADIOTERAPIA Esame relativo al corso Principi alla base della formazione dell'immagine diagnostica

Dettagli

Analisi chimiche per i beni culturali

Analisi chimiche per i beni culturali Analisi chimiche per i beni culturali Nicola Ludwig ricevimento: in via Noto giovedì dopo lezione Nicola.Ludwig@unimi.it Istituto di Fisica Generale Applicata, via Celoria 16 Programma L obiettivo del

Dettagli

Lezione 25 Radiazioni Ionizzanti. Rivelatori di Particelle 1

Lezione 25 Radiazioni Ionizzanti. Rivelatori di Particelle 1 Radiazioni Ionizzanti Rivelatori di Particelle 1 Diagnostica con radiazioni ionizzanti Diagnostica: Radiografia Tac Medicina nucleare (SPECT e PET) Rivelatori di Particelle 2 Diagnostica La diagnostica

Dettagli

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti materiali in funzione dell'energia del fascio dei fotoni Esperto Qualificato LNF - INFN Interazioni delle particelle indirettamente ionizzanti con la materia Le particelle indirettamente ionizzanti, principalmente

Dettagli

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano S P E T T R O S C O P I A SPETTROSCOPIA I PARTE Cenni generali di spettroscopia: La radiazione elettromagnetica e i parametri che la caratterizzano Le regioni dello spettro elettromagnetico Interazioni

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. L atomo di Bohr 3. Il modello atomico

Dettagli

Teoria Atomica di Dalton

Teoria Atomica di Dalton Teoria Atomica di Dalton Il concetto moderno della materia si origina nel 1806 con la teoria atomica di John Dalton: Ogni elementoè composto di atomi. Gli atomi di un dato elemento sono uguali. Gli atomi

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

Il microscopio elettronico: oltre la lunghezza d onda della luce visibile

Il microscopio elettronico: oltre la lunghezza d onda della luce visibile Il microscopio elettronico: oltre la lunghezza d onda della luce visibile Perché utilizzare gli elettroni come radiazione: - si possono produrre facilmente (fotoemissione, emissione termoionica, elettroni

Dettagli

Programma di addestramento raccomandato per l esame Radiografico (RT) di 2 livello secondo UNI EN ISO 9712

Programma di addestramento raccomandato per l esame Radiografico (RT) di 2 livello secondo UNI EN ISO 9712 SETTORE PROVE NON DISTRUTTIVE Programma di addestramento raccomandato per l esame Radiografico (RT) di 2 livello secondo UNI EN ISO 9712 Cod. PRT120 Durata 120 ore totali suddivise in 80 h in aula (incluso

Dettagli

Una famiglia di piani è caratterizzata da: Orientazione del piano nel cristallo (indici di Miller) Distanza tra i piani (d hkl

Una famiglia di piani è caratterizzata da: Orientazione del piano nel cristallo (indici di Miller) Distanza tra i piani (d hkl Reticolo reciproco E un concetto per certi versi astratto ma ci aiuta a capire i risultati degli esperimenti di diffrazione sui cristalli Il disegno di un reticolo cristallino diventerebbe rapidamente

Dettagli

HALF VALUE LAYER = 0.693/ µ

HALF VALUE LAYER = 0.693/ µ HALF VALUE LAYER = 0.693/ µ Infatti: (1) N(HVL) = N(0) e -µhvl utilizzando la legge di attenuazione exp. Ma anche: (2) N(HFL) = N(0)/2 utilizzando la definizione di HVL Uguagliando la (1) e la (2): N(0)

Dettagli

Tecnologie e tecniche di imaging radiodiagnostica

Tecnologie e tecniche di imaging radiodiagnostica Tecnologie e tecniche di imaging radiodiagnostica Parte 1 (Versione preliminare) Antonio Di Bartolomeo AA 2004-05 settembre 2005 1 1 Raggi X Introduzione ai raggi X Atomi (cenni) Radiazione elettromagnetica

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Radiazioni ionizzanti Qualunque radiazione in grado di provocare fenomeni di ionizzazione. Radiazione: trasferimento di energia attraverso lo spazio. Ionizzazione: fenomeno per il quale, da un atomo stabile

