anno scolastico 2009 / 2010 ELETTRONICA per Elettrotecnica ed Automazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "anno scolastico 2009 / 2010 ELETTRONICA per Elettrotecnica ed Automazione"

Transcript

1 CIRCUITI COMBINATORI Un circuito combinatorio (o rete combinatoria) è un insieme interconnesso di porte logiche il cui output, istante per istante dipende unicamente dallo stato che gli ingressi della rete hanno nell istante medesimo e non dai valori che questi hanno assunto negli istanti precedenti. Una rete logica altro non è che una realizzazione fisica di una funzione binaria di variabili binarie. I circuiti combinatori implementano, pertanto, le funzioni logiche esprimibili nell algebra di Boole. I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Per descrivere i comportamenti dei circuiti digitali si può usare un algebra (notazione matematica) che specifica l operazione di ogni gate e permette di analizzare e sintetizzare (disegnare) il circuito. PORTE LOGICHE Le porte logiche sono dei semplici circuiti elettronici che possono essere considerate dei blocchi attraverso i quali poter svolgere delle operazioni logiche. Tali operazioni devono sottostare alla cosiddetta algebra binaria o Booleana: essa si basa sugli stati VERO o FALSO (TRUE or FALSE, in inglese) che, in elettronica, corrispondono al "passaggio" o "non passaggio" di corrente elettrica e quindi ai cosiddetti "LIVELLI LOGICI" "0" e "1". Le operazioni logiche fondamentali sono AND, OR, XOR, NOT. A queste si aggiungono le versioni con l'uscita invertita delle prime tre che sono NAND, NOR, XNOR. Queste non sono altro che, rispettivamente: AND+NOT, OR+NOT, XOR+NOT. A parte la funzione NOT che ha un solo ingresso e le XOR e XNOR che dispongono al massimo di due ingressi, le altre porte logiche possono disporre, teoricamente, di un qualunque numero di ingressi, tutte invece dispongono di una sola uscita (o al massimo anche dall'uscita complementare ovvero invertita). Funzione logica AND La funzione logica AND fornisce un'uscita "vera" solo quando tutti gli ingressi sono "veri". Analogamente, una porta logica AND fornisce un livello logico "1" solo quando tutti gli ingressi presentano un livello logico "1". Da un punto di vista algebrico la funzione AND è rappresentata dal prodotto degli ingressi: OUT = A * B 1

2 A B OUT = A*B Un esempio pratico è il seguente: La funzione logica OR La funzione logica OR fornisce un'uscita "vera" quando almeno un ingresso è "vero". Analogamente, una porta logica OR fornisce un livello logico "1" quando almeno un ingresso presenta un livello logico "1". Da un punto di vista algebrico la funzione OR è rappresentata dalla somma degli ingressi: OUT = A + B. A B OUT = A+B Un esempio pratico di questa funzione è il seguente: 2

3 La funzione logica NOT La funzione logica NOT fornisce un'uscita "vera" quando il suo ingresso presenta una condizione "falsa" e viceversa. Analogamente, una porta logica NOT fornisce un livello logico "1" quando il suo ingresso presenta un livello logico "0" e viceversa. Da un punto di vista algebrico la funzione NOT è rappresentata dal complemento dell ingresso. A OUT = A Un esempio pratico è dato dallo schema seguente: la lampada si accende quando l interruttore è aperto, si spegne quando è chiuso. 3

4 La funzione logica XOR La funzione logica XOR fornisce un'uscita "vera" solo quando i due ingressi presentano le condizioni logiche opposte. Analogamente, una porta logica XOR fornisce un livello logico "1" solo quando i due ingressi presentano livelli logici opposti. Dal punto di vista algebrico questa funzione è rappresentata da una somma particolare, espressa con il simbolo che ci indica che 1+1 = 0, al contrario di quanto avviene per la funzione OR, ma che rende questa funzione più simile all aritmetica binaria in cui = 0 con riporto di 1. A B OUT = A B Le Funzioni logiche NAND e NOR Le funzioni logiche che abbiamo esaminato finora sono fondamentali. Tutte le altre funzioni logiche possono essere ricavate da una combinazione di queste fondamentali. Un esempio è dato dalle funzioni NAND e NOR che si ottengono negando l uscita rispettivamente dalla AND e della OR. A B OUT = A * B A B OUT = A + B

5 La negazione dell uscita è rappresentata dal pallino posto su di essa. In realtà anche la funzione XOR può essere ricavata da una combinazione delle prime tre. Abbiamo che: Si ricava dal circuito combinatorio: Che è la realizzazione con porte logiche della funzione OUT = ( A * B) + (A * B ). RICHIAMI DELL ALGEBRA DI BOOLE Come abbiamo detto in precedenza l algebra di Boole è uno strumento che ci permette di analizzare e sintetizzare un circuito logico. I componenti dell algebra booleana sono i seguenti: OPERATORI: sono le funzioni logiche AND, OR, NOT; Regole di trasformazione ed equivalenza tra operatori booleani; OPERANDI booleani: possono assumere sono due valori (vero / falso oppure 1 / 0). Le regole fondamentali dell algebra booleana sono le seguenti: Idempotenza: A + A = A; A * A = A Proprietà commutativa: A + B = B + A; A * B = B * A Proprietà associativa: (A+B)+C = A+(B+C); (A*B)*C = A*(B*C) 5

6 Complementazione: A + Ā = 1, A * Ā = 0 Proprietà distributiva: A*(B+C) = A*B+A*C; A+(B*C) = (A+B)*(A+C) Ricorsività della negazione: A = A Proprietà di assorbimento: A + 0 = A; A * 1 = A A + 1 = 1; A * 0 = 0 A + A * B = A; A * (A + B) = A A + Ā * B = A + B A * (Ā + B) = A * B Teoremi di De Morgan Combinando opportunamente queste proprietà si giunge ai teoremi di De Morgan, espressi dalle equazioni: A + B = A + B A * B = A + B 6

