Relazione Geotecnica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Relazione Geotecnica"

Transcript

1

2 INTERVENTO DI RICOSTRUZIONE DEL CONCIO 2 DEL MURO DI SOTTOSCARPA SU PALI POSTO A SOSTEGNO DELLA STRADA Q,DALLA SEZ 26 ALLA SEZ 29 DELLO STADIO SAN FILIPPO. INTERVENTO DI CONSOLIDAMENTO DEI CONCI 1,3,4,5,6, DEL MURO DI SOTTOSCARPA SU PALI POSTO A SOSTEGNO DELLA STRADA Q,DALLA SEZ 25 ALLA SEZ. 31. Relazione Geotecnica

3 Indice INDICE GENERALITÀ DESCRIZIONE DEGLI INTERVENTI IN PROGETTO PER L ADEGUAMENTO DELLE STRUTTURE ESISTENTI RIFERIMENTI NORMATIVI CARATTERISTICHE GEOLITOLOGICHE E IDROLOGICHE DEL TERRENO GEOLITOLOGIA IDROGEOLOGIA E FALDA IDRICA CARATTERISTICHE GEOTECNICHE E GEOMECCANICHE DEL TERRENO SISMICITÀ DELLA ZONA AZIONE SISMICA PER I MURI DI SOSTEGNO IN C.A CONSIDERAZIONI SULLA TIPOLOGIA DELLE FONDAZIONI CONSIDERAZIONI SULLA SCELTA DEI PARAMETRI GEOTECNICI VERIFICHE DI FONDAZIONI SU PALI VERIFICHE AGLI STATI LIMITE ULTIMI (SLU) Verifica al collasso per carico limite verticale dei pali di fondazione Verifica al collasso per carico limite trasversale dei pali di fondazione VERIFICA ALLO SFILAMENTO DELLA FONDAZIONE DELL ANCORAGGIO VERIFICHE DI STABILITÀ GLOBALE DELLE OPERE DI SOSTEGNO

4 1. Generalità La presente relazione si riferisce ai muri di sostegno realizzati lungo la Strada di Servizio Q nell'ambito dei lavori di costruzione del Nuovo Stadio Comunale nel Polo Sportivo di San Filippo. In particolare i muri sono quelli di sottoscarpa del tratto compreso tra le sezioni 25 e 31. A seguito del crollo del concio n 2 dei muri suddetti e sulla scorta dei saggi effettuati, che hanno rivelato un erronea disposizione delle armature nell elevazione di conci stessi, con l inversione dell armatura tesa (interna) con quella compressa (esterna) e contemporaneamente l inversione del paramento esterno con quello interno in modo che il paramento inclinato si è venuto a trovare sul lato controterra, si è ritenuto necessario, per i conci n , predisporre degli interventi di adeguamento strutturale in modo da far rientrare le parti non conformi entro i livelli di sicurezza stabiliti dalle norme attualmente vigenti (DM ) come richiesto dall Uffico del Genio Civile con nota prot del Inoltre anche per il concio n. 2 si prevede di ricostruire la parte crollata, nel rispetto delle norme attuali. Nei paragrafi successivi, oltre a dare una descrizione sommaria delle strutture in progetto, si analizzeranno le caratterizzazioni stratigrafiche e geotecniche locali, e verranno enunciate le direttive guida per la verifica delle opere di fondazione. Per i risultati puntuali delle verifiche, si rimanda ai tabulati di calcolo forniti in allegato alla relazione di calcolo. 1.1 Descrizione degli interventi in progetto per l adeguamento delle strutture esistenti A seguito del crollo sul concio n. 2 (tipologia H=9.00 m), è stata eseguita una campagna di indagine su tutte le opere in oggetto, dalla quale risulta che le armature delle pareti in elevazione sono state invertite rispetto alle previsioni di progetto. Pertanto le armature esistenti non risultano adeguate allo stato di sollecitazione presente. Nell ottica di far si che tutte le parti strutturali esistenti soddisfino tutti i requisiti minimi di sicurezza, considerando le azioni imposte dalla normativa vigente, per i conci n sono stati previsti i seguenti interventi di adeguamento: Muro H=8.00 m - Esecuzione di n. 1 fila di tiranti passivi a quota 6.00 m dalla quota di spiccato dell elevazione, disposti ad interasse di 1.40 m, costituiti da n. 6 trefoli in acciaio armonico da 0.6'', inclinati di 15 rispetto all'orizzontale, e di lunghezza complessiva di ml di cui ml di ancoraggio. - Esecuzione di inghisaggi di spille orizzontali 16/100x40 all altezza del tirante in progetto, al fine di incrementare la resistenza a taglio della parete nella zona di intervento. Muro H=9.00 m - Esecuzione di n. 2 file di tiranti passivi a quota 3.00 e 7.00 m dalla quota di spiccato dell elevazione, disposti ad interasse di 1.90 m, costituiti da n. 6 trefoli in acciaio armonico da 0.6'', inclinati di 15 rispetto all'orizzontale, e di lunghezza complessiva di ml di cui ml di ancoraggio. - Esecuzione di inghisaggi di spille orizzontali 16/100x40 all altezza del tirante in progetto a quota 3

5 7.00 m (fila di testa), al fine di incrementare la resistenza a taglio della parete nella zona di intervento. Muro H=9.60 m - Esecuzione di n. 2 file di tiranti passivi a quota 3.60 e 8.60 m dalla quota di spiccato dell elevazione, disposti ad interasse di 1.90 m, costituiti da n. 6 trefoli in acciaio armonico da 0.6'', inclinati di 15 rispetto all'orizzontale, e di lunghezza complessiva di ml di cui ml di ancoraggio. - Esecuzione di inghisaggi di spille orizzontali 16/60x40 all altezza del tirante in progetto a quota 8.60 m (fila di testa), al fine di incrementare la resistenza a taglio della parete nella zona di intervento. In tutti i casi, pur trattandosi di tiranti passivi, a ciascun di essi viene applicato uno sforzo di tesatura iniziale di 100 KN. Inoltre è prevista, per ogni tipologia di muro, la realizzazione di un blocco in c.a. antistante la base della parete in elevazione, di sezione 50x50 cm per tutto lo sviluppo del muro, saldamente inghisato alla fondazione, allo scopo di creare un vincolo allo scorrimento del piede della parete per effetto delle spinte esercitate dal terrapieno. Per il concio n. 2 è stata invece prevista la ricostruzione della parete crollata, con l inghisaggio alla fondazione esistente dell armatura dell elevazione, risultante dai calcoli di verifica eseguiti in conformità alla normativa vigente. Tale verifica viene pertanto estesa al resto della struttura (plinto e pali di fondazione): per far si che la struttura soddisfi i requisiti imposti, è necessario prevedere una fila di tiranti attivi a quota 3.40 m dalla quota di spiccato dell elevazione, disposti ad interasse di 1.90 m, costituiti da n. 4 trefoli in acciaio armonico da 0.6'', inclinati di 15 rispetto all'orizzontale, di lunghezza complessiva di ml di cui ml di ancoraggio, ai quali viene applicato uno sforzo di pretensione pari a 350 kn. Per i dettagli sulla geometria delle strutture e le sezioni degli elementi strutturali, si rimanda agli elaborati grafici forniti ad integrazione della presente. 2. Riferimenti Normativi Zone Sismiche Legge n. 64 del Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche. D.M. del Norme tecniche per le costruzioni (NTC). Circolare C.S.LL.PP. n. 617 del Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni (Circ. 617/2009). Eurocodice 8 Indicazioni progettuali per la resistenza sismica delle strutture. Azioni D.M. del Norme tecniche per le costruzioni (NTC). Circolare C.S.LL.PP. n. 617 del Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni (Circ. 617/2009). Eurocodice 1 - Basi della progettazione ed azioni sulle strutture. 4

6 Progettazione geotecnica D.M. del Norme tecniche per le costruzioni (NTC). Circolare C.S.LL.PP. n. 617 del Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni (Circ. 617/2009). Eurocodice 7 - Progettazione geotecnica. 3. Caratteristiche geolitologiche e idrologiche del terreno 3.1 Geolitologia Nella relazione geologica a corredo del progetto originario, redatta dal Dr. Geol. Alfredo Natoli, il substrato di fondazione, ricostruito sulla base dei rilievi di campagna e delle indagini geognostiche, viene riportato appartenente alla facies sabbioso-arenaceo-argillosa della molassa. Inoltre, tra le sezioni 24 e 32 esiste una struttura morfologica nascosta, formata da una piccola valle fossile, riempita da materiali detritici. Dalla campagna di accertamenti eseguita, sono quindi risultate le seguenti tipologie stratigrafiche: Strato di materiali detritici Substrato molassico Per le caratteristiche geolitologiche di ciascuno dei suddetti terreni si rimanda alla relazione geologica. In particolare, lungo l'asse della struttura da realizzare, come si evince dal profilo litologico longitudinale allegato alla relazione citata, si riscontra il generale ricoprimento detritico degli strati molassici di base, fino ad uno spessore max in corrispondenza delle sezz di circa mt. Le molasse tendono ad affiorane spostandosi in direzioni opposte verso la sezione 24 e la sezione 32. Qui si riporta una breve sintesi delle loro caratteristiche generali: Materiali detritici Si tratta di materiali poco addensati, costituiti per il 50% da elementi granulari (sabbie, minuti frammenti litoidi) e per la rimanente parte da limi ed argille Substrato molassico E costituito da una alternanza stratificata di livelli sabbioso-arenacei e argillitico-siltitici. 3.2 Idrogeologia e Falda idrica Le caratteristiche idrogeologiche dei terreni ricadenti nell area di interesse sono ampiamente descritte nella relazione geologico-tecnica, alla quale si rimanda. Pur operando nei pressi della vallata del torrente S. Filippo, alla quota e alle profondità interessate non è stata rilevata, durante le indagini geognostiche, la presenza di falda acquifera. Inoltre, il substrato si comporta come un mezzo praticamente impermeabile. I calcoli di progetto possono pertanto condursi in assenza di falda. 5