Dettagli

ANNO MONDIALE DELLA FISICA FISICA DEI CONTROLLI NON DISTRUTTIVI E LORO APPLICAZIONI INDUSTRIALI

ANNO MONDIALE DELLA FISICA FISICA DEI CONTROLLI NON DISTRUTTIVI E LORO APPLICAZIONI INDUSTRIALI ANNO MONDIALE DELLA FISICA FISICA DEI CONTROLLI NON DISTRUTTIVI E LORO APPLICAZIONI INDUSTRIALI FRANCO TONOLINI FONDAZIONE LIVIA TONOLINI CARAVAGGIO 7-8 OTTOBRE 2005 CHE COSA SONO I CONTROLLI DISTRUTTIVI

Dettagli

Spettro elettromagnetico

Spettro elettromagnetico Spettro elettromagnetico Sorgenti Finestre Tipo Oggetti rilevabili Raggi γ ev Raggi X Lunghezza d onda E hc = hν = = λ 12. 39 λ( A o ) Visibile Infrarosso icro onde Onde-radio Dimensione degli oggetti

Dettagli

Le radiazioni ionizzanti e la radioprotezione

Le radiazioni ionizzanti e la radioprotezione Le radiazioni ionizzanti e la radioprotezione Radiazioni Radiazioniionizzanti ionizzanti Il termine radiazione viene abitualmente usato per descrivere fenomeni apparentemente assai diversi tra loro,

Dettagli

Che cosa è la luce? 1

Che cosa è la luce? 1 Che cosa è la luce? 1 CAMPO ELETTROMAGNETICO 2 Onde Che cosa è un onda? Un onda è una perturbazione di un mezzo, dove il mezzo può essere un campo (es: il campo gravitazionale) o di una sostanza materiale

Dettagli

Generatore. Generatore. Un sistema a raggi-x consiste di: Tubo a raggi-x. Sistema di rilevazione

Generatore. Generatore. Un sistema a raggi-x consiste di: Tubo a raggi-x. Sistema di rilevazione Generatore Un sistema a raggi-x consiste di: Tubo a raggi-x Sistema di rilevazione Generatore Il generatore trasferisce la potenza elettrica P (KW) al tubo a raggi-x I parametri U (KV) e I (ma) vengono

Dettagli

MASTER di PRIMO LIVELLO

MASTER di PRIMO LIVELLO MASTER di PRIMO LIVELLO VERIFICHE DI QUALITA IN RADIODIAGNOSTICA, MEDICINA NUCLEARE E RADIOTERAPIA CONTROLLI delle PRESTAZIONI delle APPARECCHIATURE RADIOLOGICHE e RADIOPROTEZIONE del PAZIENTE Parte III

Dettagli

SPETTROFOTOMETRIA UV/VIS

SPETTROFOTOMETRIA UV/VIS SPETTROFOTOMETRIA UV/VIS TECNICHE SPETTROSCOPICHE Le tecniche spettroscopiche sono tutte quelle tecniche basate sull interazione tra la materia e le radiazioni elettromagnetiche. La luce, il calore ed

Dettagli

LUCE E ONDE ELETTROMAGNETICHE

LUCE E ONDE ELETTROMAGNETICHE LUCE E ONDE ELETTROMAGNETICHE QUASI TUTTO QUELLO CHE SAPPIAMO SULLA STRUTTURA DELL ATOMO DERIVA DALL ANALISI DELLA LUCE EMESSA O ASSORBITA DALLE SOSTANZE CHI FU IL PRIMO AD ACCORGERSI CHE I SINGOLI ELEMENTI

Dettagli

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro?

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro? QUESITI 1 FENOMENI ONDULATORI 1. (Da Medicina 2008) Perché un raggio di luce proveniente dal Sole e fatto passare attraverso un prisma ne emerge mostrando tutti i colori dell'arcobaleno? a) Perché riceve

Dettagli

SORGENTI DI RADIAZIONE

SORGENTI DI RADIAZIONE SORGENTI DI RADIAZIONE (da laboratorio) ORIGINE processi atomici processi nucleari produzione agli acceleratori 4 CATEGORIE GENERALI particelle cariche Elettroni veloci Particelle pesanti cariche m 1 a.m.u.