7 ALCUNI ESEMPI PRATICI Il circuito addizionatore (half adder) Un esempio pratico di logica combinatoria è dato dal circuito addizionatore che esegue la somma binaria di due ingressi e ci fornisce il risultato con il riporto: Le funzioni logiche, rispettivamente per l uscita somma e l uscita riporto sono: S = X Y C = XY Nel complesso dunque questo circuito implementa una funzione logica avente due ingressi e due uscite la cui tavola della verità è: A B somma riporto A B A * B

8 Il circuito addizionatore completo (full adder) Il circuito addizionatore visto sopra ha il limite di addizionare solo due ingressi. Nel caso in cui si sommino numeri con un numero di bit maggiore uguale di 2 è necessario tenere in conto anche i riporti provenienti dai bit di peso più basso come nell esempio seguente: riporto c 3 c 2 c 1 c 0 A a 3 a 2 a 1 a 0 B b 3 b 2 b 1 b 0 A+B c 3 c 2 +b 3 +a 3 c 1 +b 2 +a 2 c 0 + b 1 + a 1 b 0 + a 0 dove a x e b x indicano i singoli bit del numero c x il bit di riporto. La figura sopra è lo schema di un addizionatore completo. Si tratta in pratica di due addizionatori in cascata i cui riporti sono sommati in una porta OR. L uscita della porta OR è il riporto complessivo. La tavola della verità di questo circuito è: Cin B A somma Cout

9 Come visibile nella figura sopra, è possibile collegare più circuiti di questo tipo per ottenere un addizionatore di numeri binari di lunghezza qualunque. Il circuito multiplexer Il circuito multiplexer è costituito da N ingressi i x, M ingressi di controllo c x ed un uscita u. Tramite gli ingressi di controllo si seleziona uno ed uno solo degli ingressi e viene portato all uscita. La rappresentazione del multiplexer è la seguente: La funzione logica del multiplexer è la seguente: u = i * c * c ) + ( i * c * c ) + ( i * c * c ) + ( i * c * ) ( c1 La realizzazione del multiplexer e la tavola della verità sono le seguenti: 9

10 c 1 c 0 u 0 0 i I I I 3 Il demultiplexer Un circuito demultiplexer viene definito come l'inverso di un circuito multiplexer, ossia come un elemento funzionale capace di commutare un solo ingresso su due o più uscite. Per convenzione, le uscite "non attivate" assumono il valore costante 0, indipendentemente dal valore assunto dall'ingresso "dati". Notare che questa convenzione pone un vincolo sui codici che possono essere utilizzati per trattare le informazioni in uscita da un demultiplexer: il valore 0 deve poter essere interpretato come un valore non significativo, una condizione di riposo, ecc., in quanto questo valore viene assegnato a tutte le uscite non connesse con l'ingresso. In figura é riportato un esempio di realizzazione di un demultiplexer a 2 uscite (comandato da un segnale di controllo c) in grado di commutare informazioni codificate su due bit. c 1 c 0 u0 u1 u2 u3 0 0 c c c c 0 10

11 Il decoder Il decoder (decodificatore) è un circuito ha n ingressi di controllo e 2 n uscite. La funzione espletata è di portare a valore logico 1 solo l uscita corrispondente al codice di controllo fornito. Il decoder può avere un ingresso di enable che ha il compito di disabilitare tutte le uscite, indipendentemente dallo stato degli ingressi Cx. C 2 C 1 C 0 U 0 U 1 U 2 U 3 U 4 U 5 U 6 U Per questo circuito, che ha più uscite, è necessario scrivere una funzione logica per ogni uscita. Per l uscita U 0 vale: U 0 = C 0 * C1 * C2 L encoder Il codificatore o encoder fa la funzione inversa del decodificatore. Il codificatore ha 2 n ingressi ed n uscite. Quando un ingresso è attivo alle uscite è presente il numero binario che identifica l ingresso. Questi circuiti dispongono anche di un uscita GS (group signal) che segnala quando almeno un ingresso è attivo. Questo segnale è importante perché ci permette di distinguere lo stato di almeno un ingresso attivo dallo stato di nessun ingresso attivo in cui il valore che assumono le uscite non ha significato. Supponendo di avere un codificatore con 8 ingressi e 3 uscite la tavola della verità sarà: 11

12 I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 U 2 U 1 U 0 GS x x x Si suppone che gli ingressi siano attivi a livello logico alto. Comparatori Scopo di un circuito comparatore é il confronto tra due numeri binari. Il confronto può essere effettuato per verificare l'uguaglianza oppure una relazione d'ordine del tipo "maggiore", "minore", ecc. Comparatori di uguaglianza Questi possono essere realizzati a partire dalla funzione elementare XNOR a due ingressi. Dalla tavola di verità di questa funzione vediamo che, interpretando l'uscita 0 come "falso" e l'uscita 1 come "vero", possiamo ottenere immediatamente in uscita il risultato del confronto per rilevare l'uguaglianza tra le due variabili di ingresso. Possiamo estendere il circuito in modo da operare il confronto tra due numeri con più bit, utilizzando una funzione del tipo XNOR per ogni coppia di bit corrispondenti da confrontare, calcolando poi l'and tra i confronti di ogni cifra. Per esempio, in figura é illustrata la realizzazione di un circuito comparatore per rilevare l'uguaglianza tra due ingressi codificati ciascuno su 3 bit (usando ovviamente lo stesso codice per i due ingressi). 12