7 4. Caratteristiche geotecniche e geomeccaniche del terreno Le caratteristiche geotecniche del terreno di fondazione sono stati dedotti dai risultati della campagna di accertamenti geognostici e geotecnici eseguita a suo tempo in prossimità della zona interessata. La descrizione e i risultati delle varie prove condotte su campioni in sito o in laboratorio sono consultabili nella Relazione Geologico-Tecnica del progetto originario. Per le varie formazioni si sono assunti i seguenti parametri geotecnici: Materiali detritici 20.0 KN/mc peso specifico c 1.0 KN/mq coesione 24 angolo di attrito interno In fase di calcolo, la coesione c può essere convenientemente assunta nulla. Substrato molassico 17.0 KN/mc peso specifico c 0.0 KN/mq coesione 36 angolo di attrito interno Si precisa che per il substrato molassico, a favore della sicurezza si è assunto un angolo di attrito pari a 36 e coesione C=0; detti valori risultano a favore della sicurezza rispetto a quanto indicato nella Relazione sulla valutazione dei parametri geotecnica del Versante Nord dello Stadio Comunale a firma del Prof. Leonardo Cascini,a corredo della 3 Perizia di Variante e suppletiva approvata dall Ufficio del Genio Civile in conferenza dei servizi con voto n del In detta relazione con riferimento alla facies sabbiosa della molassa a pag. 6 è specificato: Per quanto riguarda la frazione grossolana debolmente cementata si osserva che questa mediamente ed indipendentemente dalle condizioni di saturazione,può essere caratterizzata, a livello del pendio,da una coesione di 0,2-0,6 t/mq e da un angolo di attrito compreso tra Valori successivamente riportati nella fig 10 Interpetrazione unitaria di tutti i dati forniti dalle prove Iwest e di laboratorio. Per la parte in elevazione, trattandosi di un muro di sottoscarpa a contenimento del rilevato stradale, si considera un terreno di riporto, per il quale si assumono i seguenti parametri: Terreno Spingente (di riporto): 17 KN/mc peso specifico c' 0 KN/mq coesione ' 35 angolo di attrito interno Pur operando nei pressi della vallata del torrente S. Filippo, alla quota e alle profondità interessate non è rilevabile, come risultato dalle indagini geognostiche, la presenza di falda acquifera. Come si ha modo di rilevare nella 3 perizia di variante e suppletiva con particolare riferimento alla relazione S 504 del Prof. Ing. Leonardo Cascini dove è detto L insieme dei dati disponibili (Tabb 1a e1b ) evidenzia che nei periodi asciutti si attestano intorno a quote variabili tra 86 e 87 m s.l.m, con escursioni massime dell ordine di 3-4 m. 6

8 5. Sismicità della zona L azione del sisma viene valutata con riferimento al p.to 3.2 delle NTC. Si definisce a partire dalla pericolosità sismica di base del sito di costruzione. La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a g su sito di riferimento rigido con superficie topografica orizzontale (Categoria A), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente S e (T), con riferimento a prefissate probabilità di superamento Pv R, nel periodo di riferimento V R. La vita nominale di un opera strutturale V N, intesa come il numero di anni nel quale la struttura deve potere essere usata per lo scopo al quale è destinata, è fissata in base alla Tab. 2.4.I del DM Poiché si è in presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, per tutte le opere in progetto occorre scegliere la classe d uso. Le azioni sismiche vengono valutate in relazione al periodo di riferimento V R che si ricava moltiplicandone la vita nominale V N per il coefficiente d uso C U, definito in funzione della classe d uso, come mostrato in Tab. 2.4.II del citato DM. In particolare, si ha: V R V N C U Le forme spettrali sono definite a partire dai valori dei seguenti parametri: a g accelerazione orizzontale massima al sito F o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale T * C periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale Tali parametri vengono forniti dall INGV per un reticolo di riferimento e per determinati periodi di ritorno T R (30, 50, 72, 101, 140, 201, 475, 975, 2475 anni). Noti: la vita di riferimento della costruzione: V R = 75 anni la probabilità di superamento nella vita di riferimento P VR = 10% associato allo stato limite considerato SLV al quale bisogna riferirsi per le azioni sismiche nel caso in oggetto Si determina il periodo di ritorno dell azione sismica T R : VR TR ln 1 P = 712 anni VR Poiché la attuale pericolosità sismica su reticolo di riferimento non contempla esattamente il periodo di ritorno appena determinato, i valori generici dei parametri a g, F o, T * C corrispondenti sono ricavati per interpolazione secondo la formula (2) dell All. A alle NTC nella quale: p è il valore del parametro di interesse corrispondente al periodo di ritorno T R desiderato; TR1, TR2 sono i periodi di ritorno più prossimi a T R (475 e 975 anni rispettivamente) per i quali si dispone dei valori p 1 e p 2 del generico parametro p. Per un qualunque punto del territorio non ricadente nei nodi del reticolo di riferimento, i valori dei parametri sono calcolati come media pesata dei valori assunti dagli stessi nei quattro vertici della maglia 7

9 elementare del reticolo contenente il punto, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici. La seguente schermata riassume ed individua i parametri principali per il sito in esame: 38,17 38,16 38,15 38,14 38,13 38,12 38,11 Coordinate geografiche della località in esame LON LAT Tolleranza Input da Comuni d'italia [ ] [ ] [ ] [km] Località 15,520 38, ,000 Coordinate geografiche dei 4 punti del reticolo ID LON LAT Distanza [#] [ ] [ ] [ ] [km] Punto ,521 38,166 0,004 0,399 Punto ,457 38,167 0,050 5,569 Punto ,519 38,116 0,046 5,166 Punto ,456 38,117 0,068 7,568 15, ,46 15,47 Media dei valori dei parametri dei 4 punti per la località in esame 15,48 15,49 15,50 15,51 15, T R a g F O T C * [anni] [g/10] [adm] [s] ,605 2,38 0, ,811 2,33 0, ,987 2,31 0, ,177 2,32 0, ,388 2,35 0, ,662 2,36 0, ,469 2,41 0, ,353 2,44 0, ,817 2,49 0, ,0 46,5 46,0 45,5 45,0 44,5 44,0 43,5 43,0 42,5 42,0 41,5 41,0 40,5 40,0 39,5 39,0 38,5 38,0 37,5 37,0 36,5 6,5 7,0 7,5 Punto interno al reticolo 8,0 8,5 9,0 9,5 10,0 10,5 11,0 11,5 12,0 12,5 13,0 13,5 14,0 14,5 15,0 15,5 16,0 16,5 17,0 17,5 18,0 18,5 19,0 Così operando, si ottengono per il sito in esame i tre parametri cercati: Accelerazione orizzontale massima su sito rigido: a g = g Fattore di amplificazione max spettro: F o = 2.43 Periodo inizio tratto a velocità costante spettro: T * C = 0.37 s Ai fini della definizione dell azione sismica di progetto, si rende necessario valutare l effetto della risposta sismica locale basata sull individuazione di categorie di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III delle NTC). Dalle misurazioni specifiche effettuate nella campagna di indagini geognostiche, è stato possibile classificare il suolo di fondazione secondo quanto indicato al p.to del DM ricavando il V S,30 con l espressione: V con: S,30 h i V S,30 i 30 hi V S, i spessore (in metri) dell i-esimo strato compreso nei primi 30 m di profondità; velocità delle onde di taglio nell i-esimo strato; Sulla base di tale assunzione, si definiscono, con riferimento alla Tab. 3.2.V delle NTC, il coefficiente di amplificazione stratigrafica S S ed coefficiente C C funzione della particolare categoria di sottosuolo. Si è assunto per le opere interessate: 8

10 Categoria di sottosuolo: Tipo B Sulla base di tale assunzione, si definisce, con riferimento alla Tab. 3.2.V delle NTC, il coefficiente di amplificazione stratigrafica S S ed coefficiente C C funzione della particolare categoria di sottosuolo. Bisogna inoltre tenere conto delle condizioni topografiche locali. Definita la categoria topografica per il particolare sito, si ricava il valore del coefficiente di amplificazione topografica S T. Nel caso in oggetto, in base alla Tab. 3.2.IV delle NTC l area di intervento ricade nella seguente categoria topografica: Categoria topografica: T2 (Pendii con inclinazione media i > 15 ) Ciononostante, come si evidenzia dalla sezione tipo riportata in allegato, l opera risulta ubicata al piede del versante: infatti si trova a ridosso del piazzale nord di accesso alle gradinate, e da qui il profilo del terreno prosegue con andamento regolare quasi in piano. Si precisa inoltre che i muri in oggetto sono di sottoscarpa ed a contenimento del rilevato stradale della strada Q, ma non assolvono alcuna funzione di sostegno del versante o di parti d esso. Poiché quindi l opera è situata alla base del pendio, si assume, nel rispetto del p.to delle NTC, il valore: S T = 1.0 La categoria di sottosuolo e le condizioni topografiche vengono tenute in conto contemporaneamente attraverso un unico coefficiente così definito: S S S S T Il moto sismico alla superficie di un sito, associato a ciascuna categoria di sottosuolo, è definito mediante l accelerazione massima (a max ) attesa in superficie il cui valore può essere ricavato dalla relazione: a max = S a g = S S S T a g dove a g è l accelerazione massima su sito di riferimento rigido. Per il sito in esame e tenendo conto delle condizioni al contorno, si assume quindi: Accelerazione orizzontale massima su sito rigido: a g = g Fattore di amplificazione max spettro: F o = 2.43 Periodo inizio tratto a velocità costante spettro: T * C = 0.37 s Categoria di sottosuolo: B Coefficiente di amplificazione topografica: S T = 1.0 (Categoria topografica T2) Coefficiente di amplificazione stratigrafica: S S = Accelerazione massima attesa al sito: a max = 0.327g 5.1 Azione sismica per i muri di sostegno in c.a. Il moto sismico alla superficie di un sito, associato a ciascuna categoria di sottosuolo, è definito mediante l accelerazione massima (a max ) attesa in superficie il cui valore può essere ricavato dalla relazione: a max = S a g = S S S T a g dove a g è l accelerazione massima su sito di riferimento rigido. L analisi della sicurezza dei muri di sostegno in condizioni sismiche è eseguita mediante i metodi pseudostatici. 9