Dettagli

Spettroscopia. Spettroscopia

Spettroscopia. Spettroscopia Spettroscopia Spettroscopia IR Spettroscopia NMR Spettrometria di massa 1 Spettroscopia E un insieme di tecniche che permettono di ottenere informazioni sulla struttura di una molecola attraverso l interazione

Dettagli

Spettro delle onde elettromagnetiche. Ottica: luce visibile leggi della riflessione e rifrazione

Spettro delle onde elettromagnetiche. Ottica: luce visibile leggi della riflessione e rifrazione Spettro delle onde elettromagnetiche Ottica: luce visibile leggi della riflessione e rifrazione Introduzione Abbiamo visto che la propagazione della radiazione elettromagnetica nel vuoto è regolata dalle

Dettagli

SPETTROSCOPIA DI ASSORBIMENTO ATOMICO

SPETTROSCOPIA DI ASSORBIMENTO ATOMICO SPETTROSCOPIA DI ASSORBIMENTO ATOMICO L applicazione della spettroscopia UV-Vis ai singoli atomi piuttosto che alle molecole complesse è detta Spettroscopia di Assorbimento Atomico. L assorbimento di un

Dettagli

Crisi della Fisica Classica & Fisica Quantistica

Crisi della Fisica Classica & Fisica Quantistica Crisi della Fisica Classica & Fisica Quantistica Guido Montagna Dipartimento di Fisica, Università di Pavia & INFN, Sezione di Pavia February 11, 2018 G. Montagna, Università di Pavia & INFN (Dipartimento

Dettagli

Capitolo 8 La struttura dell atomo

Capitolo 8 La struttura dell atomo Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. La «luce» degli atomi 3. L atomo di Bohr 4. La doppia natura dell elettrone 5. L elettrone e la meccanica quantistica 6. L equazione

Dettagli

TECNICHE SPETTROSCOPICHE

TECNICHE SPETTROSCOPICHE TECNICHE SPETTROSCOPICHE L interazione delle radiazioni elettromagnetiche con la materia e essenzialmente un fenomeno quantico, che dipende sia dalle proprieta della radiazione sia dalla natura della materia

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni ionizzanti 11/3/2005 Struttura atomica Atomo Nucleo Protone 10 10 m 10 14 m 10 15 m ev MeV GeV 3 3,0 0,3 0 0 0 Atomo Dimensioni lineari

Dettagli

RADIAZIONI ELETTROMAGNETICHE IN MEDICINA

RADIAZIONI ELETTROMAGNETICHE IN MEDICINA Laurea in LOGOPEDIA corso integrato FISICA - disciplina FISICA MEDICA RADIAZIONI ELETTROMAGNETICHE IN MEDICINA PETTRO ELETTROMAGNETICO ADIAZIONI TERMICHE: MICROONDE E INFRAROSSI ADIAZIONI IONIZZANTI: ULTRAVIOLETTI,

Dettagli

Stage estivo 2002 LNF STUDIO DELLE PROPRIETA` DI UN RIVELATORE REALIZZATO CON FIBRE SCINTILLANTI

Stage estivo 2002 LNF STUDIO DELLE PROPRIETA` DI UN RIVELATORE REALIZZATO CON FIBRE SCINTILLANTI Stage estivo 2002 LNF STUDIO DELLE PROPRIETA` DI UN RIVELATORE REALIZZATO CON FIBRE SCINTILLANTI Studente: Germana Panattoni (Liceo Scientifico Bruno Touschek ) Tutore: Mario Anelli I. Principali caratteristiche

Dettagli

Le radiografie industriali secondo il Codice ASME Una garanzia per produttore e cliente

Le radiografie industriali secondo il Codice ASME Una garanzia per produttore e cliente SISTEMI QUALITÀ. Le radiografie industriali secondo il Codice ASME Una garanzia per produttore e cliente INFORMAZIONE 98 COMPONENTI IN PRESSIONE, ANALISI DELLE PRESCRIZIONI DELLA SEZIONE V, ARTICOLO II