13 La funzione booleana del circuito in figura è: u = ( a0 b0 )*( a1 b1 )*( a2 b2 ) Comparatori a > b per numeri in codice binario Il circuito diventa più complesso se dobbiamo confrontare due numeri per stabilire se uno è maggiore dell altro. Il confronto deve partire dalla cifra più significativa: se le due rappresentazioni differiscono nella cifra più significativa, allora possiamo subito concludere se la relazione a > b é vera o falsa, senza bisogno di considerare le cifre successive. Solo se le cifre più significative delle due rappresentazioni a confronto sono uguali, allora dobbiamo passare all'esame delle cifre successive per arrivare a concludere il valore di verità della relazione di confronto. La soluzione consiste nell'individuare un modulo base di confronto tra una coppia di cifre, e nel replicare tale modulo tante volte quante sono le cifre delle rappresentazioni binarie da confrontare. Il circuito di confronto può essere realizzato con un modulo circuitale con 4 ingressi e due uscite, che realizza le operazioni di confronto su una singola cifra. Indichiamo con A e B le due variabili di ingresso al modulo corrispondenti alla cifra "corrente" da esaminare per le due rappresentazioni binarie; indichiamo con C e D due variabili di ingresso ausiliarie che ci riportano la codifica del risultato del confronto sulle cifre più significative. In particolare, stabiliamo di indicare con C=1 la condizione "i confronti precedenti non hanno portato nessun risultato definitivo", e con C=0 la condizione "l'esito del confronto é già noto a seguito del confronto delle cifre precedenti". Nel caso C=0, interpretiamo poi D=0 come risposta "no, a non é maggiore di b" ed invece D=1 come risposta "si, a > b". Indichiamo infine con E e R le due uscite che codificano l'esito del confronto. In particolare 13

14 indicheremo con E=1 la condizione "neanche l'esame di questa cifra ci permette di dare una risposta definitiva", e con E=0 la condizione "la risposta é stata determinata"; in quest'ultimo caso R=0 significa "no", mentre R=1 significa "si, a > b". Per esempio un circuito comparatore a 3 bit può essere realizzato connettendo tre repliche di tale modulo come illustrato in figura: 14

LE PORTE LOGICHE. Ingresso B Ingresso A Uscita OUT

LE PORTE LOGICHE. Ingresso B Ingresso A Uscita OUT LE PORTE LOGICHE Nell'elettronica digitale le porte logiche costituiscono degli elementi fondamentali nei circuiti. Esse si possono trovare all'interno di circuiti integrati complessi, come parte integrante

Dettagli

Circuiti digitali combinatori

Circuiti digitali combinatori Circuiti digitali combinatori Parte 1 Definizioni George Boole George Boole (Lincoln, 2 novembre 1815 Ballintemple, 8 dicembre 1864) Matematico e logico britannico Considerato il fondatore della logica

Dettagli

Architettura degli Elaboratori e Laboratorio. Matteo Manzali Università degli Studi di Ferrara Anno Accademico

Architettura degli Elaboratori e Laboratorio. Matteo Manzali Università degli Studi di Ferrara Anno Accademico Architettura degli Elaboratori e Laboratorio Matteo Manzali Università degli Studi di Ferrara Anno Accademico 2016-2017 Algebra booleana L algebra booleana è un particolare tipo di algebra in cui le variabili

Dettagli

senza stato una ed una sola

senza stato una ed una sola Reti Combinatorie Un calcolatore è costituito da circuiti digitali (hardware) che provvedono a realizzare fisicamente il calcolo. Tali circuiti digitali possono essere classificati in due classi dette

Dettagli

CIRCUITI DIGITALI. La grandezza fisica utilizzata nella maggior parte dei circuiti digitali è la differenza di potenziale (tensione).

CIRCUITI DIGITALI. La grandezza fisica utilizzata nella maggior parte dei circuiti digitali è la differenza di potenziale (tensione). CIRCUITI DIGITALI Un circuito elettronico viene classificato come circuito digitale quando è possibile definire il suo comportamento per mezzo di due soli stati fisici di una sua grandezza caratteristica.

Dettagli

Y = A + B e si legge A or B.

Y = A + B e si legge A or B. PORTE LOGICHE Le principali parti elettroniche dei computer sono costituite da circuiti digitali che, come è noto, elaborano segnali logici basati sullo 0 e sull 1. I mattoni fondamentali dei circuiti

Dettagli

Circuiti di commutazione, codifica e decodifica

Circuiti di commutazione, codifica e decodifica Circuiti di commutazione, codifica e decodifica Vediamo ora i più comuni circuiti per la codifica, decodifica e commutazione di informazioni rappresentate sotto forma binaria. Tali circuiti costituiscono

Dettagli

Reti Logiche Combinatorie

Reti Logiche Combinatorie Testo di riferimento: [Congiu] - 2.4 (pagg. 37 57) Reti Logiche Combinatorie 00.b Analisi Minimizzazione booleana Sintesi Rete logica combinatoria: definizione 2 Una rete logica combinatoria èuna rete

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Algebra di Boole Algebra di Boole I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Allo

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra

Dettagli

Algebra Booleana. 13. Rif:

Algebra Booleana. 13. Rif: Algebra Booleana Fondatore: George Boole (1815-1864) Boole rilevo le analogie fra oggetti dell'algebra e oggetti della logica l algebra Booleana è il fondamento dei calcoli con circuiti digitali. Rif:

Dettagli

PORTE LOGICHE. Si effettua su due o più variabili, l uscita assume lo stato logico 1 se almeno una variabile di ingresso è allo stato logico 1.