11 L analisi pseudostatica si effettua mediante i metodi dell equilibrio limite. L azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per degli opportuni coefficienti sismici. Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k h e verticale k v possono essere valutati mediante le espressioni: amax kh m kv 0. 5 kh g dove: a max g m accelerazione orizzontale massima attesa al sito, già definita precedentemente; accelerazione di gravità coefficiente di riduzione dell accelerazione massima attesa al sito Quest ultimo coefficiente assume i valori riportati nella Tab II delle NTC. Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, ad esempio in presenza di tiranti di ancoraggio o di fondazioni profonde che non consentono scorrimenti della struttura, come nei casi in esame, assume valore unitario. Nel caso in oggetto considerate le assunzioni fatte in precedenza per il sito e per la classe della struttura, i parametri sismici principali valgono: a max = g m = 1.0 per cui infine: k h = k v = ± L analisi delle condizioni di stabilità globale del complesso muro-terreno in condizioni sismiche è eseguita ancora mediante metodi pseudostatici. L azione sismica è rappresentata da un azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso W del volume di terreno potenzialmente instabile. Tale forza dipende dalle caratteristiche del moto sismico atteso nel volume di terreno potenzialmente instabile e dalla capacità di tale volume di subire spostamenti senza significative riduzioni di resistenza. Nelle verifiche allo stato limite ultimo le componenti orizzontale e verticale di tale forza possono esprimersi come F h = k h W ed F v = k v W, con k h e k v (coefficienti sismici orizzontale e verticale) calcolati con una espressione simile a quella precedente: amax kh s kv 0. 5 kh g I loro valori sono però diversi, a motivo di una diversa definizione del coefficiente di riduzione dell accelerazione massima attesa al sito s. Quest ultimo coefficiente assume i valori riportati nella Tab I delle NTC. Nel caso in esame in particolare si ha: s = 0.28 per cui infine: k h = k v = ± Considerazioni sulla tipologia delle fondazioni La presenza dello strato detritico, fortemente comprimibile e di scarse proprietà di resistenza, ha reso improponibile la soluzione con fondazioni di tipo superficiale. 10

12 In fase di progetto si era pertanto optato per la soluzione su pali di diametro D 80 cm, che consentiva di trasferire in profondità i carichi della parte in elevazione, fino a raggiungere il più resistente substrato molassico. La diversa consistenza dello strato detritico nelle varie sezioni ha consentito di adottare lunghezze dei pali di fondazione diversificate. Per la verifica puntuale delle fondazioni nelle nuove combinazioni di carico si faccia riferimento alla specifica relazione di calcolo. 7. Considerazioni sulla scelta dei parametri geotecnici Nell effettuare le verifiche di stabilità, incluse le verifiche geotecniche, e le verifiche strutturali dei diversi elementi, i parametri geotecnici caratteristici del terreno che intervengono nelle relazioni impiegate vanno intesi corretti con i coefficienti parziali riportati nel seguente prospetto: Parametro Tangente dell angolo di attrito interno Coefficiente parziale m M1 M2 tan k ' = 1.00 ' = 1.25 Coesione efficace c k c = 1.00 c = 1.25 Resistenza non drenata c uk cu = 1.00 cu = 1.40 Peso specifico = 1.00 = 1.00 Solitamente, ma non necessariamente, i coefficienti della colonna M1, combinati con quelli della colonna A1 per le azioni ( Tab. 6.2.I DM ), sono rilevanti per stabilire la capacità strutturale delle opere che interagiscono con il terreno, mentre i coefficienti della colonna M2, combinati con quelli del gruppo A2, sono rilevanti per il dimensionamento geotecnico. In ambito geotecnico, nelle verifiche di sicurezza agli stati limite ultimi (SLU) deve essere rispettata la condizione: E d R d dove E d è il valore di progetto dell azione o dell effetto dell azione ed R d è il valore di progetto della resistenza del terreno. La verifica della suddetta condizione deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2), come sopra definiti, e per le resistenze (R1, R2 e R3). I diversi gruppi di coefficienti di sicurezza parziali possono essere scelti nell ambito di due approcci progettuali distinti e alternativi. Nell Approccio 1 sono previste due diverse combinazioni di gruppi di coefficienti: la prima combinazione è generalmente più severa nei confronti del dimensionamento strutturale, mentre la seconda combinazione è generalmente più severa nei riguardi del dimensionamento geotecnico. Nell Approccio 2 è prevista un unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali sia nelle verifiche geotecniche. 8. Verifiche di fondazioni su pali Le indicazioni date nel presente paragrafo sono valide esclusivamente per le fondazioni realizzate su 11

13 pali in c.a.. Per le verifiche puntuali delle singole strutture si rimanda alle specifiche relazioni di calcolo. 8.1 Verifiche agli Stati Limite Ultimi (SLU) Verifica al collasso per carico limite verticale dei pali di fondazione La trasmissione dei carichi verticali dal palo al terreno avviene attraverso due distinti meccanismi: - per attrito laterale, ossia per attrito tra la superficie laterale del palo ed il terreno ad esso adiacente; - per carico alla base, cioè per trasmissione diretta di forze verticali dalla sezione di estremità inferiore del palo al terreno. Indicata con Q s la capacità portante dovuta al primo meccanismo e con Q b quella dovuta al secondo, la capacità portante complessiva di calcolo sarà: Q lim Q s + Q b Per terreni stratificati e incoerenti, si utilizza la relazione fornita da Reese O Neill (1999): Q D l i l in cui per lo strato i-esimo: i k 1 k vi i i h tensione verticale media nello strato vi k l i spessore dello strato Per il fattore si usano la seguente relazione: z 0. 5 i i in cui z i è la profondità rispetto al p.c. La portata limite di punta vale invece, utilizzando l equazione di Terzaghi: con: Q b p A 1. 3c N c vp N q 2 A p D / 4 area del palo nella sezione di base c coesione del terreno nella sezione di punta N c, N q Fattori di capacità portante del terreno nella sezione di punta secondo Terzaghi N k 1 k h tensione verticale del terreno nella sezione di punta vp k I parametri geotecnici caratteristici del terreno presenti nelle relazioni descritte vanno intesi corretti con i coefficienti parziali riportati nella Tab. 6.2.II delle NTC, in funzione della particolare combinazione di carico. Seguendo nel caso in oggetto l approccio progettuale di Tipo 1, sia per la fase statica che per quella sismica. Secondo tale approccio, la resistenza, o più precisamente il carico limite verticale, ottenuto come sopra va ridotto con i relativi coefficienti parziali, tratti dalla tab. 6.4.II delle NTC: Resistenza R1 R2 R3 Resistenza di punta 1,00 1,70 1,35 12

14 Resistenza laterale per palo in compressione 1,00 1,45 1,15 Resistenza laterale per palo in trazione 1,00 1,60 1,25 Solo in fase sismica, nell Approccio 1 Combinazione 2, così come stabilito al p.to delle NTC, si deve fare riferimento ai coefficienti R3 anziché ai coefficienti R2. Per ciascuna combinazione, la forza verticale agente in testa al palo (Q eser ) va sommata al peso proprio del palo (P palo ), ottenendo così il carico massimo di compressione di riferimento per le verifiche: Q max Q eser + G1 P palo Si definisce pertanto il coefficiente di sicurezza F s per palo soggetto a carichi verticali di compressione: Q F S Q lim max il quale dovrà risultare maggiore di 1.0. In presenza di pali in trazione, non si terrà conto della capacità portante di base, essendo la resistenza allo sfilamento affidata al solo attrito lungo la superficie laterale del palo (Q st ). A contrastare lo sfilamento si aggiunge inoltre il peso dello stesso palo. Si avrà pertanto: Q lim Q st + G1 P palo a cui va applicata la riduzione attraverso i coefficienti parziali delle resistenze della tabella sopra, mentre il carico minimo complessivo relativo al palo è: Q min Q eser in cui il carico Q eser deve ovviamente considerarsi negativo. La verifica della capacità portante è soddisfatta se anche in questo caso il coefficiente di sicurezza: Q F S Q lim min risulta maggiore di 1.0. Nel caso in esame, occorre tuttavia tener conto, vista la particolare natura del terreno di fondazione, della possibilità che i pali siano soggetti ad attrito negativo. La presenza di detrito di scarse attitudini meccaniche fa sì che il terreno circostante i pali, sotto il peso del rilevato di monte, sia soggetto a cedimenti superiori a quello del palo stesso, saldamente immorsato nel substrato molassico. Nell ambito della profondità in cui lo spostamento del terreno supera quello del palo, non si ha portanza laterale, ed inoltre si assiste ad un inversione delle forze di attrito, che vengono così a costituire un carico addizionale per il palo. La tensione unitaria di attrito negativo n, supposta agente con valore costante lungo tutta la lunghezza l i di palo che attraversa lo strato più comprimibile, si può valutare con la relazione: tan( ) ' K n vm 0 nella quale vm è la tensione verticale efficace media nell ambito del tratto interessato dalle n, e è la percentuale di attrito all interfaccia palo-terreno, che si assume pari a 0.7, e K 0 è il coefficiente di spinta a riposo. La tensione n, integrata su tutta la superficie intercettata da l i, da origine al carico Q neg, che dovrà aggiungersi al carico di esercizio: Q max Q eser + G1 P palo + Q neg La capacità portante Q lim a compressione si calcola come visto sopra, con la differenza che la portanza laterale Q l va riferita al solo tratto che si sviluppa nel terreno più resistente. 13