Dettagli

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta I rivelatori Osservare il microcosmo Cose prima mai viste L occhio umano non riesce a distinguere oggetti con dimensioni inferiori a 0,1 mm (10-4 m). I primi microscopi vennero prodotti in Olanda alla

Dettagli

Esempi di esercizi per la preparazione al secondo compito di esonero

Esempi di esercizi per la preparazione al secondo compito di esonero Esempi di esercizi per la preparazione al secondo compito di esonero 1. La forza esercitata fra due cariche di segno opposto è repulsiva od attrattiva? 2. Quanto vale la forza, in modulo, esercitata fra

Dettagli

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

A 2 Z A 2 Z. PROTONI: carica +e, massa 1840 m e NEUTRONI: carica nulla, massa 1842 m e

A 2 Z A 2 Z. PROTONI: carica +e, massa 1840 m e NEUTRONI: carica nulla, massa 1842 m e PROTONI: carica +e, massa 1840 m e NEUTRONI: carica nulla, massa 184 m e Z = numero atomico = numero dei protoni (elettroni) proprietà chimiche A = numero di massa = numero dei protoni + neutroni massa

Dettagli

FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE

FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE (lezione I, 07.05.13) Marta Ruspa 1 L

Dettagli

LEZIONE 4 INTERAZIONE DEI RAGGI X E GAMMA CON LA MATERIA

LEZIONE 4 INTERAZIONE DEI RAGGI X E GAMMA CON LA MATERIA LZION 4 INTRAZION DI RAGGI X GAMMA CON LA MATRIA I raggi X hanno generalmente energie comprese fra i 5 KeV e i 500 kev. Interagendo con la materia i raggi X (interazione primaria) producono elettroni secondari

Dettagli

Atomo: modello microscopico

Atomo: modello microscopico Atomo: modello microscopico 1 Modello atomico di Dalton (1808) Materia è composta di atomi indivisibili e indistruttibili Atomi uguali hanno identica massa e identiche proprietà chimiche Gli atomi non

Dettagli

La spettrofotometria è una tecnica analitica, qualitativa e quantitativa e permette il riconoscimento e la quantizzazione di una sostanza in base al

La spettrofotometria è una tecnica analitica, qualitativa e quantitativa e permette il riconoscimento e la quantizzazione di una sostanza in base al SPETTROFOTOMETRIA Tecnica che si basa sulla misura diretta dell intensitàdi colorecioènel potere da parte di una data soluzione di assorbire della luce in una regione specifica dello spettro. La spettrofotometria

Dettagli

Componenti. 1/3. Lampada al Neon:

Componenti. 1/3. Lampada al Neon: Lampade al Neon. Componenti. Funzionamento. Caratteristiche elettriche. Analogie e differenze (neon-incandescenza). Conduzione del gas. Forma geometrica. Smaltimento RAEE. Spettro luminoso. Componenti.

Dettagli

Intensificatore. Master: Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia Lezione n. 6

Intensificatore. Master: Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia Lezione n. 6 Intensificatore Master: Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia Lezione n. 6 Dr. Rocco Romano (Dottore di Ricerca) Facoltà di Farmacia, Università degli Studi di Salerno

Dettagli

catastrofe ultravioletta

catastrofe ultravioletta Fisica moderna Radiazione termica La radiazione termica è l insieme di onde elettromagnetiche che ogni corpo emette per effetto della sua temperatura Un corpo nero è un corpo che assorbe completamente

Dettagli

Rivelatori Caratteristiche generale e concetti preliminari

Rivelatori Caratteristiche generale e concetti preliminari Rivelatori Caratteristiche generale e concetti preliminari Stage Residenziale 2012 Indice Caratteristiche generali sensibilità, risposta, spettro d ampiezza, risoluzione energetica, efficienza, tempo morto

Dettagli

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L.

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Lozzi Testi degli esercizi svolti in aula Corpo Nero 1. Il corpo

Dettagli