PORTE LOGICHE. Si effettua su due o più variabili, l uscita assume lo stato logico 1 se almeno una variabile di ingresso è allo stato logico 1. PORTE LOGICHE Premessa Le principali parti elettroniche dei computer sono costituite da circuiti digitali che, come è noto, elaborano segnali logici basati sullo 0 e sull 1. I mattoni fondamentali dei

Dettagli

Richiami di Algebra di Commutazione

Richiami di Algebra di Commutazione LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n Prof. Rosario Cerbone rosario.cerbone@libero.it http://digilander.libero.it/rosario.cerbone a.a. 6-7 Richiami di Algebra di Commutazione In questa

Dettagli

Architettura degli elaboratori Ricapitolando (ciascuna freccia rappresenta un procedimento, che vedremo)

Architettura degli elaboratori Ricapitolando (ciascuna freccia rappresenta un procedimento, che vedremo) Ricapitolando 1:1 A + /A /B :1 :1 0 1 0 1 0 1 1 1 1 Tabella verità Espressione booleana Architettura degli elaboratori - 30 - Ricapitolando (ciascuna freccia rappresenta un procedimento, che vedremo) Analisi

Dettagli

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono:

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono: Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: Connettivi logici True (vero identificato con 1) False (falso identificato con 0) Le variabili

Dettagli

Circuiti e reti combinatorie. Appendice A (libro italiano) + dispense

Circuiti e reti combinatorie. Appendice A (libro italiano) + dispense Circuiti e reti combinatorie Appendice A (libro italiano) + dispense Linguaggio del calcolatore Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e Anche per esprimere

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole di Boole e Circuiti e Circuiti Logici Logici Prof. XXX Prof. Arcangelo Castiglione A.A. 2016/17 A.A. 2016/17 L Algebra di Boole 1/3 Un po di storia Il matematico

Dettagli

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica Operazioni logiche

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica Operazioni logiche Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica Operazioni logiche L algebra di oole Rev.1.1 of 2012-04-26 Componenti logiche di un elaboratore Possiamo

Dettagli

Algebra di Boole X Y Z V. Algebra di Boole

Algebra di Boole X Y Z V. Algebra di Boole L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole che

Dettagli

associate ai corrispondenti valori assunti dall uscita.

associate ai corrispondenti valori assunti dall uscita. 1. Definizione di variabile logica. Una Variabile Logica è una variabile che può assumere solo due valori: 1 True (vero, identificato con 1) False (falso, identificato con 0) Le variabili logiche si prestano

Dettagli

Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole

Algebra di Boole. Andrea Passerini Informatica. Algebra di Boole Andrea Passerini passerini@disi.unitn.it Informatica Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: True (vero identificato con 1) False (falso

Dettagli

ALGEBRA DI BOOLE. In caso di errori di battitura o se si volesse contribuire a migliorare la seguente guida contattare:

ALGEBRA DI BOOLE. In caso di errori di battitura o se si volesse contribuire a migliorare la seguente guida contattare: ALGEBRA DI BOOLE Indice Introduzione... 2 PRORIETA E TEOREMI DELL ALGEBRA DI BOOLE... 3 FUNZIONI LOGICHE PRIMARIE... 4 Funzione logica AND... 4 Funzione logica OR... 4 Funzione logica NOT... 5 FUNZIONI

Dettagli

Fondamenti di Informatica B

Fondamenti di Informatica B Fondamenti di Informatica B Lezione n.2 Alberto Broggi Gianni Conte A.A. 25-26 Fondamenti di Informatica B Algebra booleana Circuiti logici Elementi primitivi Esercizi con elementi logici Lezione n.2n

Dettagli

Logica Digitale. Fondamenti di Informatica - Prof. Gregorio Cosentino

Logica Digitale. Fondamenti di Informatica - Prof. Gregorio Cosentino Logica Digitale 1 Ma in fondo quali sono i mattoncini che compongono un calcolatore elettronico? Porte Circuiti Aritmetica Memorie Bus I/O And, Or, Nand, Nor, Not Multiplexer, Codif, Shifter, ALU Sommatori

Dettagli

Elementi di Informatica A. A. 2016/2017

Elementi di Informatica A. A. 2016/2017 Elementi di Informatica A. A. 2016/2017 Ing. Nicola Amatucci Università degli studi di Napoli Federico II Scuola Politecnica e Delle Scienze di Base nicola.amatucci@unina.it Algebra di Boole Elementi di

Dettagli

Algebra di Boole e reti logiche

Algebra di Boole e reti logiche Algebra di Boole e reti logiche Fulvio Ferroni fulvioferroni@teletu.it 2006.12.30 II Indice generale 1 Algebra di Boole................................................................. 1 1.1 Operatori

Dettagli

Proposizioni logiche e algebra di Boole

Proposizioni logiche e algebra di Boole Proposizioni logiche e algebra di Boole Docente: Ing. Edoardo Fusella Dipartimento di Ingegneria Elettrica e Tecnologie dell Informazione Via Claudio 21, 4 piano laboratorio SECLAB Università degli Studi

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere Un modello che permetta di rappresentare insiemi di numeri binari; Le funzioni che li mettano

Dettagli

Algebra di Boole Algebra di Boole

Algebra di Boole Algebra di Boole 1 L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole

Dettagli

Fondamenti di Informatica. Algebra di Boole

Fondamenti di Informatica. Algebra di Boole Fondamenti di Informatica Prof. Marco Lombardi A.A. 2018/19 L 1/3 Un po di storia Il matematico inglese George Boole nel 1847 fondò un campo della matematica e della filosofia chiamato logica simbolica

Dettagli

I circuiti elementari

I circuiti elementari I circuiti elementari Nel lavoro diprogrammazione con il computer si fa largo uso della logica delle proposizioni e delle regole dell algebra delle proposizioni o algebra di Boole. L algebra di Boole ha