15 Si definisce alla fine un nuovo coefficiente di sicurezza F s, con i diversi fattori convenientemente rivalutati: Qlim F S Q max il quale dovrà risultare ancora maggiore di Verifica al collasso per carico limite trasversale dei pali di fondazione Quando il palo è soggetto ad azioni orizzontali, si può verificare la rottura per raggiungimento dello stato limite ultimo sia del terreno che del palo. La prima avviene nel caso di pali corti, la seconda nel caso di pali lunghi. Per stabilire se un palo ricade nell uno o nell altro caso, si ricava la lunghezza caratteristica del palo T: dove: E p J p BBs E p J T Bs p 1/ 4 modulo elastico del palo momento di inerzia del palo parametro del terreno di Winkler (formulazione di Bowles) Il palo è corto se risulta T 2.5, lungo in caso contrario. Nel primo caso la verifica è di tipo geotecnico, mentre nel secondo caso la rottura avviene quando si raggiunge il momento flettente ultimo della sezione in c.a., per cui se la verifica della sezione è soddisfatta, è al contempo soddisfatta anche la verifica a carico limite trasversale dei pali di fondazione. Poiché nel caso in oggetto si ha a che fare con pali lunghi, si ricade con certezza nel secondo caso, per cui si rimanda al paragrafo relativo alle verifiche strutturali. 9. Verifica allo sfilamento della fondazione dell ancoraggio Il dimensionamento geotecnico dei tiranti di ancoraggio si riferisce allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno. La verifica a sfilamento della fondazione dell ancoraggio si esegue confrontando la massima azione di progetto T d con la resistenza di progetto R ad, determinata applicando alla resistenza caratteristica R ak i fattori parziali R riportati nella Tab. 6.6.I delle NTC. Il valore della resistenza caratteristica R ak è il minore dei valori derivanti dall applicazione dei fattori di correlazione a3 e a4 rispettivamente al valor medio e al valor minimo delle resistenze R ac ottenute dal calcolo. Per la valutazione dei fattori a3 e a4, si deve tenere conto che i profili di indagine sono solo quelli che consentono la completa identificazione del modello geotecnico di sottosuolo per il terreno di fondazione dell ancoraggio. Tali fattori vanno fissati sulla base delle indicazioni della Tab. 6.6.III delle NTC. R ak min R R ac a3 med ; ac a4 min La verifica prevede in prima analisi la determinazione, con i metodi propri della geotecnica, del carico 14

16 limite del terreno Q lim. In generale si può scrivere: in cui: Q lim D p L a ' c D p diametro di perforazione del tirante Coefficiente di incremento diametro bulbo (Bustamante-Doix) L a lunghezza del tratto di ancoraggio i coefficiente di adesione del terreno c i coesione del terreno Inoltre compare il termine che rappresenta la tensione tangenziale resistente media al bulbo, che si ricava con la seguente espressione: ' cos tan sin dove: v n i 1 i v h tensione verticale media nell ancoraggio del tirante v i angolo di inclinazione del tirante rispetto all'orizzontale tan coefficiente di attrito del terreno I parametri geotecnici caratteristici del terreno presenti nelle relazioni descritte vanno intesi corretti con i coefficienti parziali riportati nella Tab. 6.2.II delle NTC, in funzione della particolare combinazione di carico. In realtà, le NTC stabiliscono (p.to 6.6.2) che le verifiche in fase statica possono essere eseguite con riferimento alla combinazione unica A1+M1+R3, ed in fase sismica alla combinazione A1*+M1+R3, dove si assumono unitari tutti i coefficienti parziali delle azioni. La resistenza, o più precisamente il carico limite allo sfilamento, ottenuto come sopra va quindi ridotto con il coefficiente parziale, fissato nella tab. 6.6.I delle NTC: R1 = 1.2 valido per tiranti permanenti. Noto il carico limite, è semplicemente: R ac = Q lim dalla quale è possibile ricavare il valore caratteristico R ak. La resistenza di calcolo si ottiene applicando a quest ultimo il coefficiente parziale delle resistenze R3. R ak Rad R3 La resistenza di calcolo va poi confrontata con il carico T d agente sul tirante, dato dal carico di pretensionamento, maggiorato dell incremento che si verifica per effetto degli spostamenti subiti dalla spalla sotto i carichi di esercizio o sotto l azione del sisma. In particolare, tale incremento, noto l allungamento del tirante in cui: E s A tr L m Es A T u L m tr u, vale: modulo elastico dell acciaio dei trefoli area dei trefoli lunghezza di calcolo del tirante, pari alla lunghezza libera più metà della lunghezza di 15

17 Quindi è: ancoraggio T d T 0 T Ai fini della verifica geotecnica, si definisce infine il coefficiente di sicurezza: R ad F S 1.0 T d che deve risultare, come indicato, non inferiore ad uno. Si precisa infine che i risultati delle verifiche condotte nel seguente paragrafo dovranno essere supportati e confermati da prove di carico eseguite su tiranti di prova nel rispetto del p.to delle NTC. 10. Verifiche di stabilità globale delle opere di sostegno Le normative vigenti impongono di verificare la stabilità d'insieme del complesso terreno-struttura. La verifica della stabilità globale prevede che si esegua un controllo della stabilità del complesso terreno-opera di sostegno nei riguardi della probabile formazione di superfici di scorrimento nella parte di terreno interessata. La verifica di stabilità globale in fase statica deve essere effettuata secondo l Approccio 1 - Combinazione 2: (A2+M2+R2). In tal caso il coefficiente parziale della resistenza va assunto pari a R2 = 1.1. In fase sismica deve invece essere effettuata secondo combinazione (A1*+M1). Il coefficiente parziale della resistenza va definita e motivata dal progettista. A favore di sicurezza si assume lo stesso valore considerato in fase statica R2 = 1.1. In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici. Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superficie avente per centro il generico nodo della maglia m x n e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili. Esistono diversi metodi per lo studio dei fenomeni di instabilità di un pendio. Nel caso in esame si è adottato il metodo di Bishop, di seguito sinteticamente descritto. Metodo di BISHOP (1955) Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi. Le equazioni usate per risolvere il problema sono: Fv = 0, M0 = 0: (Criterio di rottura) sec c b + (W - u b + X) tan 1 tan tan / F F = W sin in cui: F = fattore di sicurezza; c = coesione efficace (o totale) alla base dell i-esimo concio; 16

18 = angolo di attrito efficace alla base dell i-esimo concio; W = peso dell i-esimo concio; u = pressione dell acqua al centro della base dell i-esimo concio. I valori di F e di X per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre X= 0 ed iterare per il calcolo del fattore di sicurezza. Tale procedimento è noto come metodo di Bishop ordinario, gli errori commessi rispetto al metodo completo sono di circa 1 %. Il coefficiente di sicurezza F non deve essere convenientemente inferiore a R2 =

19

INDICE. 2 Quadro normativo di riferimento 4. 3 Caratterizzazione sismica del sito 5

INDICE. 2 Quadro normativo di riferimento 4. 3 Caratterizzazione sismica del sito 5 RELAZIONE SISMICA INDICE 1 Introduzione 3 Quadro normativo di riferimento 4 3 Caratterizzazione sismica del sito 5 3.1 Valutazione pericolosità sismica 5 3. Valutazione tempo di ritorno Tr 6 3..1 Periodo

Dettagli

ALLEGATO A ALLE NORME TECNICHE PER LE COSTRUZIONI: PERICOLOSITÀ SISMICA

ALLEGATO A ALLE NORME TECNICHE PER LE COSTRUZIONI: PERICOLOSITÀ SISMICA ALLEGATO A ALLE NORME TECNICHE PER LE COSTRUZIONI: PERICOLOSITÀ SISMICA Le Norme Tecniche per le Costruzioni (NTC) adottano un approccio prestazionale alla progettazione delle strutture nuove e alla verifica

Dettagli

GEOSTRU SOFTWARE SLOPE Il software per la stabilità dei pendii naturali opere di materiali sciolti fronti di scavo

GEOSTRU SOFTWARE SLOPE Il software per la stabilità dei pendii naturali opere di materiali sciolti fronti di scavo GEOSTRU SOFTWARE SLOPE Il software per la stabilità dei pendii naturali opere di materiali sciolti fronti di scavo NUOVE NORME TECNICHE PER LE COSTRUZIONI D.M. 14 Gennaio 2008 GEOSTRU SOFTWARE SLOPE Prescrizioni

Dettagli

DESCRIZIONE DELLE FONDAZIONI

DESCRIZIONE DELLE FONDAZIONI SOMMARIO 2 GENERALITA 3 3 DESCRIZIONE DELLE FONDAZIONI 3 4 PERICOLOSITA SISMICA 4 5 CARATTERIZZAZIONE FISICO-MECCANICA DEL TERRENO 4 6 MODELLI GEOTECNICI DI SOTTOSUOLO 5 7 VERIFICHE DELLA SICUREZZA E DELLE

Dettagli

1 Relazione Generale sull Intervento...2. 2 Determinazione dei parametri geotecnici...2. 3 Normativa di riferimento...3. 4 Relazione sui materiali...