Dettagli

Il livello logico digitale

Il livello logico digitale Il livello logico digitale porte logiche e moduli combinatori Algebra di commutazione Algebra booleana per un insieme di due valori Insieme di elementi A={,} Operazioni NOT (operatore unario) => = e =

Dettagli

Logica binaria. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna

Logica binaria. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna Logica binaria Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Logica binaria 2 Rappresentazione dell'informazione I calcolatori

Dettagli

Logica booleana. Bogdan Maris ( )

Logica booleana. Bogdan Maris ( ) Logica booleana 1 Algebra di Boole Opera con i soli valori di verità 0 o 1 (variabili booleane o logiche) La struttura algebrica studiata dall'algebra booleana è finalizzata all'elaborazione di espressioni

Dettagli

Introduzione ed elementi dell'algebra di Boole

Introduzione ed elementi dell'algebra di Boole Introduzione ed elementi dell'algebra di Boole CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) Università degli Studi di Napoli Federico II Il Calcolatore Elettronico è un sistema:»

Dettagli

Esercitazioni di Reti Logiche. Lezione 4

Esercitazioni di Reti Logiche. Lezione 4 Esercitazioni di Reti Logiche Lezione 4 Progettazione dei circuiti logici combinatori Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Procedura di analisi dei circuiti combinatori. Procedura di sintesi

Dettagli

Operatori logici e algebra di boole

Operatori logici e algebra di boole Operatori logici e algebra di boole Le principali parti elettroniche dei computer sono costituite da circuiti digitali che, come è noto, elaborano segnali logici basati sullo 0 e sull 1. I mattoni fondamentali

Dettagli

Circuiti Combinatori

Circuiti Combinatori Circuiti Combinatori Scopo di questo capitolo é di arrivare il più rapidamente possibile alla definizione e comprensione dei circuiti combinatori fondamentali (Multiplexer, Demultiplexer, Sommatori, ALU,

Dettagli

Algebra di Boole. Fondamenti di Informatica per Meccanici Energetici - Biomedici 1. Politecnico di Torino Ottobre Mr. Boole. Variabile booleana

Algebra di Boole. Fondamenti di Informatica per Meccanici Energetici - Biomedici 1. Politecnico di Torino Ottobre Mr. Boole. Variabile booleana Fondamenti di Informatica per Meccanici Energetici - iomedici 1 Mr. oole lgebra di oole George oole: Matematico inglese del XIX secolo lgebra che descrive le leggi del pensiero Logica da cui è possibile

Dettagli

Esercitazioni di Reti Logiche. Algebra Booleana e Porte Logiche

Esercitazioni di Reti Logiche. Algebra Booleana e Porte Logiche Esercitazioni di Reti Logiche Algebra Booleana e Porte Logiche Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico 2007/2008 Notizie Il primo parziale

Dettagli

Algebra di Boole. Introdotta nel 1874 da George Boole per fornire una rappresentazione algebrica della logica

Algebra di Boole. Introdotta nel 1874 da George Boole per fornire una rappresentazione algebrica della logica Algebra di Boole Algebra di Boole Per poter affrontare in modo sistematico lo studio dei sistemi di calcolo, abbiamo inizialmente bisogno di un apparato teorico-formale mediante il quale lavorare sulle

Dettagli

Fondamenti dell Informatica Algebra di Boole. Prof.ssa Enrica Gentile

Fondamenti dell Informatica Algebra di Boole. Prof.ssa Enrica Gentile Fondamenti dell Informatica Algebra di Boole Prof.ssa Enrica Gentile Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!) Gli operandi possono avere solo due valori: Vero () Falso

Dettagli

Calcolo numerico e programmazione Elementi di logica

Calcolo numerico e programmazione Elementi di logica Calcolo numerico e programmazione Elementi di logica Tullio Facchinetti 23 marzo 2012 10:50 http://robot.unipv.it/toolleeo Algebra booleana (George Boole (1815-1864)) è definita

Dettagli

Circuiti Combinatori

Circuiti Combinatori Circuiti Combinatori circuiti combinatori sono circuiti nei quali le uscite dipendono solo dalla combinazione delle variabili logiche presenti nello stesso istante all ingresso Essi realizzano: Operazioni

Dettagli

Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!

Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (! Fondamenti di Informatica Algebra di Boole Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2-22 Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR () NOT (!) Gli operandi

Dettagli

Reti Logiche Combinatorie

Reti Logiche Combinatorie Reti Logiche Combinatorie Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Logica combinatoria Un blocco di logica

Dettagli

Architettura degli Elaboratori 4 - Reti Combinatorie e Algebra di Boole

Architettura degli Elaboratori 4 - Reti Combinatorie e Algebra di Boole Architettura degli Elaboratori 4 - Reti Combinatorie e Algebra di Boole Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Università degli Studi di Bologna Anno Accademico 2008/2009 Sommario Porte

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti

I circuiti digitali: dalle funzioni logiche ai circuiti Architettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi

Dettagli

CODIFICA DELLE INFORMAZIONI MODULO 5

CODIFICA DELLE INFORMAZIONI MODULO 5 CODIFICA DELLE INFORMAZIONI MODULO 5 INFORMAZIONI: tipi Le informazioni sono concetti astratti che esistono indipendentemente dalla loro rappresentazione Tutto ciò che ci circonda è informazione Qualche

Dettagli

CODIFICA DELLE INFORMAZIONI MODULO 5

CODIFICA DELLE INFORMAZIONI MODULO 5 CODIFICA DELLE INFORMAZIONI MODULO 5 INFORMAZIONI: tipi Le informazioni sono concetti astratti che esistono indipendentemente dalla loro rappresentazione Tutto ciò che ci circonda è informazione Qualche

Dettagli

Funzioni, espressioni e schemi logici

Funzioni, espressioni e schemi logici Funzioni, espressioni e schemi logici Il modello strutturale delle reti logiche Configurazioni di n bit che codificano i simboli di un insieme I i i n F: I S U u u m Configurazioni di m bit che codificano