1 Relazione Generale sull Intervento...2. 2 Determinazione dei parametri geotecnici...2. 3 Normativa di riferimento...3. 4 Relazione sui materiali... 1 Relazione Generale sull Intervento... Determinazione dei parametri geotecnici... 3 Normativa di riferimento...3 4 Relazione sui materiali...3 5 Verifiche statiche...4 5.1 Formule di calcolo delle azioni...4

Dettagli

COPERTINA. Prototipo di Relazione geotecnica di esempio

COPERTINA. Prototipo di Relazione geotecnica di esempio COPERTINA Prototipo di Relazione geotecnica di esempio GENERALITA RELAZIONE GEOTECNICA SULLE FONDAZIONI (NTC 2008 CAP. 6 e CIRCOLARE 617/2009 punto C6.2.2.5) OGGETTO COMUNE: Progetto di una struttura in

Dettagli

Il calcolo delle sopraelevazioni in muratura in funzione del livello di conoscenza

Il calcolo delle sopraelevazioni in muratura in funzione del livello di conoscenza MICHELE VINCI Il calcolo delle sopraelevazioni in muratura in funzione del livello di conoscenza Collana Calcolo di edifici in muratura (www.edificiinmuratura.it) Articolo 2 Ottobre 2013 Bibliografia:

Dettagli

APPLICAZIONI SOFTWARE PER LA PROGETTAZIONE GEOTECNICA CON LE NTC 2008

APPLICAZIONI SOFTWARE PER LA PROGETTAZIONE GEOTECNICA CON LE NTC 2008 BELLUNO 8 Marzo 2012 APPLICAZIONI SOFTWARE PER LA PROGETTAZIONE GEOTECNICA CON LE NTC 2008 Seminario tecnico Applicazioni software per la progettazione geotecnica con le NTC 2008 GEOSTRU SOFTWARE WWW.GEOSTRU.COM

Dettagli

COMUNE DI BARLETTA. Tav. 1/Str. RELAZIONE GEOTECNICA

COMUNE DI BARLETTA. Tav. 1/Str. RELAZIONE GEOTECNICA COMUNE DI BARLETTA Settore Manutenzioni Provincia di Barletta-Andria-Trani Tav. 1/Str. RELAZIONE GEOTECNICA OGGETTO: RECUPERO E RISTRUTTURAZIONE DELLA PALAZZINA COMUNALE DI VIA GALVANI DA DESTINARE A CENTRO

Dettagli

Committente : Provincia Regionale di Ragusa Località : Porto di Pozzallo (RG) Opera : Realizzazione della stazione passeggeri nel porto di Pozzallo

Committente : Provincia Regionale di Ragusa Località : Porto di Pozzallo (RG) Opera : Realizzazione della stazione passeggeri nel porto di Pozzallo Committente : Provincia Regionale di Ragusa Località : Porto di Pozzallo (RG) Opera : Realizzazione della stazione passeggeri nel porto di Pozzallo RELAZIONE TECNICA ILLUSTRATIVA SOMMARIO 1 DESCRIZIONE

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO RELAZIONE DI CALCOLO GENERALITÀ OGGETTO: Completamento della riqualificazione di via del Porto fino al ponte di via della Repubblica, con sottopasso e collegamento al lungofiume Tavollo fino alla darsena

Dettagli

RELAZIONE RISPOSTA A DOMANDA N. 2. Generalità. Fondazioni. Caratteristiche del terreno

RELAZIONE RISPOSTA A DOMANDA N. 2. Generalità. Fondazioni. Caratteristiche del terreno RISPOSTA A DOMANDA N. 2 RELAZIONE Generalità La presente relazione illustra gli aspetti geotecnici e delle fondazioni relativi alle strutture delle seguenti opere: EDIFICIO SERVIZI BUNKER PROTEXIMETRICO

Dettagli

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio. Carichi unitari delle sezioni e verifica di massima Una volta definito lo spessore, si possono calcolare i carichi unitari (k/m ) Solaio del piano tipo Solaio di copertura Solaio torrino scala Sbalzo piano

Dettagli

Ristrutturazione del complesso ENAV di Roma ACC - Ciampino Roma Progetto definitivo delle strutture - RELAZIONE GEOTECNICA

Ristrutturazione del complesso ENAV di Roma ACC - Ciampino Roma Progetto definitivo delle strutture - RELAZIONE GEOTECNICA INDICE 1 PREMESSA... 2 2 INQUADRAMENTO GEOLOGICO... 2 3 SISMICITA DELL AREA... 3 4 LE INDAGINI GEOGNOSTICHE... 3 5 ASPETTI IDROGEOLOGICI GENERALI... 5 6 ASPETTI GEOTECNICI DEL PROGETTO LE STRUTTURE FONDALI...

Dettagli

11. Criteri di analisi e di verifica

11. Criteri di analisi e di verifica 11. Criteri di analisi e di verifica Il progetto dell edificio esistente riflette naturalmente lo stato delle conoscenze al tempo della costruzione e può contenere difetti di impostazione e di realizzazione,

Dettagli

CONSIDERAZIONI GENERALI

CONSIDERAZIONI GENERALI CONSIDERAZIONI GENERALI FUNZIONI DELLE FONDAZIONI La funzione delle fondazioni è quella di trasferire i carichi provenienti dalla struttura in elevazione al terreno sul quale l edificio poggia. La scelta

Dettagli

PORTANZA DELLE FONDAZIONI

PORTANZA DELLE FONDAZIONI 1 N.T.C. 2008, Capitolo 6.4 - OPERE DI FONDAZIONE Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine. Gli stati

Dettagli

Relazione Geologica e Relazione Geotecnica

Relazione Geologica e Relazione Geotecnica Relazione Geologica e Relazione Geotecnica La Relazione Geologica e la Relazione Geotecnica sono due documenti progettuali sempre distinti. La Relazione Geologica è essenziale per il geotecnico e lo strutturista,

Dettagli

PROGETTAZIONE DELL AMPLIAMENTO DELLA CASA DI RIPOSO DON BOSCO A BOLZANO RELAZIONE GEOLOGICO GEOTECNICA DI PROGETTO- INTEGRAZIONE

PROGETTAZIONE DELL AMPLIAMENTO DELLA CASA DI RIPOSO DON BOSCO A BOLZANO RELAZIONE GEOLOGICO GEOTECNICA DI PROGETTO- INTEGRAZIONE PROGETTAZIONE DELL AMPLIAMENTO DELLA CASA DI RIPOSO DON BOSCO A BOLZANO RELAZIONE GEOLOGICO GEOTECNICA DI PROGETTO- INTEGRAZIONE Redattore della relazione: Dott. Geol. Emanuele Sascor PROGETTAZIONE DELL

Dettagli

Comune di Monte Santa Maria Tiberina

Comune di Monte Santa Maria Tiberina Studio Tecnico Amantini Ing. Matteo ------------------------------------------------------------------------------------------------------------------------------- COMUNE di MONTE SANTA MARIA TIBERINA

Dettagli

FONDAZIONI SU PALI TRIVELLATI

FONDAZIONI SU PALI TRIVELLATI FONDAZIONI SU PALI TRIVELLATI 1.0 CRITERI DI DIMENSIONAMENTO DEI PALI Il dimensionamento dei pali viene eseguito tenendo conto dei criteri appresso riportati. a) Inizialmente vengono determinati i carichi

Dettagli

Risposta sismica dei terreni e spettro di risposta normativo

Risposta sismica dei terreni e spettro di risposta normativo Dipartimento di Ingegneria Strutturale, Aerospaziale e Geotecnica Risposta sismica dei terreni e spettro di risposta normativo Prof. Ing. L.Cavaleri L amplificazione locale: gli aspetti matematici u=spostamentoin

Dettagli

INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8

INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8 2/6 INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8 5 CALCOLO DELLE SOLLECITAZIONI TRAVE... 9 6 CALCOLO DELLE SOLLECITAZIONI

Dettagli

www.lavoripubblici.it

www.lavoripubblici.it Consiglio Superiore dei Lavori Pubblici ****** Istruzioni per l applicazione delle Norme tecniche per le costruzioni di cui al D.M. 14 gennaio 2008 16 INTRODUZIONE Il Decreto Ministeriale 14 gennaio 2008,

Dettagli

Calcolo Muri di sostegno e di cantina in c.a.

Calcolo Muri di sostegno e di cantina in c.a. Nuovo Software Muri NTC Calcolo Muri di sostegno e di cantina in c.a. Muri NTC è un software completo, ma semplicissimo da usare per il calcolo dei muri di sostegno e di cantina secondo le NTC 2008. Parametri

Dettagli

0.00 m. 1,75 m. ghiaiosa); γ 3 = 14,5 kn/m 3 c = 0 kpa ϕ = 35. 10.00 m. 21.75 m

0.00 m. 1,75 m. ghiaiosa); γ 3 = 14,5 kn/m 3 c = 0 kpa ϕ = 35. 10.00 m. 21.75 m ESERCITAZIONE n. 5 Carico limite di un palo trivellato Si calcoli, con le formule statiche, il carico limite di un palo trivellato del diametro di 0,4 m e della lunghezza di 11 m, realizzato in un sito

Dettagli

MODELLO GEOLOGICO E MODELLO GEOTECNICO. Geol. Fabio Garbin

MODELLO GEOLOGICO E MODELLO GEOTECNICO. Geol. Fabio Garbin MODELLO GEOLOGICO E MODELLO GEOTECNICO Geol. Fabio Garbin Preparazione all Esame di Stato, Roma 8 aprile 2011 Riferimenti Normativi essenziali D.M. 14.01.2009: Approvazione delle nuove Norme Tecniche sulle

Dettagli

TEST DI VALIDAZIONE DEL SOFTWARE VEM NL

TEST DI VALIDAZIONE DEL SOFTWARE VEM NL 1 2 TEST DI VALIDAZIONE DEL SOFTWARE VEM NL Confronto dei risultati tra il software VEM NL el il metodo SAM proposto dall Unità di Ricerca dell Università di Pavia. Stacec s.r.l. Software e servizi per

Dettagli

Lezione 9 GEOTECNICA

Lezione 9 GEOTECNICA Lezione 9 GEOTECNICA Docente: Ing. Giusy Mitaritonna e-mail: g.mitaritonna@poliba.it - Lezione 9 A. Fondazioni su pali: requisiti di progetto B. Tecnologie esecutive nella realizzazione dei pali C. Pali

Dettagli

Fondazioni con grande eccentricità (al di fuori del terzo medio)

Fondazioni con grande eccentricità (al di fuori del terzo medio) Fondazioni con grande eccentricità (al di fuori del terzo medio) Generalità Poco si trova in letteratura (eccezion fatta per Bowles, Fondazioni, ed. McGraw-Hill) riguardo le fondazioni con carico fortemente