Dettagli

Le porte logiche. Elettronica L Dispense del corso

Le porte logiche. Elettronica L Dispense del corso Le porte logiche Elettronica L Dispense del corso Gli Obiettivi Introdurre il concetto di funzione logica. Dare una corrispondenza tra funzioni logiche e strutture di gate elementari. Introdurre l algebra

Dettagli

Corso di Calcolatori Elettronici I

Corso di Calcolatori Elettronici I Corso di Calcolatori Elettronici I Algebra di Boole: definizione e proprietà Roberto Canonico Università degli Studi di Napoli Federico II A.A. 2016-2017 Roberto Canonico Corso di Calcolatori Elettronici

Dettagli

La seconda forma canonica Circuiti notevoli. Sommario

La seconda forma canonica Circuiti notevoli. Sommario La seconda forma canonica Circuiti notevoli Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimenti: Sezione C3. 1/41 Sommario

Dettagli

Porte logiche A=0 A=1

Porte logiche A=0 A=1 Porte logiche Le Porte logiche sono circuiti combinatori che svolgono funzioni elementari e costituiscono i blocchi fondamentali su cui si basa l Elettronica digitale. Le principali porte sono la ND, la

Dettagli

Dispensa su. Funzioni Booleane. Jianyi Lin Università degli Studi di Milano

Dispensa su. Funzioni Booleane. Jianyi Lin Università degli Studi di Milano Dispensa su Funzioni Booleane Jianyi Lin Università degli Studi di Milano jianyi.lin@unimi.it 18 novembre 2011 1 Operazioni booleane In questa sezione introduciamo il concetto di funzione booleana e accenniamo

Dettagli

Introduzione alla logica proposizionale

Introduzione alla logica proposizionale Introduzione alla logica proposizionale Mauro Bianco Questa frase è falsa Contents 1 Proposizioni 1 2 Altri operatori 4 Nota : Le parti delimitate da *** sono da considerarsi facoltative. 1 Proposizioni

Dettagli

Calcolatori Elettronici A a.a. 2008/2009

Calcolatori Elettronici A a.a. 2008/2009 Calcolatori Elettronici A a.a. 28/29 RETI LOGICHE: RETI COMBINATORIE Massimiliano Giacomin 1 Reti combinatorie DEFINIZIONE Una rete combinatoria è un circuito elettronico in grado di calcolare in modo

Dettagli

Fondamenti di Informatica B

Fondamenti di Informatica B Fondamenti di Informatica B Lezione n.3 Fondamenti di Informatica B Forme canoniche Trasformazioni Esercizi In questa lezione verranno considerate le proprietà dell'algebra booleana che saranno poi utili

Dettagli

I.3 Porte Logiche. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica

I.3 Porte Logiche. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica I.3 Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti 1 2 3 Elaboratore Hardware È il mezzo con il quale l informazione è elaborata. Software

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori

Dettagli

Esercitazioni di Reti Logiche

Esercitazioni di Reti Logiche Esercitazioni di Reti Logiche Sintesi di Reti Combinatorie & Complementi sulle Reti Combinatorie Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico

Dettagli

Rappresentazione in virgola fissa (fixed-point) Rappresentazione di Numeri Reali. Conversione decimale-binario di numeri non interi

Rappresentazione in virgola fissa (fixed-point) Rappresentazione di Numeri Reali. Conversione decimale-binario di numeri non interi Rappresentazione di Numeri Reali Un numero reale è una grandezza continua Può assumere infiniti valori In una rappresentazione di lunghezza limitata, deve di solito essere approssimato. Esistono due forme

Dettagli

FONDAMENTI DI INFORMATICA Lezione n. 2

FONDAMENTI DI INFORMATICA Lezione n. 2 FONDMENTI DI INFORMTIC Lezione n. 2 LGEBR BOOLEN CIRCUITI LOGICI ELEMENTI PRIMITIVI QULCHE ESERCIZIO CON ELEMENTI LOGICI In questa lezione sono ripresi i concetti principali di base dell algebra booleana

Dettagli

Circuti AND, OR, NOT Porte logiche AND

Circuti AND, OR, NOT Porte logiche AND Circuti AND, OR, NOT Porte logiche AND OR NOT A B C Esempio E = ~((AB) + (~BC)) E NAND e NOR NAND (AND con uscita negata): ~(A B) NOR (OR con uscita negata): ~(A+B) Si può dimostrare che le operazioni

Dettagli

Costruzione di. circuiti combinatori

Costruzione di. circuiti combinatori Costruzione di circuiti combinatori Algebra Booleana: funzioni logiche di base OR (somma): l uscita è 1 se almeno uno degli ingressi è 1 A B (A + B) 0 0 0 0 1 1 1 0 1 1 1 1 AND (prodotto): l uscita è 1

Dettagli

Logica binaria. Cap. 1.1 e 2.1 dispensa

Logica binaria. Cap. 1.1 e 2.1 dispensa Logica binaria Cap.. e 2. dispensa Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Logica binaria 2 / 24 Rappresentazione

Dettagli

Corso di Architettura degli Elaboratori. Porte logiche (I) Architetture degli Elaboratori. Porte logiche (III) Porte logiche (II)

Corso di Architettura degli Elaboratori. Porte logiche (I) Architetture degli Elaboratori. Porte logiche (III) Porte logiche (II) Corso di Architettura degli Elaboratori Il livello logico digitale: Algebra Booleana e Circuiti logici digitali di base Porte logiche (I) Invertitore a transistor: quando V in è basso, V out è alto e viceversa