Dettagli

I metodi di calcolo previsti dalle NTC 08 Parte 1

I metodi di calcolo previsti dalle NTC 08 Parte 1 I metodi di calcolo previsti dalle NTC 08 Parte 1 3 Indice Parte I Schema generale 4 1 Richiamo... normativa 8 Parte II Tipologie di analisi 10 4 1 Enter the help project title here Schema generale Premessa

Dettagli

Committente: Comune di Flero. Cantiere: via Paine Flero (BS) Progetto: Riqualificazione e ampliamento della scuola materna in via Paine

Committente: Comune di Flero. Cantiere: via Paine Flero (BS) Progetto: Riqualificazione e ampliamento della scuola materna in via Paine Committente: Comune di Flero Cantiere: via Paine Flero (BS) Progetto: Riqualificazione e ampliamento della scuola materna in via Paine ------------------------------------------------------------------

Dettagli

RELAZIONE GEOTECNICA E SULLE FONDAZIONI

RELAZIONE GEOTECNICA E SULLE FONDAZIONI RELAZIONE GEOTECNICA E SULLE FONDAZIONI pag. 1 / 12 SOMMARIO 1. PREMESSA... 3 2. NORMATIVA DI RIFERIMENTO... 3 3. STRATIGRAFIA E PARAMETRI GEOTECNICI ADOTTATI... 3 4. CARATTERISTICHE DEI MATERIALI... 5

Dettagli

Fondazioni su pali 183

Fondazioni su pali 183 Fondazioni su pali 183 Fondazioni su pali Verifiche agli stati limite ultimi (SLU) La verifica della condizione (6.2.1) Rd > Ed può essere effettuata per : - collasso per carico limite della palificata

Dettagli

Indice... 1 A1 Relazione di calcolo strutturale... 2

Indice... 1 A1 Relazione di calcolo strutturale... 2 Indice Indice... 1 A1 Relazione di calcolo strutturale... 2 A1.1 Relazione generale illustrativa dell opera... 2 A1.2 Normativa di riferimento... 3 A1.3 Descrizione del modello strutturale... 4 A1.4 Valutazione

Dettagli

Pali di fondazione = elementi strutturali in grado di trasferire il carico applicato alla loro sommità a strati di terreno più profondi e resistenti

Pali di fondazione = elementi strutturali in grado di trasferire il carico applicato alla loro sommità a strati di terreno più profondi e resistenti FONDAZIONI SU PALI Pali di fondazione = elementi strutturali in grado di trasferire il carico applicato alla loro sommità a strati di terreno più profondi e resistenti Si ricorre a fondazioni su pali quando:

Dettagli

Stati limite di carattere idraulico (UPL-HYD) Norme e progettazione di opere geotecniche

Stati limite di carattere idraulico (UPL-HYD) Norme e progettazione di opere geotecniche Stati limite di carattere idraulico (UPL-HYD) Stati limite di carattere idraulico (UPL-HYD) Galleggiamento (uplift( uplift) Sollevamento (heave( heave) Sifonamento (piping) (Erosione interna) Sollevamento

Dettagli

MODELLAZIONE DI UN EDIFICIO IN MURATURA CON IL PROGRAMMA DI CALCOLO 3MURI

MODELLAZIONE DI UN EDIFICIO IN MURATURA CON IL PROGRAMMA DI CALCOLO 3MURI MODELLAZIONE DI UN EDIFICIO IN MURATURA CON IL PROGRAMMA DI CALCOLO 3MURI 1) CREARE UN FILE.DXF IN AUTOCAD NEL QUALE VENGONO RIPORTATE LE PIANTE DEI VARI PIANI DELL EDIFICIO DA ANALIZZARE. RISULTA CONVENIENTE

Dettagli

Dimensionamento delle strutture

Dimensionamento delle strutture Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle

Dettagli

TRACCIA PER LA REDAZIONE DELLA RELAZIONE GEOLOGICA E DELLA RELAZIONE GEOTECNICA FACENTI PARTE DI UN PROGETTO PER COSTRUZIONI.

TRACCIA PER LA REDAZIONE DELLA RELAZIONE GEOLOGICA E DELLA RELAZIONE GEOTECNICA FACENTI PARTE DI UN PROGETTO PER COSTRUZIONI. TRACCIA PER LA REDAZIONE DELLA RELAZIONE GEOLOGICA E DELLA RELAZIONE GEOTECNICA FACENTI PARTE DI UN PROGETTO PER COSTRUZIONI. PRECISAZIONI Il presente documento nasce dalla pressante richiesta di iscritti

Dettagli

SICUREZZA E PRESTAZIONI ATTESE...

SICUREZZA E PRESTAZIONI ATTESE... INDICE GENERALE PREMESSA... 1 OGGETTO... 2 SICUREZZA E PRESTAZIONI ATTESE... 2.1 PRINCIPI FONDAMENTALI... 2.2 STATI LIMITE... 2.2.1 Stati Limite Ultimi (SLU)... 2.2.2 Stati Limite di Esercizio (SLE)...

Dettagli

CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO. NORMATIVA UTILIZZATA: D.M. 14/01/2008 Norme Tecniche per le costruzioni

CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO. NORMATIVA UTILIZZATA: D.M. 14/01/2008 Norme Tecniche per le costruzioni GENERALITA COMUNE DI PREDOSA Provincia di Alessandria CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO ZONA SISMICA: Zona 3 ai sensi dell OPCM 3274/2003 NORMATIVA UTILIZZATA: D.M. 14/01/2008

Dettagli

COMUNE DI FANO RELAZIONE GEOLOGICO TECNICA PER LA SOPRELEVAZIONE DI UN FABBRICATO RESIDENZIALE SITO IN FANO VIA RINALDUCCI

COMUNE DI FANO RELAZIONE GEOLOGICO TECNICA PER LA SOPRELEVAZIONE DI UN FABBRICATO RESIDENZIALE SITO IN FANO VIA RINALDUCCI COMUNE DI FANO RELAZIONE GEOLOGICO TECNICA PER LA SOPRELEVAZIONE DI UN FABBRICATO RESIDENZIALE SITO IN FANO VIA RINALDUCCI COMMITTENTE: MANCINELLI GIUSEPPINA OPERA DELL INGEGNO RIPRODUZIONE VIETATA OGNI

Dettagli

RELAZIONE GEOTECNICA

RELAZIONE GEOTECNICA RELAZIONE GEOTECNICA GENERALITA La presente relazione ha come oggetto l analisi delle caratteristiche stratigrafiche e la determinazione dei parametrici geotecnici relativamente alle opere di allargamento

Dettagli

Relazione sismica Pag. 1

Relazione sismica Pag. 1 Sommario 1. PREMESSA... 2 2. CATEGORIA DEL SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE... 3 3. CARATTERISTICHE DELLE OPERE... 4 4. SOTTOPASSO PEDONALE km 169+423... 5 5. SOTTOVIA VEICOLARE km 172+308... 7 Pag.

Dettagli

SOMMARIO: LEGGI SU CUI SI BASANO LE ATTUALI NORME LE NUOVE NORME TECNICHE PER LE COSTRUZIONI E L AZIONE SISMICA

SOMMARIO: LEGGI SU CUI SI BASANO LE ATTUALI NORME LE NUOVE NORME TECNICHE PER LE COSTRUZIONI E L AZIONE SISMICA LEGGI FONDAMENTALI DELLE NORMESISMICHE SOMMARIO: LEGGI SU CUI SI BASANO LE ATTUALI NORME SISMICHE LE NUOVE NORME TECNICHE PER LE COSTRUZIONI E L AZIONE SISMICA Giacomo Di Pasquale, Dipartimento della Protezione

Dettagli

IL QUADRO NORMATIVO: DEFINIZIONE DELL AZIONE SISMICA DI RIFERIMENTO. ing. Francesco Monni

IL QUADRO NORMATIVO: DEFINIZIONE DELL AZIONE SISMICA DI RIFERIMENTO. ing. Francesco Monni IL QUADRO NORMATIVO: DEFINIZIONE DELL AZIONE SISMICA DI RIFERIMENTO ing. Francesco Monni Le norme che regolano gli interventi su costruzioni esistenti in muratura (anche di carattere storico e monumentale)

Dettagli

Lezione 1. Obiettivi prestazionali e normativa vigente. Laboratorio progettuale (Tecnica delle Costruzioni)

Lezione 1. Obiettivi prestazionali e normativa vigente. Laboratorio progettuale (Tecnica delle Costruzioni) Lezione 1 Obiettivi prestazionali e normativa vigente Laboratorio progettuale (Tecnica delle Costruzioni) Obiettivi prestazionali Obiettivi progettuali Sono definiti dall associazione associazione tra

Dettagli

2.2. Il modello di denuncia e la documentazione

2.2. Il modello di denuncia e la documentazione 2.2. Il modello di denuncia e la documentazione Per tutte le opere e gli interventi sottoposti a denuncia e sull intero territorio regionale, la denuncia è redatta ai sensi dell art. 93 del D.P.R. 380/2001

Dettagli

LINEE GUIDA PER LA REDAZIONE DELLE RELAZIONI GEOLOGICHE E GEOTECNICHE E RELATIVE INDAGINI GEOGNOSTICHE

LINEE GUIDA PER LA REDAZIONE DELLE RELAZIONI GEOLOGICHE E GEOTECNICHE E RELATIVE INDAGINI GEOGNOSTICHE ALLEGATO N. 2 LINEE GUIDA PER LA REDAZIONE DELLE RELAZIONI GEOLOGICHE E GEOTECNICHE E RELATIVE INDAGINI GEOGNOSTICHE Le seguenti linee di indirizzo per la redazione della relazione geologica e relazione

Dettagli

COPYRIGHT. Informazioni e permessi sui prodotti o parti di essi possono essere richiesti a:

COPYRIGHT. Informazioni e permessi sui prodotti o parti di essi possono essere richiesti a: COPYRIGHT Tutto il materiale contenuto nella confezione (CD contenente i files dei software, chiave di protezione, altri supporti di consultazione) è protetto dalle leggi e dai trattati sul copyright,