Dettagli

LSS : Reti Logiche: circuiti combinatori

LSS : Reti Logiche: circuiti combinatori LSS 2018-19: Reti Logiche: circuiti combinatori Piero Vicini AA 2018-2019 Introduzione Argomenti: Codici e aritmetica Operatori dell algebra booleana Minimizzazione e sintesi di funzioni Esempi di implementazione

Dettagli

Reti combinatorie. Reti combinatorie (segue)

Reti combinatorie. Reti combinatorie (segue) Reti combinatorie Sommatore Sottrattore Reti sequenziali Generatore di sequenze Riconoscitore di sequenze Reti combinatorie PROGRAMMAZIONE Il programmatore riporta le istruzioni che il calcolatore dovrà

Dettagli

Algebra di Commutazione

Algebra di Commutazione Algebra di Commutazione Maurizio Palesi Maurizio Palesi 1 Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere: Un modello che permette di rappresentare insiemi di numeri

Dettagli

La logica Cuniberti cucchi-vol.1 Segnali elettrici. Segnale analogico

La logica Cuniberti cucchi-vol.1 Segnali elettrici. Segnale analogico La logica Cuniberti cucchi-vol.1 Segnali elettrici I segnali elettrici, di tensione o di corrente, sono grandezze che variano in funzione del tempo; in base al loro andamento, o forma d onda, possono essere

Dettagli

Tutorato architettura degli elaboratori modulo I (lezione 3)

Tutorato architettura degli elaboratori modulo I (lezione 3) Tutorato architettura degli elaboratori modulo I (lezione 3) Moretto Tommaso 03 November 2017 1 Algebra di Boole L aritmetica binaria è stata adottata perché i bit sono rappresentabili naturalmente tramite

Dettagli

Corso di Calcolatori Elettronici I A.A Algebra di Boole Lezione 4

Corso di Calcolatori Elettronici I A.A Algebra di Boole Lezione 4 Corso di Calcolatori Elettronici I A.A. 2010-2011 Algebra di Boole Lezione 4 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Segnali in circuiti elettronici digitali da: G. Bucci. Calcolatori

Dettagli

Porte logiche di base. Cenni circuiti, reti combinatorie, reti sequenziali

Porte logiche di base. Cenni circuiti, reti combinatorie, reti sequenziali Porte logiche di base Cenni circuiti, reti combinatorie, reti sequenziali NOT AND A R A B R OR A R B Quindi NAND o NOR sono complete circuiti con solo porte NAND o solo porte NOR. Reti combinatorie Rete

Dettagli

Parte IV Indice. Algebra booleana. Esercizi

Parte IV Indice. Algebra booleana. Esercizi Parte IV Indice Algebra booleana operatori logici espressioni logiche teoremi fondamentali tabelle di verità forme canoniche circuiti logici mappe di Karnaugh Esercii IV. Algebra booleana L algebra booleana

Dettagli

Reti logiche: analisi, sintesi e minimizzazione Esercitazione. Venerdì 9 ottobre 2015

Reti logiche: analisi, sintesi e minimizzazione Esercitazione. Venerdì 9 ottobre 2015 Reti logiche: analisi, sintesi e minimizzazione Esercitazione Venerdì 9 ottobre 05 Punto della situazione Stiamo studiando le reti logiche costruite a partire dalle porte logiche AND, OR, NOT per progettare

Dettagli

Dalla tabella alla funzione canonica

Dalla tabella alla funzione canonica Dalla tabella alla funzione canonica La funzione canonica è la funzione logica associata alla tabella di verità del circuito che si vuole progettare. Essa è costituita da una somma di MinTerm con variabili

Dettagli

Circuiti combinatori notevoli

Circuiti combinatori notevoli Circuiti combinatori notevoli Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimenti: Sezione C3. 1/33 Sommario Implementazione

Dettagli

Informazione binaria: - rappresentazione di valori logici -

Informazione binaria: - rappresentazione di valori logici - Informazione binaria: - rappresentazione di valori logici - Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin Tipologie di codici Nel seguito

Dettagli

Funzioni booleane. Vitoantonio Bevilacqua.

Funzioni booleane. Vitoantonio Bevilacqua. Funzioni booleane Vitoantonio Bevilacqua bevilacqua@poliba.it Sommario. Il presente paragrafo si riferisce alle lezioni del corso di Fondamenti di Informatica e Laboratorio di Informatica dei giorni 9

Dettagli

Corso di studi in Ingegneria Elettronica A.A. 2006/2007. Calcolatori Elettronici. Esercitazione n 2

Corso di studi in Ingegneria Elettronica A.A. 2006/2007. Calcolatori Elettronici. Esercitazione n 2 Corso di studi in Ingegneria Elettronica A.A. 26/27 Calcolatori Elettronici Esercitazione n 2 Codici a correzione di errore Recupero degli errori hardware tramite codifiche ridondanti Codifiche con n =

Dettagli

Logica Digitale. Fondamenti Informatica 2 - Prof. Gregorio Cosentino

Logica Digitale. Fondamenti Informatica 2 - Prof. Gregorio Cosentino Logica Digitale 1 Ma in fondo quali sono i mattoncini che compongono un calcolatore elettronico? Porte Circuiti Aritmetica Memorie Bus I/O And, Or, Nand, Nor, Not Multiplexer, Codif, Shifter, ALU Sommatori

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE Prerequisiti: Conoscere il sistema di numerazione binario Modulo 1 1. Concetti fondamentali L elettronica digitale tratta segnali di tipo binario, cioè segnali che possono

Dettagli

Un quadro della situazione

Un quadro della situazione Reti logiche (1) Algebra booleana e circuiti combinatori 1 Un quadro della situazione In particolare gli argomenti qui trattati interessano ALU (Unità Aritmetico Logica) e CPU Elementi di memoria e progetto

Dettagli

La codifica dell informazione

La codifica dell informazione La codifica dell informazione Codifica dati e istruzioni Algoritmi = istruzioni che operano su dati. Per scrivere un programma è necessario rappresentare istruzioni e dati in un formato tale che l esecutore

Dettagli

Lezione 9 : Algebra di Boole e Codifica Binaria (p. 1) Lunedì 29 Novembre 2010

Lezione 9 : Algebra di Boole e Codifica Binaria (p. 1) Lunedì 29 Novembre 2010 Università di Salerno Corso di FONDAMENTI DI INFORMATICA Corso di Laurea Ingegneria Corso B Docente : Ing. Anno Accademico 2-2 Lezione 9 : Algebra di Boole e Codifica Binaria (p. ) Lunedì 29 Novembre 2

Dettagli

A CHI E' RIVOLTA? CHI PUO' ESSERE DEFINITO PROPOSIZIONE LOGICA?

A CHI E' RIVOLTA? CHI PUO' ESSERE DEFINITO PROPOSIZIONE LOGICA? ALGEBRA BOOLEANA O LOGICA GEORGE BOOLE (1815 1864) A CHI E' RIVOLTA? Alla classe degli elementi binari : 1; 0 Alla classe delle proposizioni logiche CHI PUO' ESSERE DEFINITO PROPOSIZIONE LOGICA? PROPOSIZIONE

Dettagli

Quante sono le combinazioni possibili n cifre che possono assumere i valori 0 e 1? Le combinazioni possibili sono 2 n.

Quante sono le combinazioni possibili n cifre che possono assumere i valori 0 e 1? Le combinazioni possibili sono 2 n. Lezioni di Architettura degli elaboratori O. D antona Le funzioni booleane Funzione booleana La funzione booleana è un applicazione dall insieme dei numeri le cui cifre sono composte da 0 e 1 all insieme

Dettagli

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Circuiti Addizionatori

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Circuiti Addizionatori Reti Logiche 1 Prof. B. Buttarazzi A.A. 2009/2010 Circuiti Addizionatori Sommario Circuiti addizionatori Half-Adder Full-Adder CLA (Carry Look Ahead) 21/06/2010 Corso di Reti Logiche 2009/10 2 Addizionatori

Dettagli

LOGICA SEQUENZIALE. Un blocco di logica puramente combinatoria è un. blocco con N variabili di ingresso e M variabili di uscita

LOGICA SEQUENZIALE. Un blocco di logica puramente combinatoria è un. blocco con N variabili di ingresso e M variabili di uscita LOGICA SEQUENZIALE Logica combinatoria Un blocco di logica puramente combinatoria è un blocco con N variabili di ingresso e M variabili di uscita che sono funzione (booleana) degli ingressi in un certo

Dettagli

Algebra di Boole. Modulo 2. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)

Algebra di Boole. Modulo 2. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Algebra di Boole Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Algebra di Boole L algebra di Boole o della commutazione è lo strumento

Dettagli

17/10/16. Espressioni Booleane

17/10/16. Espressioni Booleane Espressioni Booleane Un espressione booleana è una sequenza composta da operatori booleani, parentesi, costanti e variabili booleane, induttivamente definita come segue: Espressioni ed operatori booleani

Dettagli

Componenti notevoli combinatori

Componenti notevoli combinatori Corso di Laurea in Informatica Componenti notevoli combinatori Architettura dei Calcolatori Prof. Andrea Marongiu andrea.marongiu@unimore.it Anno accademico 2018/19 Demultiplexer / Decoder (1/2) Il demultiplexer

Dettagli

Esercizio 1. Sintesi ottima SP e NAND

Esercizio 1. Sintesi ottima SP e NAND Esercizio Sintesi ottima SP e NAND x x 0 x 00 3 x 2 00 0 0 0 0 0 0 0 x 4 = 0 X x 0 x 00 3 x 2 00 0 0 0 x 4 = U = x 4 x 2 + x 4 x 3 x + x 2 x x 0 + x 3 x x 0 + x 4 x 3 x 0 + x 3 x 2 x x 0 U nand = (x 4

Dettagli

Attraverso la minimizzazione, si è così tornati all espressione di partenza.

Attraverso la minimizzazione, si è così tornati all espressione di partenza. 1) Si scriva la tavola di verità della funzione. Per compilare una tavola di verità corretta, è sufficiente ricordare le regole di base dell'algebra di Boole (0 AND 0 = 0; 0 AND 1 = 0; 1 AND 1 = 1; 0 OR

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici RETI LOGICHE: RETI COMBINATORIE Massimiliano Giacomin 1 INTRODUZIONE: LIVELLI HARDWARE, LIVELLO LOGICO PORTE LOGICHE RETI LOGICHE 2 LIVELLI HARDWARE Livello funzionale Livello logico

Dettagli

Il livello logico digitale

Il livello logico digitale Il livello logico digitale prima parte Introduzione Circuiti combinatori (o reti combinatorie) Il valore dell uscita in un determinato istante dipende unicamente dal valore degli ingressi in quello stesso

Dettagli

Elettronica Digitale. 1. Sistema binario 2. Rappresentazione di numeri 3. Algebra Booleana 4. Assiomi A. Booleana 5. Porte Logiche OR AND NOT

Elettronica Digitale. 1. Sistema binario 2. Rappresentazione di numeri 3. Algebra Booleana 4. Assiomi A. Booleana 5. Porte Logiche OR AND NOT Elettronica Digitale. Sistema binario 2. Rappresentazione di numeri 3. Algebra Booleana 4. Assiomi A. Booleana 5. Porte Logiche OR AND NOT Paragrafi del Millman Cap. 6 6.- 6.4 M. De Vincenzi AA 9- Sistema

Dettagli