Dettagli

3. Azioni sismiche. Le probabilità di superamento P VR nel periodo V R di riferimento dell azione sismica sono riportate alla successiva tabella:

3. Azioni sismiche. Le probabilità di superamento P VR nel periodo V R di riferimento dell azione sismica sono riportate alla successiva tabella: 3. Azioni sismiche Per la norma le azioni sismiche devono essere valutare partendo dalla pericolosità sismica di base del sito di costruzione. Si ricorda che la pericolosità sismica, intesa in senso probabilistico,

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura GEOTECNICA 13. OPERE DI SOSTEGNO DEFINIZIONI Opere di sostegno rigide: muri a gravità, a mensola, a contrafforti.. Opere di sostegno flessibili: palancole metalliche, diaframmi in cls (eventualmente con

Dettagli

Studio di Geologia Tecnica dr. ANGELO ANGELI Cesena, via Padre Genocchi, 222 tel.054727682 fax.054721128

Studio di Geologia Tecnica dr. ANGELO ANGELI Cesena, via Padre Genocchi, 222 tel.054727682 fax.054721128 ORIENTAMENTI PER LA VALUTAZIONE DEL COEFFICIENTE DI SOTTOFONDO (K) Nel modello di Winkler il sottosuolo è caratterizzato da una relazione lineare fra il cedimento di un punto (s) e la pressione di contatto

Dettagli

Horae. Horae Software per la Progettazione Architettonica e Strutturale

Horae. Horae Software per la Progettazione Architettonica e Strutturale 1 IL MATERIALE X-LAM Nel programma CDSWin il materiale X-LAM pu ò essere utilizzato solo come elemento parete verticale. Quindi, dal punto di vista strutturale, il suo comportamento è prevalentemente a

Dettagli

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI LE FONDAZIONI Generalità sulle fondazioni Fondazioni dirette Plinti isolati Trave rovescia Esecutivi di strutture di fondazione Generalità Le opere di fondazione hanno il compito di trasferire le sollecitazioni

Dettagli

Certificazione di produzione di codice di calcolo Programma CAP3

Certificazione di produzione di codice di calcolo Programma CAP3 1 Certificazione di produzione di codice di calcolo Programma CAP3 1) CARATTERISTICHE DEL CODICE Titolo programma : CAP3 - Travi precompresse ad armatura pretesa, Metodo agli stati limite. Autore : ing.

Dettagli

SI CONFERMA LA RELAZIONE DI CALCOLO STRUTTURALE DEL PROGETTO DEFINITIVO REDATTA DALL ING. IVO FRESIA DELLO STUDIO. ART S.r.l..

SI CONFERMA LA RELAZIONE DI CALCOLO STRUTTURALE DEL PROGETTO DEFINITIVO REDATTA DALL ING. IVO FRESIA DELLO STUDIO. ART S.r.l.. SI CONFERMA LA RELAZIONE DI CALCOLO STRUTTURALE DEL PROGETTO DEFINITIVO REDATTA DALL ING. IVO FRESIA DELLO STUDIO ART S.r.l.. 1 Generalità... 1 2 Carichi massimi sui pali... 3 2.1 Pile... 3 2.2 Spalle...

Dettagli

TAVOLA TECNICA SUGLI SCAVI. Art. 100 comma 1 del D. Lgs. 81/2008

TAVOLA TECNICA SUGLI SCAVI. Art. 100 comma 1 del D. Lgs. 81/2008 TAVOLA TECNICA SUGLI SCAVI Art. 100 comma 1 del D. Lgs. 81/2008 D. Lgs. 81/2008: Art. 100 Piano di Sicurezza e Coordinamento comma 1: il Piano di Sicurezza e Coordinamento è corredato..da una tavola tecnica

Dettagli

Fondazioni a platea e su cordolo

Fondazioni a platea e su cordolo Fondazioni a platea e su cordolo Fondazione a platea massiccia Una volta normalmente impiegata per svariate tipologie di edifici, oggi la fondazione a platea massiccia viene quasi esclusivamente adottata

Dettagli

SETTI O PARETI IN C.A.

SETTI O PARETI IN C.A. SETTI O PARETI IN C.A. Parete Pareti accoppiate SETTI O PARETI IN C.A. Na 20% Fh i i h i Na/M tot >=0.2 SETTI O PARETI IN C.A. IL FATTORE DI STRUTTURA VERIFICHE SETTI O PARETI IN C.A. SOLLECITAZIONI -FLESSIONE

Dettagli

RESISTENZA DEI MATERIALI TEST

RESISTENZA DEI MATERIALI TEST RESISTENZA DEI MATERIALI TEST 1. Nello studio della resistenza dei materiali, i corpi: a) sono tali per cui esiste sempre una proporzionalità diretta tra sollecitazione e deformazione b) sono considerati

Dettagli

COMPONENTE GEOLOGICA, IDROGEOLOGICA E SISMICA DEL PIANO DI GORVERNO DEL TERRITORIO COMUNALE DI BEDULITA (BG) Integrazioni

COMPONENTE GEOLOGICA, IDROGEOLOGICA E SISMICA DEL PIANO DI GORVERNO DEL TERRITORIO COMUNALE DI BEDULITA (BG) Integrazioni COMPONENTE GEOLOGICA, IDROGEOLOGICA E SISMICA DEL PIANO DI GORVERNO DEL TERRITORIO COMUNALE DI BEDULITA (BG) Integrazioni Norma di riferimento: D.g.r. 30 novembre 2011 - n. IX/2616 Aggiornamento dei Criteri

Dettagli

PROGETTO ESECUTIVO PER LA MIGLIOR GESTIONE IRRIGUA INDICE

PROGETTO ESECUTIVO PER LA MIGLIOR GESTIONE IRRIGUA INDICE Via Turazza 48, 35128 Padova. Tel./Fax 049 774197. E-mail: albmazzu@libero.it PROGETTO ESECUTIVO PER LA MIGLIOR GESTIONE IRRIGUA INDICE 1 PREMESSA... 2 2 CANALE ALTIPIANO... 2 2.1 TRATTA 1... 2 2.2 TRATTA

Dettagli

ALLEGATO N.9 Portanza e cedimenti - valutazioni preliminari

ALLEGATO N.9 Portanza e cedimenti - valutazioni preliminari ALLEGATO N.9 Portanza e cedimenti - valutazioni preliminari DATI GENERALI Azione sismica NTC 2008 Lat./ Long. [WGS84] 43,618868/10,642293 Larghezza fondazione 1,2 m Lunghezza fondazione 10,0 m Profondità

Dettagli

Indagine sismica. MASW - Multichannel Analysis of Surface Waves

Indagine sismica. MASW - Multichannel Analysis of Surface Waves Indagine sismica MASW - Multichannel Analysis of Surface Waves relativa alla determinazione della stratigrafia sismica VS e del parametro VS30 in un'area di Sestri Levanti NS rif 09140SA Dott. Geol. Franco

Dettagli

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti;

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti; !""##"!$%&'((""!" )**&)+,)-./0)*$1110,)-./0)*!""##"!$%&'((""!" *&)23+-0-$4--56%--0.),0-,-%323 -&3%/ La presente relazione ha lo scopo di illustrare il meccanismo di calcolo che sta alla base del dimensionamento

Dettagli

Trasportatori a nastro

Trasportatori a nastro Trasportatori a nastro Realizzano un trasporto di tipo continuo, in orizzontale o in pendenza, di materiali alla rinfusa e di carichi concentrati leggeri. incastellatura di sostegno Trasporti interni 1

Dettagli

1 A DISEGNO PROGETTAZIONE ORGANIZZAZIONE INDUSTRIALE. T n. =C, con C = 366 ed n = 0.25, Motore

1 A DISEGNO PROGETTAZIONE ORGANIZZAZIONE INDUSTRIALE. T n. =C, con C = 366 ed n = 0.25, Motore Disegno, Progettazione ed rganizzazione Industriale esame 03 DISEGN PRGETTZINE RGNIZZZINE INDUSTRILE Sessione ordinaria 03 L albero di trasmissione rappresentato in figura trasmette una potenza P = 5 kw

Dettagli

STRUTTURE MISTE ACCIAIO-CLS Lezione 2

STRUTTURE MISTE ACCIAIO-CLS Lezione 2 STRUTTURE MISTE ACCIAIO-CLS Lezione 2 I SISTEMI DI CONNESSIONE Tipologie di connettori Calcolo della sollecitazione nei connettori Connettori a totale ripristino di resistenza Connettori a parziale ripristino

Dettagli

1 PREMESSA... 2 2 POSIZIONE DEL PROBLEMA... 2 3 SOLUZIONE PROPOSTA... 4 3.1 Tipologia speroni... 5 4 STIMA DEI COSTI... 6 5 ALLEGATI...

1 PREMESSA... 2 2 POSIZIONE DEL PROBLEMA... 2 3 SOLUZIONE PROPOSTA... 4 3.1 Tipologia speroni... 5 4 STIMA DEI COSTI... 6 5 ALLEGATI... Spett.le AOB2 S.r.l. Via XXV Aprile, 18 25038 Rovato (BS) OGGETTO: Stima di massima importo intervento di consolidamento vasche di ossidazione linea 2 impianto di depurazione di Chiari, in previsione di

Dettagli

AUTORITA DI BACINO DI RILIEVO REGIONALE NORMATIVA-TIPO RELATIVA AGLI AMBITI NORMATIVI DELLE FASCE DI INONDABILITÀ EX DGR 250/05

AUTORITA DI BACINO DI RILIEVO REGIONALE NORMATIVA-TIPO RELATIVA AGLI AMBITI NORMATIVI DELLE FASCE DI INONDABILITÀ EX DGR 250/05 AUTORITA DI BACINO DI RILIEVO REGIONALE NORMATIVA-TIPO RELATIVA AGLI AMBITI NORMATIVI DELLE FASCE DI INONDABILITÀ EX DGR 250/05 Documento approvato con DGR 1532 del 2.12.2005 - Allegato 2 - ALLEGATO 2

Dettagli

Mc4Loc. L analisi dei meccanismi locali

Mc4Loc. L analisi dei meccanismi locali Mc4Loc L analisi dei meccanismi locali Il software che ti consente di valutare i meccanismi locali su edifici in muratura secondo l'analisi cinematica lineare e non lineare. Il programma si pone l obiettivo

Dettagli

Fasi del progetto geotecnico di una fondazione

Fasi del progetto geotecnico di una fondazione 1 Fasi del progetto geotecnico di una fondazione 1. Indagini per la caratterizzazione geotecnica del sottosuolo. Analisi di entità e distribuzione delle azioni di progetto in esercizio (carichi fissi +

Dettagli

Arch. Giuliano Moscon SERVIZIO TECNICO ASSOCIATO COMUNI DI FONDO E MALOSCO

Arch. Giuliano Moscon SERVIZIO TECNICO ASSOCIATO COMUNI DI FONDO E MALOSCO COMUNE DI MALOSCO Provincia di Trento PROGETTO INTERVENTO DI SOMMA URGENZA RECUPERO E CONSOLIDAMENTO STRUTTURALE DEL MURO DI SOSTEGNO SU P.F. 666 C.C. MALOSCO I IN VIA MIRAVALLE. Relazione di calcolo COMMITTENTE

Dettagli

I padiglioni A e C degli Spedali Civili di Brescia.

I padiglioni A e C degli Spedali Civili di Brescia. APPLICAZIONI DEL CAPITOLO 8 : COSTRUZIONI ESISTENTI. I padiglioni A e C degli Spedali Civili di Brescia. Relatore: Ing. Alessandro Aronica (MSC Associati S.r.l. Milano) IL TEAM IMPRESA GENERALE DI COSTRUZIONI:

Dettagli

E mail: emadelmo@dicea.unifi.it Web: www.dicea.unifi.it/~emadelmo. Firenze, 12/03/2009

E mail: emadelmo@dicea.unifi.it Web: www.dicea.unifi.it/~emadelmo. Firenze, 12/03/2009 www.dicea.unifi.it Anno accademico 2008/2009 Ingegneria Sismica CIS Emanuele Del Monte E mail: emadelmo@dicea.unifi.it Web: www.dicea.unifi.it/~emadelmo Firenze, 12/03/2009 PRIMA PARTE CARATTERISTICHE

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

VERIFICA OPERE IN C.A. CORPO "A"

VERIFICA OPERE IN C.A. CORPO A VERIFICA OPERE IN C.A. CORPO "A" 1 VERIFICA PIASTRA FONDALE...3 VERIFICA RESTANTI OPERE IN C.A...9 VERIFICHE SLE...11 2 VERIFICA PIASTRA FONDALE Verifica a flessione Stati limiti La piastra fondale presenta

Dettagli

Normative di riferimento

Normative di riferimento Aztec Informatica CARL 9.0 Relazione di calcolo 1 RELAZIONE DI CALCOLO GEOTECNICO Normative di riferimento - Legge nr. 1086 del 05/11/1971. Norme per la disciplina delle opere in conglomerato cementizio,

Dettagli

Contributo dei tamponamenti nelle strutture in c.a. Metodo utilizzato da FaTA-e

Contributo dei tamponamenti nelle strutture in c.a. Metodo utilizzato da FaTA-e 1 2 Contributo dei tamponamenti nelle strutture in c.a Metodo utilizzato da FaTA-e La presenza dei tamponamenti in una struttura in c.a., come evidenziato nei vari eventi tellurici avvenuti, riveste un

Dettagli

Ing. Marco Franceschini Ordine Geologi del Veneto 04/09/2009

Ing. Marco Franceschini Ordine Geologi del Veneto 04/09/2009 Cedimento per la fondazione dimensionata, per gli stessi carichi, con l EC7. B x L x H = 1.5 m x 1.5 m x 1.0 m con l intradosso posto a 2.00 m dal piano di campagna. N B Terreno di riempimento 1,00 1,00

Dettagli

CALCOLO DEL NUOVO PONTE

CALCOLO DEL NUOVO PONTE CALCOLO DEL NUOVO PONTE CARATTERISTICHE DEI MATERIALI I materiali utilizzati sono: - Calcestruzzo Rck450 = 2500 Kg/m 3 Resistenza di esercizio a flessione: f cd = 0,44*45 = 19,8 N/mm 2 = 198 Kg/cm 2 -

Dettagli

INDICE. 1. Premesse pag. 2. 2. Regime normativo pag. 3

INDICE. 1. Premesse pag. 2. 2. Regime normativo pag. 3 INDICE 1. Premesse pag. 2 2. Regime normativo pag. 3 3. Plinto di fondazione torre faro pag. 4 3.1 Sollecitazione massime di calcolo pag. 4 3.2 Determinazione massimi sforzi sui pali pag. 4 3.3 Dimensionamento

Dettagli

Dissesti statici nel consolidamento delle opere d'arte danneggiate. Giorgio Monti Università La Sapienza di Roma

Dissesti statici nel consolidamento delle opere d'arte danneggiate. Giorgio Monti Università La Sapienza di Roma Dissesti statici nel consolidamento delle opere d'arte danneggiate Giorgio Monti Università La Sapienza di Roma 1 Contenuti Metodologia di progettazione Valutazione della resistenza attuale (Capacità)

Dettagli

Gli edifici in c.a. Prof. Ing. Aurelio Ghersi Dipartimento di Ingegneria Civile ed Ambientale Università di Catania

Gli edifici in c.a. Prof. Ing. Aurelio Ghersi Dipartimento di Ingegneria Civile ed Ambientale Università di Catania Gli edifici in c.a. Prof. Ing. Aurelio Ghersi Dipartimento di Ingegneria Civile ed Ambientale Università di Catania Il controllo della progettazione: i compiti del collaudatore. Forum della Tecnica delle

Dettagli

Norme Tecniche per le Costruzioni, D.M. 14/01/2008 La Progettazione Geotecnica

Norme Tecniche per le Costruzioni, D.M. 14/01/2008 La Progettazione Geotecnica Corso di aggiornamento professionale Norme Tecniche per le Costruzioni, D.M. 14/01/2008 La Progettazione Geotecnica CITEI GENEALI DI POGETTO DELLE FONDAZINI SUPEFICIALI Prof. Ing. Francesco Colleselli,

Dettagli

1. PREMESSA 2. CALCOLI E VERIFICHE FOGNATURA ACQUE REFLUE

1. PREMESSA 2. CALCOLI E VERIFICHE FOGNATURA ACQUE REFLUE 1. PREMESSA La presente verifica idraulica fa riferimento alla precedente verifica allegata al progetto preliminare approvato con Deliberazione del Giunta Municipale n. 113 del 19.09.2011, con la quale

Dettagli

PROGETTAZIONE PER AZIONI SISMICHE

PROGETTAZIONE PER AZIONI SISMICHE PROGETTAZIONE PER AZIONI SISMICHE 3.2 AZIONE SISMICA Le azioni sismiche di progetto si definiscono a partire dalla pericolosità sismica di base del sito di costruzione, che è descritta dalla probabilità

Dettagli

Istruzioni per la Progettazione, l Esecuzione ed il Controllo delle Strutture di Legno,

Istruzioni per la Progettazione, l Esecuzione ed il Controllo delle Strutture di Legno, Come indicato al Par. 4.4.14 del D.M. 14/01/2008, VERIFICA DI RESISTENZA AL FUOCO ELEMENTI LIGNEI Le verifiche di resistenza al fuoco potranno eseguirsi con riferimento a UNI EN 1995-1-2, utilizzando i

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

Progetto delle armature longitudinali del solaio

Progetto delle armature longitudinali del solaio prof. Renato Giannini Progetto delle armature longitudinali del solaio (arch. Lorena Sguerri) orrezioni del diagramma di momento flettente Prescrizioni di normativa specifiche per il solaio Progetto delle

Dettagli

MODELLO ELASTICO (Legge di Hooke)

MODELLO ELASTICO (Legge di Hooke) MODELLO ELASTICO (Legge di Hooke) σ= Eε E=modulo elastico molla applicazioni determinazione delle tensioni indotte nel terreno calcolo cedimenti MODELLO PLASTICO T N modello plastico perfetto T* non dipende

Dettagli

L ingombro ed il numero delle corsie si calcola attraverso lo schema e la tabella riportata a seguito.

L ingombro ed il numero delle corsie si calcola attraverso lo schema e la tabella riportata a seguito. 4.2 IL COLLAUDO STATICO DEI PONTI 4.2.1 Ponti stradali Per i ponti stradali le norme per l effettuazione del collaudo statico sono contenute nel D.M. LL. PP. del 4 maggio 1990 Aggiornamento delle norme

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante Riflettiamo sulla pista Guida per l insegnante Obiettivi educativi generali Compito di specificazione - possiede capacità progettuale - è in grado di organizzare il proprio tempo e di costruire piani per

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

VILLA BORROMEO Sarmeola di Rubano Padova 25 novembre 2010. Relatore: Ing. Carlo Calisse

VILLA BORROMEO Sarmeola di Rubano Padova 25 novembre 2010. Relatore: Ing. Carlo Calisse LE RETI ANTICADUTA DALLE NORME UNI EN 1263-1 1 e 2 ALLE NUOVE LINEE GUIDA AIPAA VILLA BORROMEO Sarmeola di Rubano Padova 25 novembre 2010 Relatore: Ing. Carlo Calisse INTRODUZIONE ALLE NORME UNI EN 1263-1:

Dettagli

VERIFICA DI VULNERABILITA SISMICA DEGLI EDIFICI

VERIFICA DI VULNERABILITA SISMICA DEGLI EDIFICI VERIFICA DI VULNERABILITA SISMICA DEGLI EDIFICI Verifica di vulnerabilità sismica Pagina 2 di 8 INDICE Premessa...3 Classificazione sismica...3 Vulnerabilità sismica...5 Indagini...5 Calcolo...6 Verifica

Dettagli